Abstract

A simple development of the colloidal lithography technique is demonstrated for fabrication of perforated plasmonic metal films elevated above the substrate surface. The bulk refractive index sensitivity of short-range ordered nanohole arrays in 20 nm thick Au films exhibits an increase of up to 37% due to reduction of substrate effect caused by lifting with a 40 nm silica layer. Analysis of the local electric field distribution suggests that the sensitivity increase is due to revealing of the enhanced field near the holes.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
    [CrossRef] [PubMed]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
    [CrossRef]
  3. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science339(6125), 1232009–12320096 (2013).
    [CrossRef] [PubMed]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
    [CrossRef] [PubMed]
  5. E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett.7(5), 1256–1263 (2007).
    [CrossRef] [PubMed]
  6. A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett.8(11), 3893–3898 (2008).
    [CrossRef] [PubMed]
  7. M. A. Otte, M. C. Estevez, L. G. Carrascosa, A. B. Gonzalez-Guerrero, L. M. Lechuga, and B. Sepulveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C115(13), 5344–5351 (2011).
    [CrossRef]
  8. P. Hanarp, D. S. Sutherland, J. Gold, and B. Kasemo, “Control of nanoparticle film structure for colloidal lithography,” Colloids Surf.214(1-3), 23–36 (2003).
    [CrossRef]
  9. J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett.4(6), 1003–1007 (2004).
    [CrossRef]
  10. L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano4(4), 2167–2177 (2010).
    [CrossRef] [PubMed]
  11. A. B. Dahlin, P. Jönsson, M. P. Jonsson, E. Schmid, Y. Zhou, and F. Höök, “Synchronized quartz crystal microbalance and nanoplasmonic sensing of biomolecular recognition reactions,” ACS Nano2(10), 2174–2182 (2008).
    [CrossRef] [PubMed]
  12. T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small7(12), 1653–1663 (2011).
    [CrossRef] [PubMed]
  13. S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh sensitivity made simple: Nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology20(43), 434015 (2009).
    [CrossRef] [PubMed]
  14. M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett.9(12), 4428–4433 (2009).
    [CrossRef] [PubMed]
  15. C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett.98(15), 153108 (2011).
    [CrossRef] [PubMed]
  16. B. Brian, B. Sepúlveda, Y. Alaverdyan, L. M. Lechuga, and M. Käll, “Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates,” Opt. Express17(3), 2015–2023 (2009).
    [CrossRef] [PubMed]
  17. B. Liedberg, C. Nylander, and I. Lunström, “Surface-plasmon resonance for gas-detection and biosensing,” Sens. Actuators4, 299–304 (1983).
    [CrossRef]
  18. X. M. Zhang, Z. B. Li, S. S. Ye, S. Wu, J. H. Zhang, L. Y. Cui, A. R. Li, T. Q. Wang, S. Z. Li, and B. Yang, “Elevated ag nanohole arrays for high performance plasmonic sensors based on extraordinary optical transmission,” J. Mater. Chem.22(18), 8903–8910 (2012).
    [CrossRef]
  19. J. Junesch, T. Sannomiya, and A. B. Dahlin, “Optical properties of nanohole arrays in metal-dielectric double films prepared by mask-on-metal colloidal lithography,” ACS Nano6(11), 10405–10415 (2012).
    [CrossRef] [PubMed]
  20. Y. Ikenoya, M. Susa, J. Shi, Y. Nakamura, A. B. Dahlin, and T. Sannomiya, “Optical resonances in short-range ordered nanoholes in ultrathin aluminum/aluminum nitride multilayers,” J. Phys. Chem. C117(12), 6373–6382 (2013).
    [CrossRef]
  21. C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B105(24), 5599–5611 (2001).
    [CrossRef]
  22. P. Hanarp, M. Kall, and D. S. Sutherland, “Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography,” J. Phys. Chem. B107(24), 5768–5772 (2003).
    [CrossRef]
  23. V. E. Bochenkov and D. S. Sutherland, “From rings to crescents: A novel fabrication technique uncovers the transition details,” Nano Lett.13(3), 1216–1220 (2013).
    [CrossRef] [PubMed]
  24. . Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. GarciadeAbajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C111(3), 1207–1212 (2007).
    [CrossRef]
  25. A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem.36(8), 1627–1639 (1964).
    [CrossRef]
  26. M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B109(46), 21556–21565 (2005).
    [CrossRef] [PubMed]
  27. FDTD solutions”, http://www.lumerical.com/tcad-products/fdtd/ .
  28. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]

