Abstract

Coherence-controlled holographic microscope (CCHM) combines off-axis holography and an achromatic grating interferometer allowing for the use of light sources of arbitrary degree of temporal and spatial coherence. This results in coherence gating and strong suppression of coherent noise and parasitic interferences enabling CCHM to reach high phase measurement accuracy and imaging quality. The achievable lateral resolution reaches performance of conventional widefield microscopes, which allows resolving up to twice smaller details when compared to typical off-axis setups. Imaging characteristics can be controlled arbitrarily by coherence between two extremes: fully coherent holography and confocal-like incoherent holography. The basic setup parameters are derived and described in detail and experimental validations of imaging characteristics are demonstrated.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Barer, “Interference microscopy and mass determination,” Nature169(4296), 366–367 (1952).
    [CrossRef] [PubMed]
  2. H. G. Davies and M. H. F. Wilkins, “Interference microscopy and mass determination,” Nature169(4300), 541 (1952).
    [CrossRef] [PubMed]
  3. H. Janečková, P. Veselý, and R. Chmelík, “Proving tumour cells by acute nutritional/energy deprivation as a survival threat: a task for microscopy,” Anticancer Res.29(6), 2339–2345 (2009).
    [PubMed]
  4. F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt.11(5), 054032 (2006).
    [CrossRef] [PubMed]
  5. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett.24(5), 291–293 (1999).
    [CrossRef] [PubMed]
  6. L. Lovicar, L. Kvasnica, and R. Chmelík, “Surface observation and measurement by means of digital holographic microscope with arbitrary degree of coherence,” Proc. SPIE7141, 71411S (2008).
    [CrossRef]
  7. L. Lovicar, J. Komrska, and R. Chmelík, “Quantitative-phase-contrast imaging of a two-level surface described as a 2D linear filtering process,” Opt. Express18(20), 20585–20594 (2010).
    [CrossRef] [PubMed]
  8. T. Colomb, N. Pavillon, J. Kühn, E. Cuche, C. Depeursinge, and Y. Emery, “Extended depth-of-focus by digital holographic microscopy,” Opt. Lett.35(11), 1840–1842 (2010).
    [CrossRef] [PubMed]
  9. F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt.38(34), 7085–7094 (1999).
    [CrossRef] [PubMed]
  10. P. Klysubun and G. Indebetouw, “A posteriori processing of spatiotemporal digital microholograms,” J. Opt. Soc. Am. A18(2), 326–331 (2001).
    [CrossRef] [PubMed]
  11. G. Indebetouw and P. Klysubun, “Optical sectioning with low coherence spatio-temporal holography,” Opt. Commun.172(1-6), 25–29 (1999).
    [CrossRef]
  12. G. Indebetouw and P. Klysubun, “Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography,” Opt. Lett.25(4), 212–214 (2000).
    [CrossRef] [PubMed]
  13. E. N. Leith, W.-C. Chien, K. D. Mills, B. D. Athey, and D. S. Dilworth, “Optical sectioning by holographic coherence imaging: a generalized analysis,” J. Opt. Soc. Am. A20(2), 380–387 (2003).
    [CrossRef] [PubMed]
  14. M.-K. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Opt. Express7(9), 305–310 (2000).
    [CrossRef] [PubMed]
  15. P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt.44(10), 1806–1812 (2005).
    [CrossRef] [PubMed]
  16. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
    [CrossRef] [PubMed]
  17. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett.23(15), 1221–1223 (1998).
    [CrossRef] [PubMed]
  18. L. Xu, J. M. Miao, and A. Asundi, “Properties of digital holography based on in-line configuration,” Opt. Eng.39(12), 3214–3219 (2000).
    [CrossRef]
  19. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt.43(36), 6536–6544 (2004).
