Abstract

We proposed a new method for superchannel transmission based on the newly proposed multi-channel equalization technique. This method allows us to realize tight channel spacing (equal to the baud rate) without using frequency-locked lasers and complex spectral shaping techniques at the transmitter. The inter-channel interference originated from the tight channel spacing is removed at the receiver by joint equalization of multiple adjacent channels. When the channel spacing is equal to the baud rate, our simulation results show that, with conventional oversample ratio (2 samples per symbol), realistic laser frequency offset and laser linewidth, the proposed multi-channel-equalization based method can achieve better performance than the traditional method using spectral shaping plus single channel equalization, although at the expense of a moderate increase in DSP complexity. The paper also gives a simple method to process the data after conventional chromatic dispersion compensation, which enables subsequent multi-channel equalization for long-haul transmissions.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shieh, Q. Yang, and Y. Ma, “107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing,” Opt. Express16(9), 6378–6386 (2008), http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-16-9-6378&id=157340 .
    [CrossRef] [PubMed]
  2. A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, and Y. Takatori, “No-guard-interval coherent optical OFDM for 100-Gb/s long-haul WDM transmission,” J. Lightwave Technol.27, 3705–3713 (2009).
  3. X. Zhou, L. E. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. I. Borel, and K. Carlson, “PDM-Nyquist-32QAM for 450-Gb/s per-channel WDM transmission on the 50 GHz ITU-T grid,” J. Lightwave Technol.30(4), 553–559 (2012).
    [CrossRef]
  4. T. Zeng, Q. Yang, X. Xiao, C. Li, Z. Yang, and S. Yu, “Multi channel equalization of OFDM signal,” Asia Communications and Photonics Conference (ACP), Technical Digest (CD) (Optical Society of America, 2012), paper AS4G.4. http://www.opticsinfobase.org/abstract.cfm?URI=ACP-2012-AS4G.4
  5. C. Liu, J. Pan, T. Detwiler, A. Stark, Y.-T. Hsueh, G.-K. Chang, and S. E. Ralph, “Super receiver design for superchannel coherent optical systems,”,” Proc. SPIE8284, 828405 (2012).
    [CrossRef]
  6. C. Liu, J. Pan, T. Detwiler, A. Stark, Y. T. Hsueh, G. K. Chang, and S. E. Ralph, “Joint Digital Signal Processing for Superchannel Coherent Optical Systems: Joint CD Compensation for Joint ICI Cancellation,” European Conference and Exhibition on Optical Communication (ECOC), Technical Digest (CD) (Optical Society of America, 2012), Paper Th1A.4. http://www.opticsinfobase.org/abstract.cfm?URI=ECEOC-2012-Th.1.A.4
  7. J. Pan, C. Liu, T. Detwiler, A. Stark, Y. T. Hsueh, and S. E. Ralph, “Inter-channel crosstalk cancellation for Nyquist-WDM superchannel applications,” J. Lightwave Technol.30(24), 3993–3999 (2012).
    [CrossRef]
  8. Z. Dong, J. Yu, H. C. Chien, N. Chi, L. Chen, and G. K. Chang, “Ultra-dense WDM-PON delivering carrier-centralized Nyquist-WDM uplink with digital coherent detection,” Opt. Express19(12), 11100–11105 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-12-11100 .
    [CrossRef] [PubMed]
  9. S. Chandrasekhar and X. Liu, “Experimental investigation on the performance of closely spaced multi-carrier PDM-QPSK with digital coherent detection,” Opt. Express17(24), 21350–21361 (2009), http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-17-24-21350&id=188680 .
    [CrossRef] [PubMed]
  10. G. Bosco, “Spectral Shaping in Ultra-Dense WDM Systems: Optical vs. Electrical Approaches,” Optical Fiber Communication Conference (OFC), Technical Digest (CD) (Optical Society of America, 2012), paper OM3H.1 http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2012-OM3H.1
    [CrossRef]
  11. G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance Limits of Nyquist-WDM and CO-OFDM in High-Speed PM-QPSK Systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
    [CrossRef]
  12. M. Yan, Z. Tao, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Experimental Comparison of No-Guard-Interval-OFDM and Nyquist-WDM Superchannels,” Optical Fiber Communication Conference (OFC), Technical Digest (CD) (Optical Society of America, 2012), paper OTh1B.2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2012-OTh1B.2
    [CrossRef]
  13. M. Yan, Z. Tao, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Intercarrier interference suppression in no-guard-interval orthogonal frequency-division-multiplexing system,” IEEE Photon. Technol. Lett.24(7), 563–565 (2012).
    [CrossRef]
  14. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express16(2), 804–817 (2008), http://www.opticsinfobase.org/aop/fulltext.cfm?uri=oe-16-2-804&id=148803 .
    [CrossRef] [PubMed]
  15. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

