Abstract

An ultrasmooth reaction-sintered silicon carbide surface with an rms roughness of 0.424 nm is obtained after thermal oxidation for 30 min followed by ceria slurry polishing for 30 min. By SEM-EDX analysis, we investigated the thermal oxidation behavior of RS-SiC, in which the main components are Si and SiC. As the oxidation rate is higher in the area with defects, there are no scratches or cracks on the surface after oxidation. However, a bumpy structure is formed after oxidation because the oxidation rates of Si and SiC differ. Through a theoretical analysis of thermal oxidation using the Deal-Grove model and the removal of the oxide layer by ceria slurry polishing in accordance with the Preston equation, a model for obtaining an ultrasmooth surface is proposed and the optimal processing conditions are presented.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Dai, “Surface finishing of new type RS-SiC ceramics,” Int. J. Comput. Appl. Tech.29(2/3/4), 145–149 (2007).
    [CrossRef]
  2. D. A. Ersoy, M. J. McNallan, and Y. Gogotsi, “Carbon coatings produced by high temperature chlorination of silicon carbide ceramics,” Mat. Res. Innovat.5(2), 55–62 (2001).
    [CrossRef]
  3. S. P. Lee, Y. S. Shin, D. S. Bae, B. H. Min, J. S. Park, and A. Kohyama, “Fabrication of liquid phase sintered SiC materials and their characterization,” Fusion Eng. Des.81(8-14), 963–967 (2006).
    [CrossRef]
  4. A. Sayano, C. Sutoh, S. Suyama, Y. Itoh, and S. Nakagawa, “Development of a reaction-sintered silicon carbide matrix composite,” J. Nucl. Mater.271–272, 467–471 (1999).
    [CrossRef]
  5. S. Suyama, T. Kameda, and Y. Itoh, “Development of high-strength reaction-sintered silicon carbide,” Diamond Related Materials12(3–7), 1201–1204 (2003).
    [CrossRef]
  6. Y. W. Kim, M. Mitomo, H. Emoto, and J. G. Lee, “Effect of initial α‐phase content on microstructure and mechanical properties of sintered silicon carbide,” J. Am. Ceram. Soc.81(12), 3136–3140 (1998).
    [CrossRef]
  7. O. P. Chakrabarti, P. K. Das, and J. Mukerji, “Growth of SiC particles in reaction sintered SiC,” Mater. Chem. Phys.67(1–3), 199–202 (2001).
    [CrossRef]
  8. T. Grande, H. Sommerset, E. Hagen, K. Wiik, and M. A. Einarsrud, “Effect of weight loss on liquid-phase-sintered silicon carbide,” J. Am. Ceram. Soc.80(4), 1047–1052 (1997).
    [CrossRef]
  9. S. S. Shinozaki, J. E. Noakes, and H. Sato, “Recrystallization and phase transformation in reaction-Sintered SiC,” J. Am. Ceram. Soc.61(5–6), 237–242 (1978).
    [CrossRef]
  10. J. Yan, Z. Zhang, and T. Kuriyagawa, “Mechanism for material removal in diamond turning of reaction-bonded silicon carbide,” Int. J. Mach. Tools Manuf.49(5), 366–374 (2009).
    [CrossRef]
  11. H. Y. Tam, H. B. Cheng, and Y. W. Wang, “Removal rate and surface roughness in the lapping and polishing of RB-SiC optical components,” J. Mater. Process. Technol.192–193, 276–280 (2007).
    [CrossRef]
  12. H. Deng and K. Yamamura, “Smoothing of reaction sintered silicon carbide using plasma assisted polishing,” Curr. Appl. Phys.12(3), S24–S28 (2012).
    [CrossRef]
  13. K. Yamamura, Y. Yamamoto, and H. Deng, “Preliminary study on chemical figuring and finishing of sintered sic substrate using atmospheric pressure plasma,” Procedia CIRP3, 335–339 (2012).
    [CrossRef]
  14. E. A. Irene, H. Z. Massoud, and E. Tierney, “Silicon oxidation studies: Silicon orientation effects on thermal oxidation,” J. Electrochem. Soc.133(6), 1253–1256 (1986).
    [CrossRef]
  15. H. C. Lu, T. Gustafsson, E. P. Gusev, and E. Garfunkel, “An isotopic labeling study of the growth of thin oxide films on Si (100),” Appl. Phys. Lett.67(12), 1742–1744 (1995).
    [CrossRef]
  16. J. Blanc, “A revised model for the oxidation of Si by oxygen,” Appl. Phys. Lett.33(5), 424–426 (1978).
    [CrossRef]
  17. Y. Song, S. Dhar, L. C. Feldman, G. Chung, and J. R. Williams, “Modified Deal Grove model for the thermal oxidation of silicon carbide,” J. Appl. Phys.95(9), 4953–4957 (2004).
    [CrossRef]
  18. B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys.36(12), 3770–3778 (1965).
    [CrossRef]
  19. A. Fargeix and G. Ghibaudo, “Dry oxidation of silicon: A new model of growth including relaxation of stress by viscous flow,” J. Appl. Phys.54(12), 7153–7158 (1983).
    [CrossRef]
  20. A. Fargeix, G. Ghibaudo, and G. Kamarinos, “A revised analysis of dry oxidation of silicon,” J. Appl. Phys.54(5), 2878–2880 (1983).
    [CrossRef]
  21. C. W. Liu, B. T. Dai, W. T. Tseng, and C. F. Yeh, “Modeling of the wear mechanism during chemical-mechanical polishing,” J. Electrochem. Soc.143(2), 716–721 (1996).
    [CrossRef]
  22. Q. Luo, S. Ramarajan, and S. V. Babu, “Modification of the Preston equation for the chemical–mechanical polishing of copper,” Thin Solid Films335(1–2), 160–167 (1998).
    [CrossRef]
  23. F. G. Shi and B. Zhao, “Modeling of chemical-mechanical polishing with soft pads,” Appl. Phys., A Mater. Sci. Process.67(2), 249–252 (1998).
    [CrossRef]
  24. J. Qian, G. Voronin, T. W. Zerda, D. He, and Y. Zhao, “High pressure, high temperature sintering of diamond-SiC composites by ball milled diamond-Si mixtures,” J. Mater. Res.17(8), 2153–2160 (2002).
    [CrossRef]
  25. A. B. Shorey, K. M. Kwong, K. M. Johnson, and S. D. Jacobs, “Nanoindentation hardness of particles used in magnetorheological finishing (MRF),” Appl. Opt.39(28), 5194–5204 (2000).
    [CrossRef] [PubMed]
  26. E. Pippel, J. Woltersdorf, H. O. Olafsson, and E. O. Sveimbjornsson, “Interfaces between 4H-SiC and SiO2: microstructure, nanochemistry and near-interface traps,” J. Appl. Phys.97(3), 034302 (2005).
    [CrossRef]
  27. . S. Williams, B. Haberl, and J. E. Bradby, “Nanoindentation of ion implanted and deposited amorphous silicon,” Mat. Res. Soc. 843, T6.3.1/R10.3.1- T6.3.5/R10.3.5 (2005).