    [CrossRef] [PubMed]
  20. D. Shin, M. Daneshpanah, A. Anand, and B. Javidi, “Optofluidic system for three-dimensional sensing and identification of micro-organisms with digital holographic microscopy,” Opt. Lett.35(23), 4066–4068 (2010).
    [CrossRef] [PubMed]
  21. P. Girshovitz and N. T. Shaked, “Generalized cell morphological parameters based on interferometric phase microscopy and their application to cell life cycle characterization,” Biomed. Opt. Express3(8), 1757–1773 (2012).
    [CrossRef] [PubMed]
  22. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett.37(6), 1094–1096 (2012).
    [CrossRef] [PubMed]
  23. F. Dubois and C. Yourassowsky, “Full off-axis red-green-blue digital holographic microscope with LED illumination,” Opt. Lett.37(12), 2190–2192 (2012).
    [CrossRef] [PubMed]
  24. R. Chmelík and Z. Harna, “Parallel-mode confocal microscope,” Opt. Eng.38(10), 1635–1639 (1999).
    [CrossRef]
  25. R. Chmelík, “Three-dimensional scalar imaging in high-aperture low-coherence interference and holographic microscopes,” J. Mod. Opt.53(18), 2673–2689 (2006).
    [CrossRef]
  26. H. Janečková, P. Kolman, P. Veselý, and R. Chmelík, “Digital holographic microscope with low spatial and temporal coherence of illumination,” Proc. SPIE7000, 70002E (2008).
    [CrossRef]
  27. R. Chmelík and Z. Harna, “Surface profilometry by a parallel–mode confocal microscope,” Opt. Eng.41(4), 744–745 (2002).
    [CrossRef]
  28. P. Kolman and R. Chmelík, “Coherence-controlled holographic microscope,” Opt. Express18(21), 21990–22003 (2010).
    [CrossRef] [PubMed]
  29. M. Lošťák, P. Kolman, Z. Dostál, and R. Chmelík, “Diffuse light imaging with a coherence controlled holographic microscope,” Proc. SPIE7746, 77461N (2010).
    [CrossRef]
  30. E. N. Leith and J. Upatnieks, “Holography with achromatic-fringe systems,” J. Opt. Soc. Am.57(8), 975–980 (1967).
    [CrossRef]
  31. T. Slabý, M. Antoš, Z. Dostál, P. Kolman, and R. Chmelík, “Coherence-controlled holographic microscope,” Proc. SPIE7746, 77461R (2010).
    [CrossRef]
  32. N. Pavillon, A. Benke, D. Boss, C. Moratal, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Cell morphology and intracellular ionic homeostasis explored with a multimodal approach combining epifluorescence and digital holographic microscopy,” J Biophotonics3(7), 432–436 (2010).
    [CrossRef] [PubMed]
  33. B. Kemper, P. Langehanenberg, A. Höink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Käs, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J Biophotonics3(7), 425–431 (2010).
    [CrossRef] [PubMed]
  34. E. Shaffer, N. Pavillon, and C. Depeursinge, “Single-shot, simultaneous incoherent and holographic microscopy,” J. Microsc.245(1), 49–62 (2012).
    [CrossRef] [PubMed]
  35. M. Born and E. Wolf, Principles of Optics, 6th edition (Pergamon Press, 1986).
  36. J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer, 2006), pp. 65, Chap. 4.
  37. N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt.48(34), H186–H195 (2009).
    [CrossRef] [PubMed]
  38. T. Kreis, “Digital holographic interference-phase measurement using the Fourier-transform method,” J. Opt. Soc. Am. A3(6), 847–855 (1986).
    [CrossRef]
  39. J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol.19(7), 074007 (2008).
    [CrossRef]
  40. R. Chmelík, “Holographic confocal microscopy,” Proc. SPIE4356, 118–123 (2001).
    [CrossRef]
  41. E. N. Leith and G. J. Swanson, “Recording of phase-amplitude images,” Appl. Opt.20(17), 3081–3084 (1981).
    [CrossRef] [PubMed]
  42. R. Chmelík, P. Kolman, T. Slabý, M. Antoš, and Z. Dostál, “Interferometric system with spatial carrier frequency capable of imaging in polychromatic radiation,” patent EP2378244B1 (July 4, 2012).

