Abstract

In this work we present a LIDAR sensor devised for the acquisition of time resolved laser induced fluorescence spectra. The gating time for the acquisition of the fluorescence spectra can be sequentially delayed in order to achieve fluorescence data that are resolved both in the spectral and temporal domains. The sensor can provide sub-nanometric spectral resolution and nanosecond time resolution. The sensor has also imaging capabilities by means of a computer-controlled motorized steering mirror featuring a biaxial angular scanning with 200 μradiant angular resolution. The measurement can be repeated for each point of a geometric grid in order to collect a hyper-spectral time-resolved map of an extended target.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, 1984).
  2. B. Valeur and M. N. Berberan-Santos, Molecular Fluorescence, Second Edi (Wiley-VCH, 2012), pp. 1–569.
  3. P. Weibring, H. Edner, and S. Svanberg, “Versatile mobile LiDAR system for environmental monitoring,” Appl. Opt.42(18), 3583–3594 (2003).
    [CrossRef] [PubMed]
  4. C. W. Wright, F. E. Hoge, R. N. Swift, J. K. Yungel, and C. R. Schirtzinger, “Next-Generation NASA airborne oceanographic LiDAR system,” Appl. Opt.40(3), 336–342 (2001).
    [CrossRef] [PubMed]
  5. L. Pantani, G. Ballerini, G. Cecchi, H. Edner, D. Lognoli, T. Johansson, V. Raimondi, S. Svanberg, P. Tiano, L. Tomaselli, and P. Weibring, “Experiments on stony monument monitoring by laser-induced fluorescence,” J. Cult. Herit.1, S345–S348 (2000).
    [CrossRef]
  6. V. Raimondi, G. Cecchi, D. Lognoli, L. Palombi, and G. Ballerini, “The fluorescence LIDAR technique for the cultural heritage,” in Handbook on the Use of Lasers in Conservation and Conservation Science, M. Schreiner and M. Strilic, eds. (COST Office, 2008), Vol. 7, pp. 3.6.1–3.6.18.
  7. C. E. Brown and M. F. M. Fingas, “Review of the development of laser fluorosensors for oil spill application,” Mar. Pollut. Bull.47(9-12), 477–484 (2003).
    [CrossRef] [PubMed]
  8. I. Mochi, M. Bazzani, G. Cecchi, C. Cucci, D. Lognoli, L. Pantani, V. Raimondi, D. Tirelli, G. Valmori, M. Abbate, and S. Fontani, “High-resolution lidar fluorescence spectra for the characterization of phytoplankton,” in International Symposium on Remote Sensing, M. Owe, C. R. Bostater, Jr., H. Fujisada, K. P. Schaefer, A. Kohnle, S. B. Serpico, M. Ehlers, F. Posa, J. D. Gonglewski, O. Lado-Bordowsky, J. B. Lurie, R. Santoleri, G. D’Urso, L. Toulios, M. L. Aten, A. Comeron, R. H. Picard, and K. Weber, eds. (2003), pp. 117–126.
    [CrossRef]
  9. S. R. Rogers, T. Webster, W. Livingstone, and N. J. O’Driscoll, “Airborne Laser-Induced Fluorescence (LIF) Light Detection and Ranging (LiDAR) for the quantification of dissolved organic matter concentration in natural waters,” Estuaries Coasts35(4), 959–975 (2012).
    [CrossRef]
  10. S. Svanberg, “Fluorescence lidar monitoring of vegetation status,” Phys. Scr. TT58, 79–85 (1995).
    [CrossRef]
  11. V. Raimondi, G. Cecchi, L. Pantani, and R. Chiari, “Fluorescence lidar monitoring of historic buildings,” Appl. Opt.37(6), 1089–1098 (1998).
    [CrossRef] [PubMed]
  12. L. Pantani, G. Cecchi, D. Lognoli, I. Mochi, V. Raimondi, D. Tirelli, M. Trambusti, G. Valmori, P. K. A. Weibring, H. Edner, T. Johansson, and S. Svanberg, “Lithotypes characterization with a fluorescence lidar imaging system using a multi-wavelength excitation source,” in Remote Sensing for Environmental Monitoring, GIS Applications, and Geology II, M. Ehlers, ed. (2003), pp. 151–159.
  13. G. Ballerini, S. Bracci, L. Pantani, and P. Tiano, “Lidar remote sensing of stone cultural heritage: detection of protective treatments,” Opt. Engineer.40(8), 1579 (2001).
    [CrossRef]
  14. D. Lognoli, G. Lamenti, L. Pantani, D. Tirelli, P. Tiano, and L. Tomaselli, “Detection and Characterization of Biodeteriogens on Stone Cultural Heritage by Fluorescence Lidar,” Appl. Opt.41(9), 1780–1787 (2002).
    [CrossRef] [PubMed]
  15. V. Raimondi, G. Cecchi, D. Lognoli, L. Palombi, R. Grönlund, A. Johansson, S. Svanberg, K. Barup, and J. Hällström, “The fluorescence lidar technique for the remote sensing of photoautotrophic biodeteriogens in the outdoor cultural heritage: A decade of in situ experiments,” Int. Biodeter. Biodegr.63(7), 823–835 (2009).