2012 (2)

H. Deng and K. Yamamura, “Smoothing of reaction sintered silicon carbide using plasma assisted polishing,” Curr. Appl. Phys.12(3), S24–S28 (2012).
[CrossRef]

K. Yamamura, Y. Yamamoto, and H. Deng, “Preliminary study on chemical figuring and finishing of sintered sic substrate using atmospheric pressure plasma,” Procedia CIRP3, 335–339 (2012).
[CrossRef]

2009 (1)

J. Yan, Z. Zhang, and T. Kuriyagawa, “Mechanism for material removal in diamond turning of reaction-bonded silicon carbide,” Int. J. Mach. Tools Manuf.49(5), 366–374 (2009).
[CrossRef]

2007 (2)

H. Y. Tam, H. B. Cheng, and Y. W. Wang, “Removal rate and surface roughness in the lapping and polishing of RB-SiC optical components,” J. Mater. Process. Technol.192–193, 276–280 (2007).
[CrossRef]

Y. Dai, “Surface finishing of new type RS-SiC ceramics,” Int. J. Comput. Appl. Tech.29(2/3/4), 145–149 (2007).
[CrossRef]

2006 (1)

S. P. Lee, Y. S. Shin, D. S. Bae, B. H. Min, J. S. Park, and A. Kohyama, “Fabrication of liquid phase sintered SiC materials and their characterization,” Fusion Eng. Des.81(8-14), 963–967 (2006).
[CrossRef]

2005 (1)

E. Pippel, J. Woltersdorf, H. O. Olafsson, and E. O. Sveimbjornsson, “Interfaces between 4H-SiC and SiO2: microstructure, nanochemistry and near-interface traps,” J. Appl. Phys.97(3), 034302 (2005).
[CrossRef]

2004 (1)

Y. Song, S. Dhar, L. C. Feldman, G. Chung, and J. R. Williams, “Modified Deal Grove model for the thermal oxidation of silicon carbide,” J. Appl. Phys.95(9), 4953–4957 (2004).
[CrossRef]

2003 (1)

S. Suyama, T. Kameda, and Y. Itoh, “Development of high-strength reaction-sintered silicon carbide,” Diamond Related Materials12(3–7), 1201–1204 (2003).
[CrossRef]

2002 (1)

J. Qian, G. Voronin, T. W. Zerda, D. He, and Y. Zhao, “High pressure, high temperature sintering of diamond-SiC composites by ball milled diamond-Si mixtures,” J. Mater. Res.17(8), 2153–2160 (2002).
[CrossRef]

2001 (2)

O. P. Chakrabarti, P. K. Das, and J. Mukerji, “Growth of SiC particles in reaction sintered SiC,” Mater. Chem. Phys.67(1–3), 199–202 (2001).
[CrossRef]

D. A. Ersoy, M. J. McNallan, and Y. Gogotsi, “Carbon coatings produced by high temperature chlorination of silicon carbide ceramics,” Mat. Res. Innovat.5(2), 55–62 (2001).
[CrossRef]

2000 (1)

1999 (1)

A. Sayano, C. Sutoh, S. Suyama, Y. Itoh, and S. Nakagawa, “Development of a reaction-sintered silicon carbide matrix composite,” J. Nucl. Mater.271–272, 467–471 (1999).
[CrossRef]

1998 (3)

Y. W. Kim, M. Mitomo, H. Emoto, and J. G. Lee, “Effect of initial α‐phase content on microstructure and mechanical properties of sintered silicon carbide,” J. Am. Ceram. Soc.81(12), 3136–3140 (1998).
[CrossRef]