2012 (4)

2010 (8)

M. Lošťák, P. Kolman, Z. Dostál, and R. Chmelík, “Diffuse light imaging with a coherence controlled holographic microscope,” Proc. SPIE7746, 77461N (2010).
[CrossRef]

T. Slabý, M. Antoš, Z. Dostál, P. Kolman, and R. Chmelík, “Coherence-controlled holographic microscope,” Proc. SPIE7746, 77461R (2010).
[CrossRef]

N. Pavillon, A. Benke, D. Boss, C. Moratal, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Cell morphology and intracellular ionic homeostasis explored with a multimodal approach combining epifluorescence and digital holographic microscopy,” J Biophotonics3(7), 432–436 (2010).
[CrossRef] [PubMed]

B. Kemper, P. Langehanenberg, A. Höink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Käs, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J Biophotonics3(7), 425–431 (2010).
[CrossRef] [PubMed]

T. Colomb, N. Pavillon, J. Kühn, E. Cuche, C. Depeursinge, and Y. Emery, “Extended depth-of-focus by digital holographic microscopy,” Opt. Lett.35(11), 1840–1842 (2010).
[CrossRef] [PubMed]

L. Lovicar, J. Komrska, and R. Chmelík, “Quantitative-phase-contrast imaging of a two-level surface described as a 2D linear filtering process,” Opt. Express18(20), 20585–20594 (2010).
[CrossRef] [PubMed]

P. Kolman and R. Chmelík, “Coherence-controlled holographic microscope,” Opt. Express18(21), 21990–22003 (2010).
[CrossRef] [PubMed]

D. Shin, M. Daneshpanah, A. Anand, and B. Javidi, “Optofluidic system for three-dimensional sensing and identification of micro-organisms with digital holographic microscopy,” Opt. Lett.35(23), 4066–4068 (2010).
[CrossRef] [PubMed]

2009 (2)

N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt.48(34), H186–H195 (2009).
[CrossRef] [PubMed]

H. Janečková, P. Veselý, and R. Chmelík, “Proving tumour cells by acute nutritional/energy deprivation as a survival threat: a task for microscopy,” Anticancer Res.29(6), 2339–2345 (2009).
[PubMed]

2008 (3)

L. Lovicar, L. Kvasnica, and R. Chmelík, “Surface observation and measurement by means of digital holographic microscope with arbitrary degree of coherence,” Proc. SPIE7141, 71411S (2008).
[CrossRef]

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol.19(7), 074007 (2008).
[CrossRef]

H. Janečková, P. Kolman, P. Veselý, and R. Chmelík, “Digital holographic microscope with low spatial and temporal coherence of illumination,” Proc. SPIE7000, 70002E (2008).
[CrossRef]

2007 (1)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
[CrossRef] [PubMed]

2006 (2)

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt.11(5), 054032 (2006).
[CrossRef] [PubMed]

R. Chmelík, “Three-dimensional scalar imaging in high-aperture low-coherence interference and holographic microscopes,” J. Mod. Opt.53(18), 2673–2689 (2006).
[CrossRef]

2005 (1)

2004 (1)

2003 (1)

2002 (1)

R. Chmelík and Z. Harna, “Surface profilometry by a parallel–mode confocal microscope,” Opt. Eng.41(4), 744–745 (2002).
[CrossRef]

2001 (2)

2000 (3)

1999 (4)

1998 (1)

1986 (1)

1981 (1)

1967 (1)

1952 (2)

R. Barer, “Interference microscopy and mass determination,” Nature169(4296), 366–367 (1952).
[CrossRef] [PubMed]

H. G. Davies and M. H. F. Wilkins, “Interference microscopy and mass determination,” Nature169(4300), 541 (1952).
[CrossRef] [PubMed]

Anand, A.

Antoš, M.

T. Slabý, M. Antoš, Z. Dostál, P. Kolman, and R. Chmelík, “Coherence-controlled holographic microscope,” Proc. SPIE7746, 77461R (2010).
[CrossRef]

Asundi, A.

L. Xu, J. M. Miao, and A. Asundi, “Properties of digital holography based on in-line configuration,” Opt. Eng.39(12), 3214–3219 (2000).
[CrossRef]

Athey, B. D.

Badizadegan, K.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
[CrossRef] [PubMed]

Barer, R.

R. Barer, “Interference microscopy and mass determination,” Nature169(4296), 366–367 (1952).
[CrossRef] [PubMed]

Benke, A.

N. Pavillon, A. Benke, D. Boss, C. Moratal, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Cell morphology and intracellular ionic homeostasis explored with a multimodal approach combining epifluorescence and digital holographic microscopy,” J Biophotonics3(7), 432–436 (2010).
[CrossRef] [PubMed]

Bevilacqua, F.

Bhaduri, B.

Boss, D.

N. Pavillon, A. Benke, D. Boss, C. Moratal, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Cell morphology and intracellular ionic homeostasis explored with a multimodal approach combining epifluorescence and digital holographic microscopy,” J Biophotonics3(7), 432–436 (2010).
[CrossRef] [PubMed]

Bredebusch, I.

B. Kemper, P. Langehanenberg, A. Höink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Käs, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J Biophotonics3(7), 425–431 (2010).
[CrossRef] [PubMed]

Carl, D.

Charrière, F.

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol.19(7), 074007 (2008).
[CrossRef]

P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt.44(10), 1806–1812 (2005).
[CrossRef] [PubMed]

Chien, W.-C.

Chmelík, R.