2013 (3)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science339(6125), 1232009–12320096 (2013).
[CrossRef] [PubMed]

Y. Ikenoya, M. Susa, J. Shi, Y. Nakamura, A. B. Dahlin, and T. Sannomiya, “Optical resonances in short-range ordered nanoholes in ultrathin aluminum/aluminum nitride multilayers,” J. Phys. Chem. C117(12), 6373–6382 (2013).
[CrossRef]

V. E. Bochenkov and D. S. Sutherland, “From rings to crescents: A novel fabrication technique uncovers the transition details,” Nano Lett.13(3), 1216–1220 (2013).
[CrossRef] [PubMed]

2012 (2)

X. M. Zhang, Z. B. Li, S. S. Ye, S. Wu, J. H. Zhang, L. Y. Cui, A. R. Li, T. Q. Wang, S. Z. Li, and B. Yang, “Elevated ag nanohole arrays for high performance plasmonic sensors based on extraordinary optical transmission,” J. Mater. Chem.22(18), 8903–8910 (2012).
[CrossRef]

J. Junesch, T. Sannomiya, and A. B. Dahlin, “Optical properties of nanohole arrays in metal-dielectric double films prepared by mask-on-metal colloidal lithography,” ACS Nano6(11), 10405–10415 (2012).
[CrossRef] [PubMed]

2011 (3)

C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett.98(15), 153108 (2011).
[CrossRef] [PubMed]

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small7(12), 1653–1663 (2011).
[CrossRef] [PubMed]

M. A. Otte, M. C. Estevez, L. G. Carrascosa, A. B. Gonzalez-Guerrero, L. M. Lechuga, and B. Sepulveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C115(13), 5344–5351 (2011).
[CrossRef]

2010 (3)

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano4(4), 2167–2177 (2010).
[CrossRef] [PubMed]

2009 (3)

S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh sensitivity made simple: Nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology20(43), 434015 (2009).
[CrossRef] [PubMed]

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett.9(12), 4428–4433 (2009).
[CrossRef] [PubMed]

B. Brian, B. Sepúlveda, Y. Alaverdyan, L. M. Lechuga, and M. Käll, “Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates,” Opt. Express17(3), 2015–2023 (2009).
[CrossRef] [PubMed]

2008 (3)

A. B. Dahlin, P. Jönsson, M. P. Jonsson, E. Schmid, Y. Zhou, and F. Höök, “Synchronized quartz crystal microbalance and nanoplasmonic sensing of biomolecular recognition reactions,” ACS Nano2(10), 2174–2182 (2008).
[CrossRef] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett.8(11), 3893–3898 (2008).
[CrossRef] [PubMed]

2007 (2)

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett.7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. GarciadeAbajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C111(3), 1207–1212 (2007).
[CrossRef]

2005 (1)

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B109(46), 21556–21565 (2005).
[CrossRef] [PubMed]

2004 (1)

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett.4(6), 1003–1007 (2004).
[CrossRef]

2003 (2)

P. Hanarp, D. S. Sutherland, J. Gold, and B. Kasemo, “Control of nanoparticle film structure for colloidal lithography,” Colloids Surf.214(1-3), 23–36 (2003).
[CrossRef]

P. Hanarp, M. Kall, and D. S. Sutherland, “Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography,” J. Phys. Chem. B107(24), 5768–5772 (2003).
[CrossRef]

2001 (1)

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B105(24), 5599–5611 (2001).
[CrossRef]

1983 (1)

B. Liedberg, C. Nylander, and I. Lunström, “Surface-plasmon resonance for gas-detection and biosensing,” Sens. Actuators4, 299–304 (1983).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

1964 (1)

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem.36(8), 1627–1639 (1964).
[CrossRef]

Aizpurua, J.

. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. GarciadeAbajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C111(3), 1207–1212 (2007).
[CrossRef]

Alaverdyan, Y.

B. Brian, B. Sepúlveda, Y. Alaverdyan, L. M. Lechuga, and M. Käll, “Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates,” Opt. Express17(3), 2015–2023 (2009).
[CrossRef] [PubMed]

. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. GarciadeAbajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C111(3), 1207–1212 (2007).
[CrossRef]

Alegret, J.

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett.7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Bochenkov, V. E.

V. E. Bochenkov and D. S. Sutherland, “From rings to crescents: A novel fabrication technique uncovers the transition details,” Nano Lett.13(3), 1216–1220 (2013).
[CrossRef] [PubMed]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science339(6125), 1232009–12320096 (2013).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Brian, B.

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Cai, W. S.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Carrascosa, L. G.

M. A. Otte, M. C. Estevez, L. G. Carrascosa, A. B. Gonzalez-Guerrero, L. M. Lechuga, and B. Sepulveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C115(13), 5344–5351 (2011).
[CrossRef]

Chen, S.

S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh sensitivity made simple: Nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology20(43), 434015 (2009).
[CrossRef] [PubMed]

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett.9(12), 4428–4433 (2009).
[CrossRef] [PubMed]

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett.8(11), 3893–3898 (2008).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Cui, L. Y.

X. M. Zhang, Z. B. Li, S. S. Ye, S. Wu, J. H. Zhang, L. Y. Cui, A. R. Li, T. Q. Wang, S. Z. Li, and B. Yang, “Elevated ag nanohole arrays for high performance plasmonic sensors based on extraordinary optical transmission,” J. Mater. Chem.22(18), 8903–8910 (2012).
[CrossRef]

Dahlin, A. B.

Y. Ikenoya, M. Susa, J. Shi, Y. Nakamura, A. B. Dahlin, and T. Sannomiya, “Optical resonances in short-range ordered nanoholes in ultrathin aluminum/aluminum nitride multilayers,” J. Phys. Chem. C117(12), 6373–6382 (2013).
[CrossRef]

J. Junesch, T. Sannomiya, and A. B. Dahlin, “Optical properties of nanohole arrays in metal-dielectric double films prepared by mask-on-metal colloidal lithography,” ACS Nano6(11), 10405–10415 (2012).
[CrossRef] [PubMed]

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small7(12), 1653–1663 (2011).
[CrossRef] [PubMed]

A. B. Dahlin, P. Jönsson, M. P. Jonsson, E. Schmid, Y. Zhou, and F. Höök, “Synchronized quartz crystal microbalance and nanoplasmonic sensing of biomolecular recognition reactions,” ACS Nano2(10), 2174–2182 (2008).
[CrossRef] [PubMed]

Dmitriev, A.

S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh sensitivity made simple: Nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology20(43), 434015 (2009).
[CrossRef] [PubMed]

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett.9(12), 4428–4433 (2009).
[CrossRef] [PubMed]

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett.8(11), 3893–3898 (2008).
[CrossRef] [PubMed]

Estevez, M. C.

M. A. Otte, M. C. Estevez, L. G. Carrascosa, A. B. Gonzalez-Guerrero, L. M. Lechuga, and B. Sepulveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C115(13), 5344–5351 (2011).
[CrossRef]

Feuz, L.

L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano4(4), 2167–2177 (2010).
[CrossRef] [PubMed]

Fredriksson, H.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett.8(11), 3893–3898 (2008).
[CrossRef] [PubMed]

GarciadeAbajo, F. J.

. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. GarciadeAbajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C111(3), 1207–1212 (2007).
[CrossRef]

Golay, M. J. E.

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem.36(8), 1627–1639 (1964).
[CrossRef]

Gold, J.

P. Hanarp, D. S. Sutherland, J. Gold, and B. Kasemo, “Control of nanoparticle film structure for colloidal lithography,” Colloids Surf.214(1-3), 23–36 (2003).
[CrossRef]

Gonzalez-Guerrero, A. B.