Q. Luo, S. Ramarajan, and S. V. Babu, “Modification of the Preston equation for the chemical–mechanical polishing of copper,” Thin Solid Films335(1–2), 160–167 (1998).
[CrossRef]

F. G. Shi and B. Zhao, “Modeling of chemical-mechanical polishing with soft pads,” Appl. Phys., A Mater. Sci. Process.67(2), 249–252 (1998).
[CrossRef]

1997 (1)

T. Grande, H. Sommerset, E. Hagen, K. Wiik, and M. A. Einarsrud, “Effect of weight loss on liquid-phase-sintered silicon carbide,” J. Am. Ceram. Soc.80(4), 1047–1052 (1997).
[CrossRef]

1996 (1)

C. W. Liu, B. T. Dai, W. T. Tseng, and C. F. Yeh, “Modeling of the wear mechanism during chemical-mechanical polishing,” J. Electrochem. Soc.143(2), 716–721 (1996).
[CrossRef]

1995 (1)

H. C. Lu, T. Gustafsson, E. P. Gusev, and E. Garfunkel, “An isotopic labeling study of the growth of thin oxide films on Si (100),” Appl. Phys. Lett.67(12), 1742–1744 (1995).
[CrossRef]

1986 (1)

E. A. Irene, H. Z. Massoud, and E. Tierney, “Silicon oxidation studies: Silicon orientation effects on thermal oxidation,” J. Electrochem. Soc.133(6), 1253–1256 (1986).
[CrossRef]

1983 (2)

A. Fargeix and G. Ghibaudo, “Dry oxidation of silicon: A new model of growth including relaxation of stress by viscous flow,” J. Appl. Phys.54(12), 7153–7158 (1983).
[CrossRef]

A. Fargeix, G. Ghibaudo, and G. Kamarinos, “A revised analysis of dry oxidation of silicon,” J. Appl. Phys.54(5), 2878–2880 (1983).
[CrossRef]

1978 (2)

J. Blanc, “A revised model for the oxidation of Si by oxygen,” Appl. Phys. Lett.33(5), 424–426 (1978).
[CrossRef]

S. S. Shinozaki, J. E. Noakes, and H. Sato, “Recrystallization and phase transformation in reaction-Sintered SiC,” J. Am. Ceram. Soc.61(5–6), 237–242 (1978).
[CrossRef]

1965 (1)

B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys.36(12), 3770–3778 (1965).
[CrossRef]

Babu, S. V.

Q. Luo, S. Ramarajan, and S. V. Babu, “Modification of the Preston equation for the chemical–mechanical polishing of copper,” Thin Solid Films335(1–2), 160–167 (1998).
[CrossRef]

Bae, D. S.

S. P. Lee, Y. S. Shin, D. S. Bae, B. H. Min, J. S. Park, and A. Kohyama, “Fabrication of liquid phase sintered SiC materials and their characterization,” Fusion Eng. Des.81(8-14), 963–967 (2006).
[CrossRef]

Blanc, J.

J. Blanc, “A revised model for the oxidation of Si by oxygen,” Appl. Phys. Lett.33(5), 424–426 (1978).
[CrossRef]

Chakrabarti, O. P.

O. P. Chakrabarti, P. K. Das, and J. Mukerji, “Growth of SiC particles in reaction sintered SiC,” Mater. Chem. Phys.67(1–3), 199–202 (2001).
[CrossRef]

Cheng, H. B.

H. Y. Tam, H. B. Cheng, and Y. W. Wang, “Removal rate and surface roughness in the lapping and polishing of RB-SiC optical components,” J. Mater. Process. Technol.192–193, 276–280 (2007).
[CrossRef]

Chung, G.

Y. Song, S. Dhar, L. C. Feldman, G. Chung, and J. R. Williams, “Modified Deal Grove model for the thermal oxidation of silicon carbide,” J. Appl. Phys.95(9), 4953–4957 (2004).
[CrossRef]

Dai, B. T.

C. W. Liu, B. T. Dai, W. T. Tseng, and C. F. Yeh, “Modeling of the wear mechanism during chemical-mechanical polishing,” J. Electrochem. Soc.143(2), 716–721 (1996).
[CrossRef]

Dai, Y.

Y. Dai, “Surface finishing of new type RS-SiC ceramics,” Int. J. Comput. Appl. Tech.29(2/3/4), 145–149 (2007).
[CrossRef]

Das, P. K.

O. P. Chakrabarti, P. K. Das, and J. Mukerji, “Growth of SiC particles in reaction sintered SiC,” Mater. Chem. Phys.67(1–3), 199–202 (2001).
[CrossRef]

Deal, B. E.

B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys.36(12), 3770–3778 (1965).
[CrossRef]

Deng, H.

H. Deng and K. Yamamura, “Smoothing of reaction sintered silicon carbide using plasma assisted polishing,” Curr. Appl. Phys.12(3), S24–S28 (2012).
[CrossRef]

K. Yamamura, Y. Yamamoto, and H. Deng, “Preliminary study on chemical figuring and finishing of sintered sic substrate using atmospheric pressure plasma,” Procedia CIRP3, 335–339 (2012).
[CrossRef]

Dhar, S.