    [CrossRef]
  16. F. Castagnoli, G. Cecchi, L. Pantani, I. Pippi, B. Radicati, and P. Mazzinghi, “A Fluorescence LIDAR For Land And Sea Remote Sensing,” in Laser Radar Technology and Applications I, J. M. Cruickshank and R. C. Harney, eds. (1986), pp. 212–216.
  17. M. U. Piracha, D. Nguyen, D. Mandridis, T. Yilmaz, I. Ozdur, S. Ozharar, and P. J. Delfyett, “Range resolved lidar for long distance ranging with sub-millimeter resolution,” Opt. Express18(7), 7184–7189 (2010).
    [CrossRef] [PubMed]
  18. D. Lognoli, G. Cecchi, I. Mochi, L. Pantani, V. Raimondi, R. Chiari, T. Johansson, P. Weibring, H. Edner, and S. Svanberg, “Fluorescence lidar imaging of the cathedral and baptistery of Parma,” Appl. Phys. B76(4), 457–465 (2003).
    [CrossRef]
  19. K. Ohm, R. Reuter, M. Stolze, and R. Willkomm, “Shipboard oceanographic fluorescence lidar development and evaluation based on measurements in Antarctic waters,” EARSeL Advances in Remote Sensing5, 105–113 (1997).
  20. R. Barbini, F. Colao, R. Fantoni, C. Frassanito, A. Palucci, and S. Ribezzo, “Range resolved lidar fluorosensor for marine investigation,” in EARSeL-SIG-Workshop LIDAR (2000), pp. 175–184.
  21. R. M. Measures, W. R. Houston, and D. G. Stephenson, “Laser induced fluorescent decay spectra - a new form of environmental signature,” Opt. Engineer.13, 494–501 (1974).
  22. E. Hegazi, A. Hamdan, and J. Mastromarino, “Remote fingerprinting of crude oil using time-resolved fluorescence spectra,” Arab. J. Sci. Eng.30, 3–12 (2005).
  23. P. Camagni, G. Colombo, C. Koechler, A. Pedrini, N. Omenetto, and G. Rossi, “Diagnostics of oil pollution by laser-induced fluorescence,” IEEE T. Geosci. Remote26(1), 22–26 (1988).
    [CrossRef]
  24. L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, J. Hällström, K. Barup, C. Conti, R. Grönlund, A. Johansson, and S. Svanberg, “Hyperspectral fluorescence lidar imaging at the Colosseum, Rome: Elucidating past conservation interventions,” Opt. Express16(10), 6794–6808 (2008).
    [CrossRef] [PubMed]
  25. J. Hällström, K. Barup, R. Grönlund, A. Johansson, S. Svanberg, L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, and C. Conti, “Documentation of soiled and biodeteriorated facades: A case study on the Coliseum, Rome, using hyperspectral imaging fluorescence lidars,” J. Cult. Herit.10(1), 106–115 (2009).
    [CrossRef]
  26. F. Colao, R. Fantoni, L. Fiorani, A. Palucci, and I. Gomoiu, “Compact scanning lidar fluorosensor for investigations of biodegradation on ancient painted surfaces,” J. Optoelectron. Adv. Mater.7, 3197 (2005).
  27. U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
    [CrossRef]
  28. V. Raimondi, L. Palombi, D. Lognoli, G. Cecchi, and L. Masotti, “Design and development of a new high speed performance fluorescence imaging lidar for the diagnostic of indoor and outdoor cultural heritage,” in Lasers in the Conservation of Artworks, M. Castillejo, P. Moreno, M. Oujja, R. Radvan, and J. Ruiz, eds. (CRC Press 2008, 2008), pp. 163–168.
  29. A. C. Anigrisani, D. Calcaterra, P. Cappelletti, A. Colella, M. Parente, R. Prikryl, and M. De Gennaro, “Geological features, technological characterization and weathering phenomena of the Miocene Bryozoan and Lithothamnion limestones (central-southern Italy),” Ital. J. Geosci.130, 75–92 (2011).
  30. J. R. Bezouska, J. Wang, and O. C. Mullins, “Origin of Limestone Fluorescence,” Appl. Spectrosc.52(12), 1606–1613 (1998).
    [CrossRef]
  31. R. C. M. Sales and D. D. Brunelli, “Luminescence spectroscopy applied to a study of the curing process of diglycidyl-ether of bisphenol-A (DGEBA),” Mater. Res.8(3), 299–304 (2005).
    [CrossRef]
  32. J. C. Song and C. S. P. Sung, “Fluorescence studies of diaminodiphenyl sulfone curing agent for epoxy cure characterization,” Macromolecules26(18), 4818–4824 (1993).
    [CrossRef]
  33. W. Koechner, “Solid-State Laser Engineering,” Springer New York1, 490 (2006).
  34. C. De Boor, A Practical Guide to Splines (Springer-Verlag, 1978), Vol. 27, p. 325.