2012 (4)

X. Zhou, L. E. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. I. Borel, and K. Carlson, “PDM-Nyquist-32QAM for 450-Gb/s per-channel WDM transmission on the 50 GHz ITU-T grid,” J. Lightwave Technol.30(4), 553–559 (2012).
[CrossRef]

C. Liu, J. Pan, T. Detwiler, A. Stark, Y.-T. Hsueh, G.-K. Chang, and S. E. Ralph, “Super receiver design for superchannel coherent optical systems,”,” Proc. SPIE8284, 828405 (2012).
[CrossRef]

J. Pan, C. Liu, T. Detwiler, A. Stark, Y. T. Hsueh, and S. E. Ralph, “Inter-channel crosstalk cancellation for Nyquist-WDM superchannel applications,” J. Lightwave Technol.30(24), 3993–3999 (2012).
[CrossRef]

M. Yan, Z. Tao, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Intercarrier interference suppression in no-guard-interval orthogonal frequency-division-multiplexing system,” IEEE Photon. Technol. Lett.24(7), 563–565 (2012).
[CrossRef]

2011 (1)

2010 (1)

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance Limits of Nyquist-WDM and CO-OFDM in High-Speed PM-QPSK Systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

2009 (2)

2008 (2)

Borel, P. I.

Bosco, G.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance Limits of Nyquist-WDM and CO-OFDM in High-Speed PM-QPSK Systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

Carena, A.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance Limits of Nyquist-WDM and CO-OFDM in High-Speed PM-QPSK Systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

Carlson, K.

Chandrasekhar, S.

Chang, G. K.

Chang, G.-K.

C. Liu, J. Pan, T. Detwiler, A. Stark, Y.-T. Hsueh, G.-K. Chang, and S. E. Ralph, “Super receiver design for superchannel coherent optical systems,”,” Proc. SPIE8284, 828405 (2012).
[CrossRef]

Chen, L.

Chi, N.

Chien, H. C.

Curri, V.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance Limits of Nyquist-WDM and CO-OFDM in High-Speed PM-QPSK Systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

Detwiler, T.

J. Pan, C. Liu, T. Detwiler, A. Stark, Y. T. Hsueh, and S. E. Ralph, “Inter-channel crosstalk cancellation for Nyquist-WDM superchannel applications,” J. Lightwave Technol.30(24), 3993–3999 (2012).
[CrossRef]

C. Liu, J. Pan, T. Detwiler, A. Stark, Y.-T. Hsueh, G.-K. Chang, and S. E. Ralph, “Super receiver design for superchannel coherent optical systems,”,” Proc. SPIE8284, 828405 (2012).
[CrossRef]

Dong, Z.

Forghieri, F.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance Limits of Nyquist-WDM and CO-OFDM in High-Speed PM-QPSK Systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

Hoshida, T.

M. Yan, Z. Tao, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Intercarrier interference suppression in no-guard-interval orthogonal frequency-division-multiplexing system,” IEEE Photon. Technol. Lett.24(7), 563–565 (2012).
[CrossRef]

Hsueh, Y. T.

Hsueh, Y.-T.

C. Liu, J. Pan, T. Detwiler, A. Stark, Y.-T. Hsueh, G.-K. Chang, and S. E. Ralph, “Super receiver design for superchannel coherent optical systems,”,” Proc. SPIE8284, 828405 (2012).
[CrossRef]

Isaac, R.

Ishihara, K.

Kobayashi, T.

Kudo, R.

Li, L.