Y. Song, S. Dhar, L. C. Feldman, G. Chung, and J. R. Williams, “Modified Deal Grove model for the thermal oxidation of silicon carbide,” J. Appl. Phys.95(9), 4953–4957 (2004).
[CrossRef]

Einarsrud, M. A.

T. Grande, H. Sommerset, E. Hagen, K. Wiik, and M. A. Einarsrud, “Effect of weight loss on liquid-phase-sintered silicon carbide,” J. Am. Ceram. Soc.80(4), 1047–1052 (1997).
[CrossRef]

Emoto, H.

Y. W. Kim, M. Mitomo, H. Emoto, and J. G. Lee, “Effect of initial α‐phase content on microstructure and mechanical properties of sintered silicon carbide,” J. Am. Ceram. Soc.81(12), 3136–3140 (1998).
[CrossRef]

Ersoy, D. A.

D. A. Ersoy, M. J. McNallan, and Y. Gogotsi, “Carbon coatings produced by high temperature chlorination of silicon carbide ceramics,” Mat. Res. Innovat.5(2), 55–62 (2001).
[CrossRef]

Fargeix, A.

A. Fargeix, G. Ghibaudo, and G. Kamarinos, “A revised analysis of dry oxidation of silicon,” J. Appl. Phys.54(5), 2878–2880 (1983).
[CrossRef]

A. Fargeix and G. Ghibaudo, “Dry oxidation of silicon: A new model of growth including relaxation of stress by viscous flow,” J. Appl. Phys.54(12), 7153–7158 (1983).
[CrossRef]

Feldman, L. C.

Y. Song, S. Dhar, L. C. Feldman, G. Chung, and J. R. Williams, “Modified Deal Grove model for the thermal oxidation of silicon carbide,” J. Appl. Phys.95(9), 4953–4957 (2004).
[CrossRef]

Garfunkel, E.

H. C. Lu, T. Gustafsson, E. P. Gusev, and E. Garfunkel, “An isotopic labeling study of the growth of thin oxide films on Si (100),” Appl. Phys. Lett.67(12), 1742–1744 (1995).
[CrossRef]

Ghibaudo, G.

A. Fargeix and G. Ghibaudo, “Dry oxidation of silicon: A new model of growth including relaxation of stress by viscous flow,” J. Appl. Phys.54(12), 7153–7158 (1983).
[CrossRef]

A. Fargeix, G. Ghibaudo, and G. Kamarinos, “A revised analysis of dry oxidation of silicon,” J. Appl. Phys.54(5), 2878–2880 (1983).
[CrossRef]

Gogotsi, Y.

D. A. Ersoy, M. J. McNallan, and Y. Gogotsi, “Carbon coatings produced by high temperature chlorination of silicon carbide ceramics,” Mat. Res. Innovat.5(2), 55–62 (2001).
[CrossRef]

Grande, T.

T. Grande, H. Sommerset, E. Hagen, K. Wiik, and M. A. Einarsrud, “Effect of weight loss on liquid-phase-sintered silicon carbide,” J. Am. Ceram. Soc.80(4), 1047–1052 (1997).
[CrossRef]

Grove, A. S.

B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys.36(12), 3770–3778 (1965).
[CrossRef]

Gusev, E. P.

H. C. Lu, T. Gustafsson, E. P. Gusev, and E. Garfunkel, “An isotopic labeling study of the growth of thin oxide films on Si (100),” Appl. Phys. Lett.67(12), 1742–1744 (1995).
[CrossRef]

Gustafsson, T.

H. C. Lu, T. Gustafsson, E. P. Gusev, and E. Garfunkel, “An isotopic labeling study of the growth of thin oxide films on Si (100),” Appl. Phys. Lett.67(12), 1742–1744 (1995).
[CrossRef]

Hagen, E.

T. Grande, H. Sommerset, E. Hagen, K. Wiik, and M. A. Einarsrud, “Effect of weight loss on liquid-phase-sintered silicon carbide,” J. Am. Ceram. Soc.80(4), 1047–1052 (1997).
[CrossRef]

He, D.

J. Qian, G. Voronin, T. W. Zerda, D. He, and Y. Zhao, “High pressure, high temperature sintering of diamond-SiC composites by ball milled diamond-Si mixtures,” J. Mater. Res.17(8), 2153–2160 (2002).
[CrossRef]

Irene, E. A.

E. A. Irene, H. Z. Massoud, and E. Tierney, “Silicon oxidation studies: Silicon orientation effects on thermal oxidation,” J. Electrochem. Soc.133(6), 1253–1256 (1986).
[CrossRef]

Itoh, Y.

S. Suyama, T. Kameda, and Y. Itoh, “Development of high-strength reaction-sintered silicon carbide,” Diamond Related Materials12(3–7), 1201–1204 (2003).
[CrossRef]

A. Sayano, C. Sutoh, S. Suyama, Y. Itoh, and S. Nakagawa, “Development of a reaction-sintered silicon carbide matrix composite,” J. Nucl. Mater.271–272, 467–471 (1999).
[CrossRef]

Jacobs, S. D.

Johnson, K. M.

Kamarinos, G.

A. Fargeix, G. Ghibaudo, and G. Kamarinos, “A revised analysis of dry oxidation of silicon,” J. Appl. Phys.54(5), 2878–2880 (1983).
[CrossRef]

Kameda, T.