M. A. Otte, M. C. Estevez, L. G. Carrascosa, A. B. Gonzalez-Guerrero, L. M. Lechuga, and B. Sepulveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C115(13), 5344–5351 (2011).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Gunnarsson, L.

S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh sensitivity made simple: Nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology20(43), 434015 (2009).
[CrossRef] [PubMed]

Hafner, C.

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small7(12), 1653–1663 (2011).
[CrossRef] [PubMed]

Hägglund, C.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett.8(11), 3893–3898 (2008).
[CrossRef] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Hanarp, P.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett.4(6), 1003–1007 (2004).
[CrossRef]

P. Hanarp, M. Kall, and D. S. Sutherland, “Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography,” J. Phys. Chem. B107(24), 5768–5772 (2003).
[CrossRef]

P. Hanarp, D. S. Sutherland, J. Gold, and B. Kasemo, “Control of nanoparticle film structure for colloidal lithography,” Colloids Surf.214(1-3), 23–36 (2003).
[CrossRef]

Haynes, C. L.

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B105(24), 5599–5611 (2001).
[CrossRef]

Hillenbrand, R.

. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. GarciadeAbajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C111(3), 1207–1212 (2007).
[CrossRef]

Höök, F.

L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano4(4), 2167–2177 (2010).
[CrossRef] [PubMed]

A. B. Dahlin, P. Jönsson, M. P. Jonsson, E. Schmid, Y. Zhou, and F. Höök, “Synchronized quartz crystal microbalance and nanoplasmonic sensing of biomolecular recognition reactions,” ACS Nano2(10), 2174–2182 (2008).
[CrossRef] [PubMed]

Ikenoya, Y.

Y. Ikenoya, M. Susa, J. Shi, Y. Nakamura, A. B. Dahlin, and T. Sannomiya, “Optical resonances in short-range ordered nanoholes in ultrathin aluminum/aluminum nitride multilayers,” J. Phys. Chem. C117(12), 6373–6382 (2013).
[CrossRef]

Jefimovs, K.

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small7(12), 1653–1663 (2011).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Jonsson, M. P.

L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano4(4), 2167–2177 (2010).
[CrossRef] [PubMed]

A. B. Dahlin, P. Jönsson, M. P. Jonsson, E. Schmid, Y. Zhou, and F. Höök, “Synchronized quartz crystal microbalance and nanoplasmonic sensing of biomolecular recognition reactions,” ACS Nano2(10), 2174–2182 (2008).
[CrossRef] [PubMed]

Jönsson, P.

L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano4(4), 2167–2177 (2010).
[CrossRef] [PubMed]

A. B. Dahlin, P. Jönsson, M. P. Jonsson, E. Schmid, Y. Zhou, and F. Höök, “Synchronized quartz crystal microbalance and nanoplasmonic sensing of biomolecular recognition reactions,” ACS Nano2(10), 2174–2182 (2008).
[CrossRef] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Junesch, J.

J. Junesch, T. Sannomiya, and A. B. Dahlin, “Optical properties of nanohole arrays in metal-dielectric double films prepared by mask-on-metal colloidal lithography,” ACS Nano6(11), 10405–10415 (2012).
[CrossRef] [PubMed]

Kall, M.

. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. GarciadeAbajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C111(3), 1207–1212 (2007).
[CrossRef]

P. Hanarp, M. Kall, and D. S. Sutherland, “Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography,” J. Phys. Chem. B107(24), 5768–5772 (2003).
[CrossRef]

Käll, M.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett.9(12), 4428–4433 (2009).
[CrossRef] [PubMed]

B. Brian, B. Sepúlveda, Y. Alaverdyan, L. M. Lechuga, and M. Käll, “Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates,” Opt. Express17(3), 2015–2023 (2009).
[CrossRef] [PubMed]

S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh sensitivity made simple: Nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology20(43), 434015 (2009).
[CrossRef] [PubMed]

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett.8(11), 3893–3898 (2008).
[CrossRef] [PubMed]

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett.7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett.4(6), 1003–1007 (2004).
[CrossRef]

Kasemo, B.