2012 (1)

S. R. Rogers, T. Webster, W. Livingstone, and N. J. O’Driscoll, “Airborne Laser-Induced Fluorescence (LIF) Light Detection and Ranging (LiDAR) for the quantification of dissolved organic matter concentration in natural waters,” Estuaries Coasts35(4), 959–975 (2012).
[CrossRef]

2011 (1)

A. C. Anigrisani, D. Calcaterra, P. Cappelletti, A. Colella, M. Parente, R. Prikryl, and M. De Gennaro, “Geological features, technological characterization and weathering phenomena of the Miocene Bryozoan and Lithothamnion limestones (central-southern Italy),” Ital. J. Geosci.130, 75–92 (2011).

2010 (1)

2009 (3)

V. Raimondi, G. Cecchi, D. Lognoli, L. Palombi, R. Grönlund, A. Johansson, S. Svanberg, K. Barup, and J. Hällström, “The fluorescence lidar technique for the remote sensing of photoautotrophic biodeteriogens in the outdoor cultural heritage: A decade of in situ experiments,” Int. Biodeter. Biodegr.63(7), 823–835 (2009).
[CrossRef]

J. Hällström, K. Barup, R. Grönlund, A. Johansson, S. Svanberg, L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, and C. Conti, “Documentation of soiled and biodeteriorated facades: A case study on the Coliseum, Rome, using hyperspectral imaging fluorescence lidars,” J. Cult. Herit.10(1), 106–115 (2009).
[CrossRef]

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

2008 (1)

2006 (1)

W. Koechner, “Solid-State Laser Engineering,” Springer New York1, 490 (2006).

2005 (3)

R. C. M. Sales and D. D. Brunelli, “Luminescence spectroscopy applied to a study of the curing process of diglycidyl-ether of bisphenol-A (DGEBA),” Mater. Res.8(3), 299–304 (2005).
[CrossRef]

F. Colao, R. Fantoni, L. Fiorani, A. Palucci, and I. Gomoiu, “Compact scanning lidar fluorosensor for investigations of biodegradation on ancient painted surfaces,” J. Optoelectron. Adv. Mater.7, 3197 (2005).

E. Hegazi, A. Hamdan, and J. Mastromarino, “Remote fingerprinting of crude oil using time-resolved fluorescence spectra,” Arab. J. Sci. Eng.30, 3–12 (2005).