S. Suyama, T. Kameda, and Y. Itoh, “Development of high-strength reaction-sintered silicon carbide,” Diamond Related Materials12(3–7), 1201–1204 (2003).
[CrossRef]

Kim, Y. W.

Y. W. Kim, M. Mitomo, H. Emoto, and J. G. Lee, “Effect of initial α‐phase content on microstructure and mechanical properties of sintered silicon carbide,” J. Am. Ceram. Soc.81(12), 3136–3140 (1998).
[CrossRef]

Kohyama, A.

S. P. Lee, Y. S. Shin, D. S. Bae, B. H. Min, J. S. Park, and A. Kohyama, “Fabrication of liquid phase sintered SiC materials and their characterization,” Fusion Eng. Des.81(8-14), 963–967 (2006).
[CrossRef]

Kuriyagawa, T.

J. Yan, Z. Zhang, and T. Kuriyagawa, “Mechanism for material removal in diamond turning of reaction-bonded silicon carbide,” Int. J. Mach. Tools Manuf.49(5), 366–374 (2009).
[CrossRef]

Kwong, K. M.

Lee, J. G.

Y. W. Kim, M. Mitomo, H. Emoto, and J. G. Lee, “Effect of initial α‐phase content on microstructure and mechanical properties of sintered silicon carbide,” J. Am. Ceram. Soc.81(12), 3136–3140 (1998).
[CrossRef]

Lee, S. P.

S. P. Lee, Y. S. Shin, D. S. Bae, B. H. Min, J. S. Park, and A. Kohyama, “Fabrication of liquid phase sintered SiC materials and their characterization,” Fusion Eng. Des.81(8-14), 963–967 (2006).
[CrossRef]

Liu, C. W.

C. W. Liu, B. T. Dai, W. T. Tseng, and C. F. Yeh, “Modeling of the wear mechanism during chemical-mechanical polishing,” J. Electrochem. Soc.143(2), 716–721 (1996).
[CrossRef]

Lu, H. C.

H. C. Lu, T. Gustafsson, E. P. Gusev, and E. Garfunkel, “An isotopic labeling study of the growth of thin oxide films on Si (100),” Appl. Phys. Lett.67(12), 1742–1744 (1995).
[CrossRef]

Luo, Q.

Q. Luo, S. Ramarajan, and S. V. Babu, “Modification of the Preston equation for the chemical–mechanical polishing of copper,” Thin Solid Films335(1–2), 160–167 (1998).
[CrossRef]

Massoud, H. Z.

E. A. Irene, H. Z. Massoud, and E. Tierney, “Silicon oxidation studies: Silicon orientation effects on thermal oxidation,” J. Electrochem. Soc.133(6), 1253–1256 (1986).
[CrossRef]

McNallan, M. J.

D. A. Ersoy, M. J. McNallan, and Y. Gogotsi, “Carbon coatings produced by high temperature chlorination of silicon carbide ceramics,” Mat. Res. Innovat.5(2), 55–62 (2001).
[CrossRef]

Min, B. H.

S. P. Lee, Y. S. Shin, D. S. Bae, B. H. Min, J. S. Park, and A. Kohyama, “Fabrication of liquid phase sintered SiC materials and their characterization,” Fusion Eng. Des.81(8-14), 963–967 (2006).
[CrossRef]

Mitomo, M.

Y. W. Kim, M. Mitomo, H. Emoto, and J. G. Lee, “Effect of initial α‐phase content on microstructure and mechanical properties of sintered silicon carbide,” J. Am. Ceram. Soc.81(12), 3136–3140 (1998).
[CrossRef]

Mukerji, J.

O. P. Chakrabarti, P. K. Das, and J. Mukerji, “Growth of SiC particles in reaction sintered SiC,” Mater. Chem. Phys.67(1–3), 199–202 (2001).
[CrossRef]

Nakagawa, S.

A. Sayano, C. Sutoh, S. Suyama, Y. Itoh, and S. Nakagawa, “Development of a reaction-sintered silicon carbide matrix composite,” J. Nucl. Mater.271–272, 467–471 (1999).
[CrossRef]

Noakes, J. E.

S. S. Shinozaki, J. E. Noakes, and H. Sato, “Recrystallization and phase transformation in reaction-Sintered SiC,” J. Am. Ceram. Soc.61(5–6), 237–242 (1978).
[CrossRef]

Olafsson, H. O.

E. Pippel, J. Woltersdorf, H. O. Olafsson, and E. O. Sveimbjornsson, “Interfaces between 4H-SiC and SiO2: microstructure, nanochemistry and near-interface traps,” J. Appl. Phys.97(3), 034302 (2005).
[CrossRef]

Park, J. S.

S. P. Lee, Y. S. Shin, D. S. Bae, B. H. Min, J. S. Park, and A. Kohyama, “Fabrication of liquid phase sintered SiC materials and their characterization,” Fusion Eng. Des.81(8-14), 963–967 (2006).
[CrossRef]

Pippel, E.

E. Pippel, J. Woltersdorf, H. O. Olafsson, and E. O. Sveimbjornsson, “Interfaces between 4H-SiC and SiO2: microstructure, nanochemistry and near-interface traps,” J. Appl. Phys.97(3), 034302 (2005).
[CrossRef]

Qian, J.

J. Qian, G. Voronin, T. W. Zerda, D. He, and Y. Zhao, “High pressure, high temperature sintering of diamond-SiC composites by ball milled diamond-Si mixtures,” J. Mater. Res.17(8), 2153–2160 (2002).
[CrossRef]

Ramarajan, S.