T. Slabý, M. Antoš, Z. Dostál, P. Kolman, and R. Chmelík, “Coherence-controlled holographic microscope,” Proc. SPIE7746, 77461R (2010).
[CrossRef]

L. Lovicar, J. Komrska, and R. Chmelík, “Quantitative-phase-contrast imaging of a two-level surface described as a 2D linear filtering process,” Opt. Express18(20), 20585–20594 (2010).
[CrossRef] [PubMed]

P. Kolman and R. Chmelík, “Coherence-controlled holographic microscope,” Opt. Express18(21), 21990–22003 (2010).
[CrossRef] [PubMed]

M. Lošťák, P. Kolman, Z. Dostál, and R. Chmelík, “Diffuse light imaging with a coherence controlled holographic microscope,” Proc. SPIE7746, 77461N (2010).
[CrossRef]

H. Janečková, P. Veselý, and R. Chmelík, “Proving tumour cells by acute nutritional/energy deprivation as a survival threat: a task for microscopy,” Anticancer Res.29(6), 2339–2345 (2009).
[PubMed]

H. Janečková, P. Kolman, P. Veselý, and R. Chmelík, “Digital holographic microscope with low spatial and temporal coherence of illumination,” Proc. SPIE7000, 70002E (2008).
[CrossRef]

L. Lovicar, L. Kvasnica, and R. Chmelík, “Surface observation and measurement by means of digital holographic microscope with arbitrary degree of coherence,” Proc. SPIE7141, 71411S (2008).
[CrossRef]

R. Chmelík, “Three-dimensional scalar imaging in high-aperture low-coherence interference and holographic microscopes,” J. Mod. Opt.53(18), 2673–2689 (2006).
[CrossRef]

R. Chmelík and Z. Harna, “Surface profilometry by a parallel–mode confocal microscope,” Opt. Eng.41(4), 744–745 (2002).
[CrossRef]

R. Chmelík, “Holographic confocal microscopy,” Proc. SPIE4356, 118–123 (2001).
[CrossRef]

R. Chmelík and Z. Harna, “Parallel-mode confocal microscope,” Opt. Eng.38(10), 1635–1639 (1999).
[CrossRef]

Choi, W.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
[CrossRef] [PubMed]

Colomb, T.

T. Colomb, N. Pavillon, J. Kühn, E. Cuche, C. Depeursinge, and Y. Emery, “Extended depth-of-focus by digital holographic microscopy,” Opt. Lett.35(11), 1840–1842 (2010).
[CrossRef] [PubMed]

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol.19(7), 074007 (2008).
[CrossRef]

Cuche, E.

Daneshpanah, M.

Dasari, R. R.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
[CrossRef] [PubMed]

Davies, H. G.

H. G. Davies and M. H. F. Wilkins, “Interference microscopy and mass determination,” Nature169(4300), 541 (1952).
[CrossRef] [PubMed]

Debeir, O.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt.11(5), 054032 (2006).
[CrossRef] [PubMed]

Decaestecker, C.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt.11(5), 054032 (2006).
[CrossRef] [PubMed]

Depeursinge, C.

E. Shaffer, N. Pavillon, and C. Depeursinge, “Single-shot, simultaneous incoherent and holographic microscopy,” J. Microsc.245(1), 49–62 (2012).
[CrossRef] [PubMed]

T. Colomb, N. Pavillon, J. Kühn, E. Cuche, C. Depeursinge, and Y. Emery, “Extended depth-of-focus by digital holographic microscopy,” Opt. Lett.35(11), 1840–1842 (2010).
[CrossRef] [PubMed]

N. Pavillon, A. Benke, D. Boss, C. Moratal, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Cell morphology and intracellular ionic homeostasis explored with a multimodal approach combining epifluorescence and digital holographic microscopy,” J Biophotonics3(7), 432–436 (2010).
[CrossRef] [PubMed]

N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt.48(34), H186–H195 (2009).
[CrossRef] [PubMed]

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol.19(7), 074007 (2008).
[CrossRef]

E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett.24(5), 291–293 (1999).
[CrossRef] [PubMed]

Depeursinge, C. D.

Dilworth, D. S.

Dostál, Z.

T. Slabý, M. Antoš, Z. Dostál, P. Kolman, and R. Chmelík, “Coherence-controlled holographic microscope,” Proc. SPIE7746, 77461R (2010).
[CrossRef]

M. Lošťák, P. Kolman, Z. Dostál, and R. Chmelík, “Diffuse light imaging with a coherence controlled holographic microscope,” Proc. SPIE7746, 77461N (2010).
[CrossRef]

Dubois, F.

Emery, Y.

T. Colomb, N. Pavillon, J. Kühn, E. Cuche, C. Depeursinge, and Y. Emery, “Extended depth-of-focus by digital holographic microscopy,” Opt. Lett.35(11), 1840–1842 (2010).
[CrossRef] [PubMed]

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol.19(7), 074007 (2008).
[CrossRef]

Fang-Yen, C.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
[CrossRef] [PubMed]

Feld, M. S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
[CrossRef] [PubMed]

Girshovitz, P.