M. Yan, Z. Tao, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Intercarrier interference suppression in no-guard-interval orthogonal frequency-division-multiplexing system,” IEEE Photon. Technol. Lett.24(7), 563–565 (2012).
[CrossRef]

Liu, C.

C. Liu, J. Pan, T. Detwiler, A. Stark, Y.-T. Hsueh, G.-K. Chang, and S. E. Ralph, “Super receiver design for superchannel coherent optical systems,”,” Proc. SPIE8284, 828405 (2012).
[CrossRef]

J. Pan, C. Liu, T. Detwiler, A. Stark, Y. T. Hsueh, and S. E. Ralph, “Inter-channel crosstalk cancellation for Nyquist-WDM superchannel applications,” J. Lightwave Technol.30(24), 3993–3999 (2012).
[CrossRef]

Liu, X.

Ma, Y.

Magill, P.

Masuda, H.

Miyamoto, Y.

Nelson, L. E.

Pan, J.

J. Pan, C. Liu, T. Detwiler, A. Stark, Y. T. Hsueh, and S. E. Ralph, “Inter-channel crosstalk cancellation for Nyquist-WDM superchannel applications,” J. Lightwave Technol.30(24), 3993–3999 (2012).
[CrossRef]

C. Liu, J. Pan, T. Detwiler, A. Stark, Y.-T. Hsueh, G.-K. Chang, and S. E. Ralph, “Super receiver design for superchannel coherent optical systems,”,” Proc. SPIE8284, 828405 (2012).
[CrossRef]

Peckham, D. W.

Poggiolini, P.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance Limits of Nyquist-WDM and CO-OFDM in High-Speed PM-QPSK Systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

Ralph, S. E.

C. Liu, J. Pan, T. Detwiler, A. Stark, Y.-T. Hsueh, G.-K. Chang, and S. E. Ralph, “Super receiver design for superchannel coherent optical systems,”,” Proc. SPIE8284, 828405 (2012).
[CrossRef]

J. Pan, C. Liu, T. Detwiler, A. Stark, Y. T. Hsueh, and S. E. Ralph, “Inter-channel crosstalk cancellation for Nyquist-WDM superchannel applications,” J. Lightwave Technol.30(24), 3993–3999 (2012).
[CrossRef]

Rasmussen, J. C.

M. Yan, Z. Tao, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Intercarrier interference suppression in no-guard-interval orthogonal frequency-division-multiplexing system,” IEEE Photon. Technol. Lett.24(7), 563–565 (2012).
[CrossRef]

Sano, A.

Savory, S. J.

Shieh, W.

Stark, A.

J. Pan, C. Liu, T. Detwiler, A. Stark, Y. T. Hsueh, and S. E. Ralph, “Inter-channel crosstalk cancellation for Nyquist-WDM superchannel applications,” J. Lightwave Technol.30(24), 3993–3999 (2012).
[CrossRef]

C. Liu, J. Pan, T. Detwiler, A. Stark, Y.-T. Hsueh, G.-K. Chang, and S. E. Ralph, “Super receiver design for superchannel coherent optical systems,”,” Proc. SPIE8284, 828405 (2012).
[CrossRef]

Takatori, Y.

Tao, Z.

M. Yan, Z. Tao, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Intercarrier interference suppression in no-guard-interval orthogonal frequency-division-multiplexing system,” IEEE Photon. Technol. Lett.24(7), 563–565 (2012).
[CrossRef]

Yamada, E.

Yamazaki, E.

Yan, M.

M. Yan, Z. Tao, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Intercarrier interference suppression in no-guard-interval orthogonal frequency-division-multiplexing system,” IEEE Photon. Technol. Lett.24(7), 563–565 (2012).
[CrossRef]

Yan, W.

M. Yan, Z. Tao, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Intercarrier interference suppression in no-guard-interval orthogonal frequency-division-multiplexing system,” IEEE Photon. Technol. Lett.24(7), 563–565 (2012).
[CrossRef]

Yang, Q.

Yoshida, E.

Yu, J.

Zhou, X.

Zhu, B.