P. Hanarp, D. S. Sutherland, J. Gold, and B. Kasemo, “Control of nanoparticle film structure for colloidal lithography,” Colloids Surf.214(1-3), 23–36 (2003).
[CrossRef]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science339(6125), 1232009–12320096 (2013).
[CrossRef] [PubMed]

Larsson, E. M.

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett.7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

Lazarides, A. A.

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B109(46), 21556–21565 (2005).
[CrossRef] [PubMed]

Lechuga, L. M.

M. A. Otte, M. C. Estevez, L. G. Carrascosa, A. B. Gonzalez-Guerrero, L. M. Lechuga, and B. Sepulveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C115(13), 5344–5351 (2011).
[CrossRef]

B. Brian, B. Sepúlveda, Y. Alaverdyan, L. M. Lechuga, and M. Käll, “Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates,” Opt. Express17(3), 2015–2023 (2009).
[CrossRef] [PubMed]

Lee, P. T.

C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett.98(15), 153108 (2011).
[CrossRef] [PubMed]

Li, A. R.

X. M. Zhang, Z. B. Li, S. S. Ye, S. Wu, J. H. Zhang, L. Y. Cui, A. R. Li, T. Q. Wang, S. Z. Li, and B. Yang, “Elevated ag nanohole arrays for high performance plasmonic sensors based on extraordinary optical transmission,” J. Mater. Chem.22(18), 8903–8910 (2012).
[CrossRef]

Li, S. Z.

X. M. Zhang, Z. B. Li, S. S. Ye, S. Wu, J. H. Zhang, L. Y. Cui, A. R. Li, T. Q. Wang, S. Z. Li, and B. Yang, “Elevated ag nanohole arrays for high performance plasmonic sensors based on extraordinary optical transmission,” J. Mater. Chem.22(18), 8903–8910 (2012).
[CrossRef]

Li, Z. B.

X. M. Zhang, Z. B. Li, S. S. Ye, S. Wu, J. H. Zhang, L. Y. Cui, A. R. Li, T. Q. Wang, S. Z. Li, and B. Yang, “Elevated ag nanohole arrays for high performance plasmonic sensors based on extraordinary optical transmission,” J. Mater. Chem.22(18), 8903–8910 (2012).
[CrossRef]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lunström, “Surface-plasmon resonance for gas-detection and biosensing,” Sens. Actuators4, 299–304 (1983).
[CrossRef]

Lin, J. W.

C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett.98(15), 153108 (2011).
[CrossRef] [PubMed]

Lu, S. P.

C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett.98(15), 153108 (2011).
[CrossRef] [PubMed]

Lunström, I.

B. Liedberg, C. Nylander, and I. Lunström, “Surface-plasmon resonance for gas-detection and biosensing,” Sens. Actuators4, 299–304 (1983).
[CrossRef]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Miller, M. M.

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B109(46), 21556–21565 (2005).
[CrossRef] [PubMed]

Nakamura, Y.

Y. Ikenoya, M. Susa, J. Shi, Y. Nakamura, A. B. Dahlin, and T. Sannomiya, “Optical resonances in short-range ordered nanoholes in ultrathin aluminum/aluminum nitride multilayers,” J. Phys. Chem. C117(12), 6373–6382 (2013).
[CrossRef]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lunström, “Surface-plasmon resonance for gas-detection and biosensing,” Sens. Actuators4, 299–304 (1983).
[CrossRef]

Olofsson, L.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett.4(6), 1003–1007 (2004).
[CrossRef]

Otte, M. A.

M. A. Otte, M. C. Estevez, L. G. Carrascosa, A. B. Gonzalez-Guerrero, L. M. Lechuga, and B. Sepulveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C115(13), 5344–5351 (2011).
[CrossRef]

Pakizeh, T.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett.8(11), 3893–3898 (2008).
[CrossRef] [PubMed]

. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. GarciadeAbajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C111(3), 1207–1212 (2007).
[CrossRef]

Prikulis, J.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett.4(6), 1003–1007 (2004).
[CrossRef]

Rindzevicius, .

. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. GarciadeAbajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C111(3), 1207–1212 (2007).
[CrossRef]

Sannomiya, T.

Y. Ikenoya, M. Susa, J. Shi, Y. Nakamura, A. B. Dahlin, and T. Sannomiya, “Optical resonances in short-range ordered nanoholes in ultrathin aluminum/aluminum nitride multilayers,” J. Phys. Chem. C117(12), 6373–6382 (2013).
[CrossRef]

J. Junesch, T. Sannomiya, and A. B. Dahlin, “Optical properties of nanohole arrays in metal-dielectric double films prepared by mask-on-metal colloidal lithography,” ACS Nano6(11), 10405–10415 (2012).
[CrossRef] [PubMed]

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small7(12), 1653–1663 (2011).
[CrossRef] [PubMed]

Savitzky, A.

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem.36(8), 1627–1639 (1964).
[CrossRef]

Schmid, E.

A. B. Dahlin, P. Jönsson, M. P. Jonsson, E. Schmid, Y. Zhou, and F. Höök, “Synchronized quartz crystal microbalance and nanoplasmonic sensing of biomolecular recognition reactions,” ACS Nano2(10), 2174–2182 (2008).
[CrossRef] [PubMed]

Scholder, O.

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small7(12), 1653–1663 (2011).
[CrossRef] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Sepulveda, B.

M. A. Otte, M. C. Estevez, L. G. Carrascosa, A. B. Gonzalez-Guerrero, L. M. Lechuga, and B. Sepulveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C115(13), 5344–5351 (2011).
[CrossRef]

. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. GarciadeAbajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C111(3), 1207–1212 (2007).
[CrossRef]

Sepúlveda, B.

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science339(6125), 1232009–12320096 (2013).
[CrossRef] [PubMed]

Shi, J.

Y. Ikenoya, M. Susa, J. Shi, Y. Nakamura, A. B. Dahlin, and T. Sannomiya, “Optical resonances in short-range ordered nanoholes in ultrathin aluminum/aluminum nitride multilayers,” J. Phys. Chem. C117(12), 6373–6382 (2013).
[CrossRef]

Susa, M.

Y. Ikenoya, M. Susa, J. Shi, Y. Nakamura, A. B. Dahlin, and T. Sannomiya, “Optical resonances in short-range ordered nanoholes in ultrathin aluminum/aluminum nitride multilayers,” J. Phys. Chem. C117(12), 6373–6382 (2013).
[CrossRef]

Sutherland, D.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett.4(6), 1003–1007 (2004).
[CrossRef]

Sutherland, D. S.

V. E. Bochenkov and D. S. Sutherland, “From rings to crescents: A novel fabrication technique uncovers the transition details,” Nano Lett.13(3), 1216–1220 (2013).
[CrossRef] [PubMed]

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett.8(11), 3893–3898 (2008).
[CrossRef] [PubMed]

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett.7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

P. Hanarp, M. Kall, and D. S. Sutherland, “Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography,” J. Phys. Chem. B107(24), 5768–5772 (2003).
[CrossRef]

P. Hanarp, D. S. Sutherland, J. Gold, and B. Kasemo, “Control of nanoparticle film structure for colloidal lithography,” Colloids Surf.214(1-3), 23–36 (2003).
[CrossRef]

Svedendahl, M.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett.9(12), 4428–4433 (2009).
[CrossRef] [PubMed]

S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh sensitivity made simple: Nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology20(43), 434015 (2009).
[CrossRef] [PubMed]

Tsai, C. Y.

C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett.98(15), 153108 (2011).
[CrossRef] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B105(24), 5599–5611 (2001).
[CrossRef]

Wang, T. Q.

X. M. Zhang, Z. B. Li, S. S. Ye, S. Wu, J. H. Zhang, L. Y. Cui, A. R. Li, T. Q. Wang, S. Z. Li, and B. Yang, “Elevated ag nanohole arrays for high performance plasmonic sensors based on extraordinary optical transmission,” J. Mater. Chem.22(18), 8903–8910 (2012).
[CrossRef]

White, J. S.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Wu, S.