Guck, J.

B. Kemper, P. Langehanenberg, A. Höink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Käs, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J Biophotonics3(7), 425–431 (2010).
[CrossRef] [PubMed]

Harna, Z.

R. Chmelík and Z. Harna, “Surface profilometry by a parallel–mode confocal microscope,” Opt. Eng.41(4), 744–745 (2002).
[CrossRef]

R. Chmelík and Z. Harna, “Parallel-mode confocal microscope,” Opt. Eng.38(10), 1635–1639 (1999).
[CrossRef]

Höink, A.

B. Kemper, P. Langehanenberg, A. Höink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Käs, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J Biophotonics3(7), 425–431 (2010).
[CrossRef] [PubMed]

Indebetouw, G.

Janecková, H.

H. Janečková, P. Veselý, and R. Chmelík, “Proving tumour cells by acute nutritional/energy deprivation as a survival threat: a task for microscopy,” Anticancer Res.29(6), 2339–2345 (2009).
[PubMed]

H. Janečková, P. Kolman, P. Veselý, and R. Chmelík, “Digital holographic microscope with low spatial and temporal coherence of illumination,” Proc. SPIE7000, 70002E (2008).
[CrossRef]

Javidi, B.

Joannes, L.

Jourdain, P.

N. Pavillon, A. Benke, D. Boss, C. Moratal, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Cell morphology and intracellular ionic homeostasis explored with a multimodal approach combining epifluorescence and digital holographic microscopy,” J Biophotonics3(7), 432–436 (2010).
[CrossRef] [PubMed]

Käs, J.

B. Kemper, P. Langehanenberg, A. Höink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Käs, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J Biophotonics3(7), 425–431 (2010).
[CrossRef] [PubMed]

Kemper, B.

B. Kemper, P. Langehanenberg, A. Höink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Käs, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J Biophotonics3(7), 425–431 (2010).
[CrossRef] [PubMed]

D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt.43(36), 6536–6544 (2004).
[CrossRef] [PubMed]

Kim, M.-K.

Kiss, R.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt.11(5), 054032 (2006).
[CrossRef] [PubMed]

Klysubun, P.

Kolman, P.

P. Kolman and R. Chmelík, “Coherence-controlled holographic microscope,” Opt. Express18(21), 21990–22003 (2010).
[CrossRef] [PubMed]

M. Lošťák, P. Kolman, Z. Dostál, and R. Chmelík, “Diffuse light imaging with a coherence controlled holographic microscope,” Proc. SPIE7746, 77461N (2010).
[CrossRef]

T. Slabý, M. Antoš, Z. Dostál, P. Kolman, and R. Chmelík, “Coherence-controlled holographic microscope,” Proc. SPIE7746, 77461R (2010).
[CrossRef]

H. Janečková, P. Kolman, P. Veselý, and R. Chmelík, “Digital holographic microscope with low spatial and temporal coherence of illumination,” Proc. SPIE7000, 70002E (2008).
[CrossRef]

Komrska, J.

Kreis, T.

Kühn, J.

T. Colomb, N. Pavillon, J. Kühn, E. Cuche, C. Depeursinge, and Y. Emery, “Extended depth-of-focus by digital holographic microscopy,” Opt. Lett.35(11), 1840–1842 (2010).
[CrossRef] [PubMed]

N. Pavillon, A. Benke, D. Boss, C. Moratal, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Cell morphology and intracellular ionic homeostasis explored with a multimodal approach combining epifluorescence and digital holographic microscopy,” J Biophotonics3(7), 432–436 (2010).
[CrossRef] [PubMed]

N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt.48(34), H186–H195 (2009).
[CrossRef] [PubMed]

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol.19(7), 074007 (2008).
[CrossRef]

Kvasnica, L.

L. Lovicar, L. Kvasnica, and R. Chmelík, “Surface observation and measurement by means of digital holographic microscope with arbitrary degree of coherence,” Proc. SPIE7141, 71411S (2008).
[CrossRef]

Langehanenberg, P.

B. Kemper, P. Langehanenberg, A. Höink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Käs, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J Biophotonics3(7), 425–431 (2010).
[CrossRef] [PubMed]

Legros, J. C.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt.11(5), 054032 (2006).
[CrossRef] [PubMed]

Legros, J.-C.

Leith, E. N.

Lošták, M.

M. Lošťák, P. Kolman, Z. Dostál, and R. Chmelík, “Diffuse light imaging with a coherence controlled holographic microscope,” Proc. SPIE7746, 77461N (2010).
[CrossRef]

Lovicar, L.