2003 (3)

D. Lognoli, G. Cecchi, I. Mochi, L. Pantani, V. Raimondi, R. Chiari, T. Johansson, P. Weibring, H. Edner, and S. Svanberg, “Fluorescence lidar imaging of the cathedral and baptistery of Parma,” Appl. Phys. B76(4), 457–465 (2003).
[CrossRef]

P. Weibring, H. Edner, and S. Svanberg, “Versatile mobile LiDAR system for environmental monitoring,” Appl. Opt.42(18), 3583–3594 (2003).
[CrossRef] [PubMed]

C. E. Brown and M. F. M. Fingas, “Review of the development of laser fluorosensors for oil spill application,” Mar. Pollut. Bull.47(9-12), 477–484 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (2)

G. Ballerini, S. Bracci, L. Pantani, and P. Tiano, “Lidar remote sensing of stone cultural heritage: detection of protective treatments,” Opt. Engineer.40(8), 1579 (2001).
[CrossRef]

C. W. Wright, F. E. Hoge, R. N. Swift, J. K. Yungel, and C. R. Schirtzinger, “Next-Generation NASA airborne oceanographic LiDAR system,” Appl. Opt.40(3), 336–342 (2001).
[CrossRef] [PubMed]

2000 (1)

L. Pantani, G. Ballerini, G. Cecchi, H. Edner, D. Lognoli, T. Johansson, V. Raimondi, S. Svanberg, P. Tiano, L. Tomaselli, and P. Weibring, “Experiments on stony monument monitoring by laser-induced fluorescence,” J. Cult. Herit.1, S345–S348 (2000).
[CrossRef]

1998 (2)

1997 (1)

K. Ohm, R. Reuter, M. Stolze, and R. Willkomm, “Shipboard oceanographic fluorescence lidar development and evaluation based on measurements in Antarctic waters,” EARSeL Advances in Remote Sensing5, 105–113 (1997).

1995 (1)

S. Svanberg, “Fluorescence lidar monitoring of vegetation status,” Phys. Scr. TT58, 79–85 (1995).
[CrossRef]

1993 (1)

J. C. Song and C. S. P. Sung, “Fluorescence studies of diaminodiphenyl sulfone curing agent for epoxy cure characterization,” Macromolecules26(18), 4818–4824 (1993).
[CrossRef]

1988 (1)

P. Camagni, G. Colombo, C. Koechler, A. Pedrini, N. Omenetto, and G. Rossi, “Diagnostics of oil pollution by laser-induced fluorescence,” IEEE T. Geosci. Remote26(1), 22–26 (1988).
[CrossRef]

1974 (1)

R. M. Measures, W. R. Houston, and D. G. Stephenson, “Laser induced fluorescent decay spectra - a new form of environmental signature,” Opt. Engineer.13, 494–501 (1974).

Agati, G.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Alonso, L.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Anigrisani, A. C.

A. C. Anigrisani, D. Calcaterra, P. Cappelletti, A. Colella, M. Parente, R. Prikryl, and M. De Gennaro, “Geological features, technological characterization and weathering phenomena of the Miocene Bryozoan and Lithothamnion limestones (central-southern Italy),” Ital. J. Geosci.130, 75–92 (2011).

Ballerini, G.

G. Ballerini, S. Bracci, L. Pantani, and P. Tiano, “Lidar remote sensing of stone cultural heritage: detection of protective treatments,” Opt. Engineer.40(8), 1579 (2001).
[CrossRef]

L. Pantani, G. Ballerini, G. Cecchi, H. Edner, D. Lognoli, T. Johansson, V. Raimondi, S. Svanberg, P. Tiano, L. Tomaselli, and P. Weibring, “Experiments on stony monument monitoring by laser-induced fluorescence,” J. Cult. Herit.1, S345–S348 (2000).
[CrossRef]

Barup, K.

V. Raimondi, G. Cecchi, D. Lognoli, L. Palombi, R. Grönlund, A. Johansson, S. Svanberg, K. Barup, and J. Hällström, “The fluorescence lidar technique for the remote sensing of photoautotrophic biodeteriogens in the outdoor cultural heritage: A decade of in situ experiments,” Int. Biodeter. Biodegr.63(7), 823–835 (2009).
[CrossRef]

J. Hällström, K. Barup, R. Grönlund, A. Johansson, S. Svanberg, L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, and C. Conti, “Documentation of soiled and biodeteriorated facades: A case study on the Coliseum, Rome, using hyperspectral imaging fluorescence lidars,” J. Cult. Herit.10(1), 106–115 (2009).
[CrossRef]

L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, J. Hällström, K. Barup, C. Conti, R. Grönlund, A. Johansson, and S. Svanberg, “Hyperspectral fluorescence lidar imaging at the Colosseum, Rome: Elucidating past conservation interventions,” Opt. Express16(10), 6794–6808 (2008).
[CrossRef] [PubMed]

Bezouska, J. R.