Q. Luo, S. Ramarajan, and S. V. Babu, “Modification of the Preston equation for the chemical–mechanical polishing of copper,” Thin Solid Films335(1–2), 160–167 (1998).
[CrossRef]

Sato, H.

S. S. Shinozaki, J. E. Noakes, and H. Sato, “Recrystallization and phase transformation in reaction-Sintered SiC,” J. Am. Ceram. Soc.61(5–6), 237–242 (1978).
[CrossRef]

Sayano, A.

A. Sayano, C. Sutoh, S. Suyama, Y. Itoh, and S. Nakagawa, “Development of a reaction-sintered silicon carbide matrix composite,” J. Nucl. Mater.271–272, 467–471 (1999).
[CrossRef]

Shi, F. G.

F. G. Shi and B. Zhao, “Modeling of chemical-mechanical polishing with soft pads,” Appl. Phys., A Mater. Sci. Process.67(2), 249–252 (1998).
[CrossRef]

Shin, Y. S.

S. P. Lee, Y. S. Shin, D. S. Bae, B. H. Min, J. S. Park, and A. Kohyama, “Fabrication of liquid phase sintered SiC materials and their characterization,” Fusion Eng. Des.81(8-14), 963–967 (2006).
[CrossRef]

Shinozaki, S. S.

S. S. Shinozaki, J. E. Noakes, and H. Sato, “Recrystallization and phase transformation in reaction-Sintered SiC,” J. Am. Ceram. Soc.61(5–6), 237–242 (1978).
[CrossRef]

Shorey, A. B.

Sommerset, H.

T. Grande, H. Sommerset, E. Hagen, K. Wiik, and M. A. Einarsrud, “Effect of weight loss on liquid-phase-sintered silicon carbide,” J. Am. Ceram. Soc.80(4), 1047–1052 (1997).
[CrossRef]

Song, Y.

Y. Song, S. Dhar, L. C. Feldman, G. Chung, and J. R. Williams, “Modified Deal Grove model for the thermal oxidation of silicon carbide,” J. Appl. Phys.95(9), 4953–4957 (2004).
[CrossRef]

Sutoh, C.

A. Sayano, C. Sutoh, S. Suyama, Y. Itoh, and S. Nakagawa, “Development of a reaction-sintered silicon carbide matrix composite,” J. Nucl. Mater.271–272, 467–471 (1999).
[CrossRef]

Suyama, S.

S. Suyama, T. Kameda, and Y. Itoh, “Development of high-strength reaction-sintered silicon carbide,” Diamond Related Materials12(3–7), 1201–1204 (2003).
[CrossRef]

A. Sayano, C. Sutoh, S. Suyama, Y. Itoh, and S. Nakagawa, “Development of a reaction-sintered silicon carbide matrix composite,” J. Nucl. Mater.271–272, 467–471 (1999).
[CrossRef]

Sveimbjornsson, E. O.

E. Pippel, J. Woltersdorf, H. O. Olafsson, and E. O. Sveimbjornsson, “Interfaces between 4H-SiC and SiO2: microstructure, nanochemistry and near-interface traps,” J. Appl. Phys.97(3), 034302 (2005).
[CrossRef]

Tam, H. Y.

H. Y. Tam, H. B. Cheng, and Y. W. Wang, “Removal rate and surface roughness in the lapping and polishing of RB-SiC optical components,” J. Mater. Process. Technol.192–193, 276–280 (2007).
[CrossRef]

Tierney, E.

E. A. Irene, H. Z. Massoud, and E. Tierney, “Silicon oxidation studies: Silicon orientation effects on thermal oxidation,” J. Electrochem. Soc.133(6), 1253–1256 (1986).
[CrossRef]

Tseng, W. T.

C. W. Liu, B. T. Dai, W. T. Tseng, and C. F. Yeh, “Modeling of the wear mechanism during chemical-mechanical polishing,” J. Electrochem. Soc.143(2), 716–721 (1996).
[CrossRef]

Voronin, G.

J. Qian, G. Voronin, T. W. Zerda, D. He, and Y. Zhao, “High pressure, high temperature sintering of diamond-SiC composites by ball milled diamond-Si mixtures,” J. Mater. Res.17(8), 2153–2160 (2002).
[CrossRef]

Wang, Y. W.

H. Y. Tam, H. B. Cheng, and Y. W. Wang, “Removal rate and surface roughness in the lapping and polishing of RB-SiC optical components,” J. Mater. Process. Technol.192–193, 276–280 (2007).
[CrossRef]

Wiik, K.

T. Grande, H. Sommerset, E. Hagen, K. Wiik, and M. A. Einarsrud, “Effect of weight loss on liquid-phase-sintered silicon carbide,” J. Am. Ceram. Soc.80(4), 1047–1052 (1997).
[CrossRef]

Williams, J. R.

Y. Song, S. Dhar, L. C. Feldman, G. Chung, and J. R. Williams, “Modified Deal Grove model for the thermal oxidation of silicon carbide,” J. Appl. Phys.95(9), 4953–4957 (2004).
[CrossRef]

Woltersdorf, J.