L. Lovicar, J. Komrska, and R. Chmelík, “Quantitative-phase-contrast imaging of a two-level surface described as a 2D linear filtering process,” Opt. Express18(20), 20585–20594 (2010).
[CrossRef] [PubMed]

L. Lovicar, L. Kvasnica, and R. Chmelík, “Surface observation and measurement by means of digital holographic microscope with arbitrary degree of coherence,” Proc. SPIE7141, 71411S (2008).
[CrossRef]

Lue, N.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
[CrossRef] [PubMed]

Magistretti, P. J.

N. Pavillon, A. Benke, D. Boss, C. Moratal, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Cell morphology and intracellular ionic homeostasis explored with a multimodal approach combining epifluorescence and digital holographic microscopy,” J Biophotonics3(7), 432–436 (2010).
[CrossRef] [PubMed]

Marquet, P.

N. Pavillon, A. Benke, D. Boss, C. Moratal, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Cell morphology and intracellular ionic homeostasis explored with a multimodal approach combining epifluorescence and digital holographic microscopy,” J Biophotonics3(7), 432–436 (2010).
[CrossRef] [PubMed]

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol.19(7), 074007 (2008).
[CrossRef]

P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt.44(10), 1806–1812 (2005).
[CrossRef] [PubMed]

Massatsch, P.

Miao, J. M.

L. Xu, J. M. Miao, and A. Asundi, “Properties of digital holography based on in-line configuration,” Opt. Eng.39(12), 3214–3219 (2000).
[CrossRef]

Mills, K. D.

Mir, M.

Monnom, O.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt.11(5), 054032 (2006).
[CrossRef] [PubMed]

Montfort, F.

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol.19(7), 074007 (2008).
[CrossRef]

Moratal, C.

N. Pavillon, A. Benke, D. Boss, C. Moratal, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Cell morphology and intracellular ionic homeostasis explored with a multimodal approach combining epifluorescence and digital holographic microscopy,” J Biophotonics3(7), 432–436 (2010).
[CrossRef] [PubMed]

Oh, S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
[CrossRef] [PubMed]

Pavillon, N.

E. Shaffer, N. Pavillon, and C. Depeursinge, “Single-shot, simultaneous incoherent and holographic microscopy,” J. Microsc.245(1), 49–62 (2012).
[CrossRef] [PubMed]

T. Colomb, N. Pavillon, J. Kühn, E. Cuche, C. Depeursinge, and Y. Emery, “Extended depth-of-focus by digital holographic microscopy,” Opt. Lett.35(11), 1840–1842 (2010).
[CrossRef] [PubMed]

N. Pavillon, A. Benke, D. Boss, C. Moratal, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Cell morphology and intracellular ionic homeostasis explored with a multimodal approach combining epifluorescence and digital holographic microscopy,” J Biophotonics3(7), 432–436 (2010).
[CrossRef] [PubMed]

N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt.48(34), H186–H195 (2009).
[CrossRef] [PubMed]

Pham, H.

Popescu, G.

Schinkinger, S.

B. Kemper, P. Langehanenberg, A. Höink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Käs, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J Biophotonics3(7), 425–431 (2010).
[CrossRef] [PubMed]

Schnekenburger, J.

B. Kemper, P. Langehanenberg, A. Höink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Käs, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J Biophotonics3(7), 425–431 (2010).
[CrossRef] [PubMed]

Schütze, K.

B. Kemper, P. Langehanenberg, A. Höink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Käs, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J Biophotonics3(7), 425–431 (2010).
[CrossRef] [PubMed]

Seelamantula, C. S.

Shaffer, E.

E. Shaffer, N. Pavillon, and C. Depeursinge, “Single-shot, simultaneous incoherent and holographic microscopy,” J. Microsc.245(1), 49–62 (2012).
[CrossRef] [PubMed]

Shaked, N. T.

Shin, D.

Slabý, T.

T. Slabý, M. Antoš, Z. Dostál, P. Kolman, and R. Chmelík, “Coherence-controlled holographic microscope,” Proc. SPIE7746, 77461R (2010).
[CrossRef]

Swanson, G. J.

Unser, M.

Upatnieks, J.

Van Ham, P.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt.11(5), 054032 (2006).
[CrossRef] [PubMed]

Veselý, P.