X. M. Zhang, Z. B. Li, S. S. Ye, S. Wu, J. H. Zhang, L. Y. Cui, A. R. Li, T. Q. Wang, S. Z. Li, and B. Yang, “Elevated ag nanohole arrays for high performance plasmonic sensors based on extraordinary optical transmission,” J. Mater. Chem.22(18), 8903–8910 (2012).
[CrossRef]

Yang, B.

X. M. Zhang, Z. B. Li, S. S. Ye, S. Wu, J. H. Zhang, L. Y. Cui, A. R. Li, T. Q. Wang, S. Z. Li, and B. Yang, “Elevated ag nanohole arrays for high performance plasmonic sensors based on extraordinary optical transmission,” J. Mater. Chem.22(18), 8903–8910 (2012).
[CrossRef]

Ye, S. S.

X. M. Zhang, Z. B. Li, S. S. Ye, S. Wu, J. H. Zhang, L. Y. Cui, A. R. Li, T. Q. Wang, S. Z. Li, and B. Yang, “Elevated ag nanohole arrays for high performance plasmonic sensors based on extraordinary optical transmission,” J. Mater. Chem.22(18), 8903–8910 (2012).
[CrossRef]

Zhang, J. H.

X. M. Zhang, Z. B. Li, S. S. Ye, S. Wu, J. H. Zhang, L. Y. Cui, A. R. Li, T. Q. Wang, S. Z. Li, and B. Yang, “Elevated ag nanohole arrays for high performance plasmonic sensors based on extraordinary optical transmission,” J. Mater. Chem.22(18), 8903–8910 (2012).
[CrossRef]

Zhang, X. M.

X. M. Zhang, Z. B. Li, S. S. Ye, S. Wu, J. H. Zhang, L. Y. Cui, A. R. Li, T. Q. Wang, S. Z. Li, and B. Yang, “Elevated ag nanohole arrays for high performance plasmonic sensors based on extraordinary optical transmission,” J. Mater. Chem.22(18), 8903–8910 (2012).
[CrossRef]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Zhou, Y.

A. B. Dahlin, P. Jönsson, M. P. Jonsson, E. Schmid, Y. Zhou, and F. Höök, “Synchronized quartz crystal microbalance and nanoplasmonic sensing of biomolecular recognition reactions,” ACS Nano2(10), 2174–2182 (2008).
[CrossRef] [PubMed]

ACS Nano (3)

L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano4(4), 2167–2177 (2010).
[CrossRef] [PubMed]

A. B. Dahlin, P. Jönsson, M. P. Jonsson, E. Schmid, Y. Zhou, and F. Höök, “Synchronized quartz crystal microbalance and nanoplasmonic sensing of biomolecular recognition reactions,” ACS Nano2(10), 2174–2182 (2008).
[CrossRef] [PubMed]

J. Junesch, T. Sannomiya, and A. B. Dahlin, “Optical properties of nanohole arrays in metal-dielectric double films prepared by mask-on-metal colloidal lithography,” ACS Nano6(11), 10405–10415 (2012).
[CrossRef] [PubMed]

Anal. Chem. (1)

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem.36(8), 1627–1639 (1964).
[CrossRef]

Appl. Phys. Lett. (1)

C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett.98(15), 153108 (2011).
[CrossRef] [PubMed]

Colloids Surf. (1)

P. Hanarp, D. S. Sutherland, J. Gold, and B. Kasemo, “Control of nanoparticle film structure for colloidal lithography,” Colloids Surf.214(1-3), 23–36 (2003).
[CrossRef]

J. Mater. Chem. (1)

X. M. Zhang, Z. B. Li, S. S. Ye, S. Wu, J. H. Zhang, L. Y. Cui, A. R. Li, T. Q. Wang, S. Z. Li, and B. Yang, “Elevated ag nanohole arrays for high performance plasmonic sensors based on extraordinary optical transmission,” J. Mater. Chem.22(18), 8903–8910 (2012).
[CrossRef]