IEEE Photon. Technol. Lett. (2)

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance Limits of Nyquist-WDM and CO-OFDM in High-Speed PM-QPSK Systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

M. Yan, Z. Tao, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Intercarrier interference suppression in no-guard-interval orthogonal frequency-division-multiplexing system,” IEEE Photon. Technol. Lett.24(7), 563–565 (2012).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (4)

Proc. SPIE (1)

C. Liu, J. Pan, T. Detwiler, A. Stark, Y.-T. Hsueh, G.-K. Chang, and S. E. Ralph, “Super receiver design for superchannel coherent optical systems,”,” Proc. SPIE8284, 828405 (2012).
[CrossRef]

Other (5)

C. Liu, J. Pan, T. Detwiler, A. Stark, Y. T. Hsueh, G. K. Chang, and S. E. Ralph, “Joint Digital Signal Processing for Superchannel Coherent Optical Systems: Joint CD Compensation for Joint ICI Cancellation,” European Conference and Exhibition on Optical Communication (ECOC), Technical Digest (CD) (Optical Society of America, 2012), Paper Th1A.4. http://www.opticsinfobase.org/abstract.cfm?URI=ECEOC-2012-Th.1.A.4

T. Zeng, Q. Yang, X. Xiao, C. Li, Z. Yang, and S. Yu, “Multi channel equalization of OFDM signal,” Asia Communications and Photonics Conference (ACP), Technical Digest (CD) (Optical Society of America, 2012), paper AS4G.4. http://www.opticsinfobase.org/abstract.cfm?URI=ACP-2012-AS4G.4

G. Bosco, “Spectral Shaping in Ultra-Dense WDM Systems: Optical vs. Electrical Approaches,” Optical Fiber Communication Conference (OFC), Technical Digest (CD) (Optical Society of America, 2012), paper OM3H.1 http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2012-OM3H.1
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

M. Yan, Z. Tao, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Experimental Comparison of No-Guard-Interval-OFDM and Nyquist-WDM Superchannels,” Optical Fiber Communication Conference (OFC), Technical Digest (CD) (Optical Society of America, 2012), paper OTh1B.2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2012-OTh1B.2
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The receiver architecture using MCE.

Fig. 2
Fig. 2

Superchannel transmission in long haul, using MCE or SCE.

Fig. 3
Fig. 3

Q of MCE and SCE, simulated when OSNR(0.1nm) is equal to 40/30/20dB (a) Q vs frequency offset (b) Q vs different linewidth

Fig. 4
Fig. 4

Q of MCE and SCE vs OSNR(0.1nm) when using NRZ, Raised-Cosine pulse shaping with roll-off factors at 1, 0.1, 0.01

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

k=m1 m+1 ( I k +j Q k )exp[ j((km) Ω 0 t+2πδ f k t+ θ k φ m ) ] ,m=0..N1,
Ei n m (n)= k=m1 m+1 [ I k (n)+j Q k (n) ]exp[ j((km) Ω 0 (nT+ t m )+2πδ f k (nT+ t m )+ θ k φ m ) ] = k=m1 m+1 [ I k (n)+j Q k (n) ]exp[ j((km) Ω 0 t m +2πδ f k (nT+ t m )+ θ k φ m ) ] ,m=0..N1.
Ei n m (n)=[ I m 1 (n)+j Q m 1 (n) ] p mm 1 +[ I m1 1 (n)+j Q m1 1 (n) ] p (m1)m 1 +[ I m+1 1 (n)+j Q m+1 1 (n) ] p (m+1)m 1 ,
p mm 1 (n)=exp[ j( θ m φ m +2πδ f m t m ) ],
p (m±1)m 1 (n)=exp[ j((m±1m) Ω 0 (nT+ t m )+2πδ f m±1 t m + θ m±1 φ m ) ] =exp[ j(± Ω 0 t m +2πδ f m±1 t m + θ m±1 φ m ) ].
F(Ω+m Ω 0 )exp[ j β 2 ( Ω+ Ω c +m Ω 0 ) 2 z /2 ] =F(Ω+m Ω 0 )exp[ j β 2 Ω 2 z / 2+j β 2 Ω( Ω c +m Ω 0 )z+ j β 2 ( Ω c +m Ω 0 ) 2 z /2 ].

Metrics