Bracci, S.

G. Ballerini, S. Bracci, L. Pantani, and P. Tiano, “Lidar remote sensing of stone cultural heritage: detection of protective treatments,” Opt. Engineer.40(8), 1579 (2001).
[CrossRef]

Brown, C. E.

C. E. Brown and M. F. M. Fingas, “Review of the development of laser fluorosensors for oil spill application,” Mar. Pollut. Bull.47(9-12), 477–484 (2003).
[CrossRef] [PubMed]

Brunelli, D. D.

R. C. M. Sales and D. D. Brunelli, “Luminescence spectroscopy applied to a study of the curing process of diglycidyl-ether of bisphenol-A (DGEBA),” Mater. Res.8(3), 299–304 (2005).
[CrossRef]

Calcaterra, D.

A. C. Anigrisani, D. Calcaterra, P. Cappelletti, A. Colella, M. Parente, R. Prikryl, and M. De Gennaro, “Geological features, technological characterization and weathering phenomena of the Miocene Bryozoan and Lithothamnion limestones (central-southern Italy),” Ital. J. Geosci.130, 75–92 (2011).

Camagni, P.

P. Camagni, G. Colombo, C. Koechler, A. Pedrini, N. Omenetto, and G. Rossi, “Diagnostics of oil pollution by laser-induced fluorescence,” IEEE T. Geosci. Remote26(1), 22–26 (1988).
[CrossRef]

Cappelletti, P.

A. C. Anigrisani, D. Calcaterra, P. Cappelletti, A. Colella, M. Parente, R. Prikryl, and M. De Gennaro, “Geological features, technological characterization and weathering phenomena of the Miocene Bryozoan and Lithothamnion limestones (central-southern Italy),” Ital. J. Geosci.130, 75–92 (2011).

Cecchi, G.

J. Hällström, K. Barup, R. Grönlund, A. Johansson, S. Svanberg, L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, and C. Conti, “Documentation of soiled and biodeteriorated facades: A case study on the Coliseum, Rome, using hyperspectral imaging fluorescence lidars,” J. Cult. Herit.10(1), 106–115 (2009).
[CrossRef]

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

V. Raimondi, G. Cecchi, D. Lognoli, L. Palombi, R. Grönlund, A. Johansson, S. Svanberg, K. Barup, and J. Hällström, “The fluorescence lidar technique for the remote sensing of photoautotrophic biodeteriogens in the outdoor cultural heritage: A decade of in situ experiments,” Int. Biodeter. Biodegr.63(7), 823–835 (2009).
[CrossRef]

L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, J. Hällström, K. Barup, C. Conti, R. Grönlund, A. Johansson, and S. Svanberg, “Hyperspectral fluorescence lidar imaging at the Colosseum, Rome: Elucidating past conservation interventions,” Opt. Express16(10), 6794–6808 (2008).
[CrossRef] [PubMed]

D. Lognoli, G. Cecchi, I. Mochi, L. Pantani, V. Raimondi, R. Chiari, T. Johansson, P. Weibring, H. Edner, and S. Svanberg, “Fluorescence lidar imaging of the cathedral and baptistery of Parma,” Appl. Phys. B76(4), 457–465 (2003).
[CrossRef]

L. Pantani, G. Ballerini, G. Cecchi, H. Edner, D. Lognoli, T. Johansson, V. Raimondi, S. Svanberg, P. Tiano, L. Tomaselli, and P. Weibring, “Experiments on stony monument monitoring by laser-induced fluorescence,” J. Cult. Herit.1, S345–S348 (2000).
[CrossRef]

V. Raimondi, G. Cecchi, L. Pantani, and R. Chiari, “Fluorescence lidar monitoring of historic buildings,” Appl. Opt.37(6), 1089–1098 (1998).
[CrossRef] [PubMed]

Champagne, S.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Chiari, R.