J. Phys. Chem. B (3)

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B105(24), 5599–5611 (2001).
[CrossRef]

P. Hanarp, M. Kall, and D. S. Sutherland, “Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography,” J. Phys. Chem. B107(24), 5768–5772 (2003).
[CrossRef]

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B109(46), 21556–21565 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. C (3)

. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kall, R. Hillenbrand, J. Aizpurua, and F. J. GarciadeAbajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. C111(3), 1207–1212 (2007).
[CrossRef]

M. A. Otte, M. C. Estevez, L. G. Carrascosa, A. B. Gonzalez-Guerrero, L. M. Lechuga, and B. Sepulveda, “Improved biosensing capability with novel suspended nanodisks,” J. Phys. Chem. C115(13), 5344–5351 (2011).
[CrossRef]

Y. Ikenoya, M. Susa, J. Shi, Y. Nakamura, A. B. Dahlin, and T. Sannomiya, “Optical resonances in short-range ordered nanoholes in ultrathin aluminum/aluminum nitride multilayers,” J. Phys. Chem. C117(12), 6373–6382 (2013).
[CrossRef]

Nano Lett. (5)

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett.9(12), 4428–4433 (2009).
[CrossRef] [PubMed]

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett.4(6), 1003–1007 (2004).
[CrossRef]

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett.7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett.8(11), 3893–3898 (2008).
[CrossRef] [PubMed]

V. E. Bochenkov and D. S. Sutherland, “From rings to crescents: A novel fabrication technique uncovers the transition details,” Nano Lett.13(3), 1216–1220 (2013).
[CrossRef] [PubMed]

Nanotechnology (1)

S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, and A. Dmitriev, “Ultrahigh sensitivity made simple: Nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics,” Nanotechnology20(43), 434015 (2009).
[CrossRef] [PubMed]

Nat. Mater. (2)

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Science (1)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science339(6125), 1232009–12320096 (2013).
[CrossRef] [PubMed]

Sens. Actuators (1)

B. Liedberg, C. Nylander, and I. Lunström, “Surface-plasmon resonance for gas-detection and biosensing,” Sens. Actuators4, 299–304 (1983).
[CrossRef]

Small (1)

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small7(12), 1653–1663 (2011).
[CrossRef] [PubMed]

Other (1)

FDTD solutions”, http://www.lumerical.com/tcad-products/fdtd/ .

Supplementary Material (4)

» Media 1: PDF (736 KB)     
» Media 2: PDF (398 KB)     
» Media 3: PDF (78 KB)     
» Media 4: PDF (59 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Perforated Au film lifted by 40 nm silica layer: A) fabrication scheme; B) Cross-sectional SEM view. Scale bar is 100 nm.

Fig. 2
Fig. 2

Extinction spectra of perforated thin Au films fabricated by CL using 110 nm (black), 140 nm (red) and 160 nm (green) particles: A) without silica spacer, B) with 40 nm silica layer. Spectra taken in air. Insets show the example of hole arrays fabricated using 160 nm colloid particles, scale bar is 1μm.

Fig. 3
Fig. 3

Sensitivity of the perforated Au films. Left panel (A): as a function of extinction peak position at n = 1.333 for different diameter of the holes without (blue squares)and with spacer layer (red circles). Black lines are to guide the eye. Right panel: extinction peak shift with an increase of the refractive index for theB) non-lifted and C) lifted holes fabricated using 110 nm particles as a mask. The refractive index values are presented in the insets.

Fig. 4
Fig. 4

FDTD simulation results: A) extinction spectra for non-lifted (top) and lifted (bottom) hole arrays in n = 1(red) and n = 1.333 (black); local electric field (|E|2/|E0|2) distribution near a hole in hexagonally close packed periodic array of holes at the wavelength of extinction maximum. The refractive index of the media is n = 1.0 (B,C); and n = 1.333 (D,E).

Tables (1)

Tables Icon

Table 1 Electric field (|E|/|E0|) distribution near the hole at extinction maximum wavelength.

Metrics