H. Janečková, P. Veselý, and R. Chmelík, “Proving tumour cells by acute nutritional/energy deprivation as a survival threat: a task for microscopy,” Anticancer Res.29(6), 2339–2345 (2009).
[PubMed]

H. Janečková, P. Kolman, P. Veselý, and R. Chmelík, “Digital holographic microscope with low spatial and temporal coherence of illumination,” Proc. SPIE7000, 70002E (2008).
[CrossRef]

von Bally, G.

B. Kemper, P. Langehanenberg, A. Höink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Käs, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J Biophotonics3(7), 425–431 (2010).
[CrossRef] [PubMed]

D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt.43(36), 6536–6544 (2004).
[CrossRef] [PubMed]

Wernicke, G.

Wilkins, M. H. F.

H. G. Davies and M. H. F. Wilkins, “Interference microscopy and mass determination,” Nature169(4300), 541 (1952).
[CrossRef] [PubMed]

Wottowah, F.

B. Kemper, P. Langehanenberg, A. Höink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Käs, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J Biophotonics3(7), 425–431 (2010).
[CrossRef] [PubMed]

Xu, L.

L. Xu, J. M. Miao, and A. Asundi, “Properties of digital holography based on in-line configuration,” Opt. Eng.39(12), 3214–3219 (2000).
[CrossRef]

Yamaguchi, I.

Yourassowsky, C.

F. Dubois and C. Yourassowsky, “Full off-axis red-green-blue digital holographic microscope with LED illumination,” Opt. Lett.37(12), 2190–2192 (2012).
[CrossRef] [PubMed]

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt.11(5), 054032 (2006).
[CrossRef] [PubMed]

Zhang, T.

Anticancer Res. (1)

H. Janečková, P. Veselý, and R. Chmelík, “Proving tumour cells by acute nutritional/energy deprivation as a survival threat: a task for microscopy,” Anticancer Res.29(6), 2339–2345 (2009).
[PubMed]

Appl. Opt. (5)

Biomed. Opt. Express (1)

J Biophotonics (2)

N. Pavillon, A. Benke, D. Boss, C. Moratal, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Cell morphology and intracellular ionic homeostasis explored with a multimodal approach combining epifluorescence and digital holographic microscopy,” J Biophotonics3(7), 432–436 (2010).
[CrossRef] [PubMed]

B. Kemper, P. Langehanenberg, A. Höink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Käs, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J Biophotonics3(7), 425–431 (2010).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt.11(5), 054032 (2006).
[CrossRef] [PubMed]

J. Microsc. (1)

E. Shaffer, N. Pavillon, and C. Depeursinge, “Single-shot, simultaneous incoherent and holographic microscopy,” J. Microsc.245(1), 49–62 (2012).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

R. Chmelík, “Three-dimensional scalar imaging in high-aperture low-coherence interference and holographic microscopes,” J. Mod. Opt.53(18), 2673–2689 (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

Meas. Sci. Technol. (1)

J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol.19(7), 074007 (2008).
[CrossRef]

Nat. Methods (1)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007).
[CrossRef] [PubMed]

Nature (2)

R. Barer, “Interference microscopy and mass determination,” Nature169(4296), 366–367 (1952).
[CrossRef] [PubMed]

H. G. Davies and M. H. F. Wilkins, “Interference microscopy and mass determination,” Nature169(4300), 541 (1952).
[CrossRef] [PubMed]

Opt. Commun. (1)

G. Indebetouw and P. Klysubun, “Optical sectioning with low coherence spatio-temporal holography,” Opt. Commun.172(1-6), 25–29 (1999).
[CrossRef]

Opt. Eng. (3)

L. Xu, J. M. Miao, and A. Asundi, “Properties of digital holography based on in-line configuration,” Opt. Eng.39(12), 3214–3219 (2000).
[CrossRef]

R. Chmelík and Z. Harna, “Parallel-mode confocal microscope,” Opt. Eng.38(10), 1635–1639 (1999).
[CrossRef]

R. Chmelík and Z. Harna, “Surface profilometry by a parallel–mode confocal microscope,” Opt. Eng.41(4), 744–745 (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett. (7)

Proc. SPIE (5)

M. Lošťák, P. Kolman, Z. Dostál, and R. Chmelík, “Diffuse light imaging with a coherence controlled holographic microscope,” Proc. SPIE7746, 77461N (2010).
[CrossRef]

R. Chmelík, “Holographic confocal microscopy,” Proc. SPIE4356, 118–123 (2001).
[CrossRef]

T. Slabý, M. Antoš, Z. Dostál, P. Kolman, and R. Chmelík, “Coherence-controlled holographic microscope,” Proc. SPIE7746, 77461R (2010).
[CrossRef]

H. Janečková, P. Kolman, P. Veselý, and R. Chmelík, “Digital holographic microscope with low spatial and temporal coherence of illumination,” Proc. SPIE7000, 70002E (2008).
[CrossRef]

L. Lovicar, L. Kvasnica, and R. Chmelík, “Surface observation and measurement by means of digital holographic microscope with arbitrary degree of coherence,” Proc. SPIE7141, 71411S (2008).
[CrossRef]

Other (3)

M. Born and E. Wolf, Principles of Optics, 6th edition (Pergamon Press, 1986).

J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer, 2006), pp. 65, Chap. 4.