E. Pippel, J. Woltersdorf, H. O. Olafsson, and E. O. Sveimbjornsson, “Interfaces between 4H-SiC and SiO2: microstructure, nanochemistry and near-interface traps,” J. Appl. Phys.97(3), 034302 (2005).
[CrossRef]

Yamamoto, Y.

K. Yamamura, Y. Yamamoto, and H. Deng, “Preliminary study on chemical figuring and finishing of sintered sic substrate using atmospheric pressure plasma,” Procedia CIRP3, 335–339 (2012).
[CrossRef]

Yamamura, K.

H. Deng and K. Yamamura, “Smoothing of reaction sintered silicon carbide using plasma assisted polishing,” Curr. Appl. Phys.12(3), S24–S28 (2012).
[CrossRef]

K. Yamamura, Y. Yamamoto, and H. Deng, “Preliminary study on chemical figuring and finishing of sintered sic substrate using atmospheric pressure plasma,” Procedia CIRP3, 335–339 (2012).
[CrossRef]

Yan, J.

J. Yan, Z. Zhang, and T. Kuriyagawa, “Mechanism for material removal in diamond turning of reaction-bonded silicon carbide,” Int. J. Mach. Tools Manuf.49(5), 366–374 (2009).
[CrossRef]

Yeh, C. F.

C. W. Liu, B. T. Dai, W. T. Tseng, and C. F. Yeh, “Modeling of the wear mechanism during chemical-mechanical polishing,” J. Electrochem. Soc.143(2), 716–721 (1996).
[CrossRef]

Zerda, T. W.

J. Qian, G. Voronin, T. W. Zerda, D. He, and Y. Zhao, “High pressure, high temperature sintering of diamond-SiC composites by ball milled diamond-Si mixtures,” J. Mater. Res.17(8), 2153–2160 (2002).
[CrossRef]

Zhang, Z.

J. Yan, Z. Zhang, and T. Kuriyagawa, “Mechanism for material removal in diamond turning of reaction-bonded silicon carbide,” Int. J. Mach. Tools Manuf.49(5), 366–374 (2009).
[CrossRef]

Zhao, B.

F. G. Shi and B. Zhao, “Modeling of chemical-mechanical polishing with soft pads,” Appl. Phys., A Mater. Sci. Process.67(2), 249–252 (1998).
[CrossRef]

Zhao, Y.

J. Qian, G. Voronin, T. W. Zerda, D. He, and Y. Zhao, “High pressure, high temperature sintering of diamond-SiC composites by ball milled diamond-Si mixtures,” J. Mater. Res.17(8), 2153–2160 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. C. Lu, T. Gustafsson, E. P. Gusev, and E. Garfunkel, “An isotopic labeling study of the growth of thin oxide films on Si (100),” Appl. Phys. Lett.67(12), 1742–1744 (1995).
[CrossRef]

J. Blanc, “A revised model for the oxidation of Si by oxygen,” Appl. Phys. Lett.33(5), 424–426 (1978).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

F. G. Shi and B. Zhao, “Modeling of chemical-mechanical polishing with soft pads,” Appl. Phys., A Mater. Sci. Process.67(2), 249–252 (1998).
[CrossRef]

Curr. Appl. Phys. (1)

H. Deng and K. Yamamura, “Smoothing of reaction sintered silicon carbide using plasma assisted polishing,” Curr. Appl. Phys.12(3), S24–S28 (2012).
[CrossRef]

Diamond Related Materials (1)

S. Suyama, T. Kameda, and Y. Itoh, “Development of high-strength reaction-sintered silicon carbide,” Diamond Related Materials12(3–7), 1201–1204 (2003).
[CrossRef]

Fusion Eng. Des. (1)

S. P. Lee, Y. S. Shin, D. S. Bae, B. H. Min, J. S. Park, and A. Kohyama, “Fabrication of liquid phase sintered SiC materials and their characterization,” Fusion Eng. Des.81(8-14), 963–967 (2006).
[CrossRef]

Int. J. Comput. Appl. Tech. (1)

Y. Dai, “Surface finishing of new type RS-SiC ceramics,” Int. J. Comput. Appl. Tech.29(2/3/4), 145–149 (2007).
[CrossRef]

Int. J. Mach. Tools Manuf. (1)

J. Yan, Z. Zhang, and T. Kuriyagawa, “Mechanism for material removal in diamond turning of reaction-bonded silicon carbide,” Int. J. Mach. Tools Manuf.49(5), 366–374 (2009).
[CrossRef]

J. Am. Ceram. Soc. (3)

Y. W. Kim, M. Mitomo, H. Emoto, and J. G. Lee, “Effect of initial α‐phase content on microstructure and mechanical properties of sintered silicon carbide,” J. Am. Ceram. Soc.81(12), 3136–3140 (1998).
[CrossRef]

T. Grande, H. Sommerset, E. Hagen, K. Wiik, and M. A. Einarsrud, “Effect of weight loss on liquid-phase-sintered silicon carbide,” J. Am. Ceram. Soc.80(4), 1047–1052 (1997).
[CrossRef]

S. S. Shinozaki, J. E. Noakes, and H. Sato, “Recrystallization and phase transformation in reaction-Sintered SiC,” J. Am. Ceram. Soc.61(5–6), 237–242 (1978).
[CrossRef]

J. Appl. Phys. (5)

Y. Song, S. Dhar, L. C. Feldman, G. Chung, and J. R. Williams, “Modified Deal Grove model for the thermal oxidation of silicon carbide,” J. Appl. Phys.95(9), 4953–4957 (2004).
[CrossRef]