R. Chmelík, P. Kolman, T. Slabý, M. Antoš, and Z. Dostál, “Interferometric system with spatial carrier frequency capable of imaging in polychromatic radiation,” patent EP2378244B1 (July 4, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical setup of the microscope. Light source (S), relay lens (L), beamsplitters (BS), mirrors (M), condensers (C), specimen plane (Sp), reference plane (R), microobjectives (O), tube lenses (TL), diffraction grating (DG), output lenses (OL), output plane (OP), detector (D).

Fig. 2
Fig. 2

(a) Normalized amplitude versus the lateral shift dOP of the image formed by the reference arm in the output plane (measured in the output plane) in x and y axes and the corresponding FWHM values giving the estimation of CW. (b) Normalized amplitude versus optical path difference dOPD and the corresponding FWHM value giving the estimation of CL.

Fig. 3
Fig. 3

Scheme of an ideal spatial-frequency spectrum support of a hologram captured by CCHM with spatially incoherent illumination (solid circles) and by a typical DHM setup using spatially coherent illumination (dashed circles).

Fig. 4
Fig. 4

Modulus of spatial-frequency spectrum of a hologram (average of 30 images) captured by CCHM under condition of (a) spatially incoherent illumination (at 650 nm) and (b) spatially coherent illumination (at 633 nm). The circles show the expected diameters of spectral supports of zero-order term and image terms corresponding to Eq. (5) and Eq. (4). The amplitude values are in logarithmic scale (arbitrary units). Objectives used: 10 × /0.25.

Fig. 5
Fig. 5

Central parts of holograms (100 px × 100 px) captured with (a) filtered light (550 nm, Δλ = 10 nm), (b) white light (unfiltered). For purpose of this publication, contrast in (a) and (b) was increased while maintaining contrast ratio between (a) and (b). Standard deviations σφ calculated for each pixel of the reconstructed phase image through 15 s long sequence of captured images with (c) filtered light (550 nm, Δλ = 10 nm), (d) white light (unfiltered). Objectives used: 10 × /0.25.

Fig. 6
Fig. 6

Observation of an amplitude object hidden behind a strong diffuser. (a) Illustration of the object arm with inserted diffuser (D), (b) conventional bright-field image (captured with shutter closed in the reference arm), (c) reconstructed amplitude, (d) reconstructed phase. The amplitude and phase were reconstructed using a single hologram (no averaging). Objectives used: 10 × /0.25, interference filter λ = 650 nm, 10 nm FWHM.

Fig. 7
Fig. 7

Demonstration of imaging quality when observing a resolution target in (a) spatially and temporally low-coherent illumination (halogen lamp coupled into 5 mm diameter light guide with interference filter λ = 650 nm, 10 nm FWHM), (b) spatially and temporally coherent illumination (HeNe laser, 633 nm). Reduction of coherent noise and parasitic interferences is well demonstrated in the case of incoherent illumination as well as higher achieved lateral resolution (although it cannot be directly compared due to slightly different wavelengths used). Objectives used: 10 × /0.25.

Fig. 8
Fig. 8

Phase images of well spread cells of human breast adenocarcinoma cell line MCF-7 growing in vitro in eutrophic conditions. (a) Unwrapped phase image, (b) pseudo-color representation of unwrapped phase, (c) pseudo-color 3D representation of unwrapped phase. Images captured by CCHM at 650 nm (10 nm FWHM) with 10 × /0.25 objectives.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

f C = f G m OL .
i(x,y)= | o(x,y)+r(x,y) | 2 = = | o | 2 + | r | 2 +o r + o r= = | o | 2 + | r | 2 +o r 0 exp(i2π f C x)+ o r 0 exp(i2π f C x),
2a=2 f max,o = 2N A O mλ .
a= f max,or DHM = N A O mλ
2a= f max,or CCHM = 2N A O mλ
f C CCHM 4a= 4N A O m O m OL λ .
f G 4N A O m O λ .
f OP,max = 2 2 f C + f max,or =( 2 +1) 2N A O m O m OL λ .
f CCD 2.3 f OP,max ,
m OL 2.78 f G f CCD .

Metrics