B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys.36(12), 3770–3778 (1965).
[CrossRef]

A. Fargeix and G. Ghibaudo, “Dry oxidation of silicon: A new model of growth including relaxation of stress by viscous flow,” J. Appl. Phys.54(12), 7153–7158 (1983).
[CrossRef]

A. Fargeix, G. Ghibaudo, and G. Kamarinos, “A revised analysis of dry oxidation of silicon,” J. Appl. Phys.54(5), 2878–2880 (1983).
[CrossRef]

E. Pippel, J. Woltersdorf, H. O. Olafsson, and E. O. Sveimbjornsson, “Interfaces between 4H-SiC and SiO2: microstructure, nanochemistry and near-interface traps,” J. Appl. Phys.97(3), 034302 (2005).
[CrossRef]

J. Electrochem. Soc. (2)

E. A. Irene, H. Z. Massoud, and E. Tierney, “Silicon oxidation studies: Silicon orientation effects on thermal oxidation,” J. Electrochem. Soc.133(6), 1253–1256 (1986).
[CrossRef]

C. W. Liu, B. T. Dai, W. T. Tseng, and C. F. Yeh, “Modeling of the wear mechanism during chemical-mechanical polishing,” J. Electrochem. Soc.143(2), 716–721 (1996).
[CrossRef]

J. Mater. Process. Technol. (1)

H. Y. Tam, H. B. Cheng, and Y. W. Wang, “Removal rate and surface roughness in the lapping and polishing of RB-SiC optical components,” J. Mater. Process. Technol.192–193, 276–280 (2007).
[CrossRef]

J. Mater. Res. (1)

J. Qian, G. Voronin, T. W. Zerda, D. He, and Y. Zhao, “High pressure, high temperature sintering of diamond-SiC composites by ball milled diamond-Si mixtures,” J. Mater. Res.17(8), 2153–2160 (2002).
[CrossRef]

J. Nucl. Mater. (1)

A. Sayano, C. Sutoh, S. Suyama, Y. Itoh, and S. Nakagawa, “Development of a reaction-sintered silicon carbide matrix composite,” J. Nucl. Mater.271–272, 467–471 (1999).
[CrossRef]

Mat. Res. Innovat. (1)

D. A. Ersoy, M. J. McNallan, and Y. Gogotsi, “Carbon coatings produced by high temperature chlorination of silicon carbide ceramics,” Mat. Res. Innovat.5(2), 55–62 (2001).
[CrossRef]

Mater. Chem. Phys. (1)

O. P. Chakrabarti, P. K. Das, and J. Mukerji, “Growth of SiC particles in reaction sintered SiC,” Mater. Chem. Phys.67(1–3), 199–202 (2001).
[CrossRef]

Procedia CIRP (1)

K. Yamamura, Y. Yamamoto, and H. Deng, “Preliminary study on chemical figuring and finishing of sintered sic substrate using atmospheric pressure plasma,” Procedia CIRP3, 335–339 (2012).
[CrossRef]

Thin Solid Films (1)

Q. Luo, S. Ramarajan, and S. V. Babu, “Modification of the Preston equation for the chemical–mechanical polishing of copper,” Thin Solid Films335(1–2), 160–167 (1998).
[CrossRef]

Other (1)

. S. Williams, B. Haberl, and J. E. Bradby, “Nanoindentation of ion implanted and deposited amorphous silicon,” Mat. Res. Soc. 843, T6.3.1/R10.3.1- T6.3.5/R10.3.5 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Morphology of RS-SiC. (a) Surface morphology observed by SEM. (b) Cross-sectional morphology observed by TEM.

Fig. 2
Fig. 2

AFM images of the processed RS-SiC surface. (a) Mechanical material removal by diamond lapping. (b) Chemical material removal by plasma chemical vaporization machining.

Fig. 3
Fig. 3

Schematic diagram of the polishing system and corresponding polishing parameters.

Fig. 4
Fig. 4

RS-SiC surface measured by AFM. (a) After thermal oxidation. (b) After ceria slurry polishing for 30 min.

Fig. 5
Fig. 5

SEM images of RS-SiC surface before and after thermal oxidation. (a) Position A before oxidation. (b) Position B before oxidation. (c) Position A after oxidation. (d) Position B after oxidation.

Fig. 6
Fig. 6

Surface morphology and element distributions of oxidized RS-SiC surface analyzed by SEM-EDX. (a) Surface morphology. (b) Si distribution. (c) O distribution. (d) C distribution.

Fig. 7
Fig. 7

Schematic diagram of the thermal oxidation of RS-SiC and removal of the oxide layer by abrasive polishing.

Fig. 8
Fig. 8

Insufficiently polished (a) and over-polished (b) RS-SiC surface measured by AFM.

Tables (2)

Tables Icon

Table 1 Thermal oxidation parameters

Tables Icon

Table 2 Ceria slurry polishing parameters

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d 1 ( t 1 )= A 1 + A 1 2 +4 B 1 × t 1 2
d 2 ( t 1 )= A 2 + A 2 2 +4 B 2 × t 1 2
d max =max[ d 2 ( t 1 ) ]
d pv =max[ d 1 ( t 1 ) d 2 ( t 1 ) ]
D=kpv t 2

Metrics