D. Lognoli, G. Cecchi, I. Mochi, L. Pantani, V. Raimondi, R. Chiari, T. Johansson, P. Weibring, H. Edner, and S. Svanberg, “Fluorescence lidar imaging of the cathedral and baptistery of Parma,” Appl. Phys. B76(4), 457–465 (2003).
[CrossRef]

V. Raimondi, G. Cecchi, L. Pantani, and R. Chiari, “Fluorescence lidar monitoring of historic buildings,” Appl. Opt.37(6), 1089–1098 (1998).
[CrossRef] [PubMed]

Colao, F.

F. Colao, R. Fantoni, L. Fiorani, A. Palucci, and I. Gomoiu, “Compact scanning lidar fluorosensor for investigations of biodegradation on ancient painted surfaces,” J. Optoelectron. Adv. Mater.7, 3197 (2005).

Colella, A.

A. C. Anigrisani, D. Calcaterra, P. Cappelletti, A. Colella, M. Parente, R. Prikryl, and M. De Gennaro, “Geological features, technological characterization and weathering phenomena of the Miocene Bryozoan and Lithothamnion limestones (central-southern Italy),” Ital. J. Geosci.130, 75–92 (2011).

Colombo, G.

P. Camagni, G. Colombo, C. Koechler, A. Pedrini, N. Omenetto, and G. Rossi, “Diagnostics of oil pollution by laser-induced fluorescence,” IEEE T. Geosci. Remote26(1), 22–26 (1988).
[CrossRef]

Colombo, R.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Conti, C.

J. Hällström, K. Barup, R. Grönlund, A. Johansson, S. Svanberg, L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, and C. Conti, “Documentation of soiled and biodeteriorated facades: A case study on the Coliseum, Rome, using hyperspectral imaging fluorescence lidars,” J. Cult. Herit.10(1), 106–115 (2009).
[CrossRef]

L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, J. Hällström, K. Barup, C. Conti, R. Grönlund, A. Johansson, and S. Svanberg, “Hyperspectral fluorescence lidar imaging at the Colosseum, Rome: Elucidating past conservation interventions,” Opt. Express16(10), 6794–6808 (2008).
[CrossRef] [PubMed]

Damm, A.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Daumard, F.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

De Gennaro, M.

A. C. Anigrisani, D. Calcaterra, P. Cappelletti, A. Colella, M. Parente, R. Prikryl, and M. De Gennaro, “Geological features, technological characterization and weathering phenomena of the Miocene Bryozoan and Lithothamnion limestones (central-southern Italy),” Ital. J. Geosci.130, 75–92 (2011).

de Miguel, E.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Delfyett, P. J.

Edner, H.

D. Lognoli, G. Cecchi, I. Mochi, L. Pantani, V. Raimondi, R. Chiari, T. Johansson, P. Weibring, H. Edner, and S. Svanberg, “Fluorescence lidar imaging of the cathedral and baptistery of Parma,” Appl. Phys. B76(4), 457–465 (2003).
[CrossRef]

P. Weibring, H. Edner, and S. Svanberg, “Versatile mobile LiDAR system for environmental monitoring,” Appl. Opt.42(18), 3583–3594 (2003).
[CrossRef] [PubMed]

L. Pantani, G. Ballerini, G. Cecchi, H. Edner, D. Lognoli, T. Johansson, V. Raimondi, S. Svanberg, P. Tiano, L. Tomaselli, and P. Weibring, “Experiments on stony monument monitoring by laser-induced fluorescence,” J. Cult. Herit.1, S345–S348 (2000).
[CrossRef]

Fantoni, R.

F. Colao, R. Fantoni, L. Fiorani, A. Palucci, and I. Gomoiu, “Compact scanning lidar fluorosensor for investigations of biodegradation on ancient painted surfaces,” J. Optoelectron. Adv. Mater.7, 3197 (2005).

Fernandez, G.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Fingas, M. F. M.

C. E. Brown and M. F. M. Fingas, “Review of the development of laser fluorosensors for oil spill application,” Mar. Pollut. Bull.47(9-12), 477–484 (2003).
[CrossRef] [PubMed]

Fiorani, L.

F. Colao, R. Fantoni, L. Fiorani, A. Palucci, and I. Gomoiu, “Compact scanning lidar fluorosensor for investigations of biodegradation on ancient painted surfaces,” J. Optoelectron. Adv. Mater.7, 3197 (2005).

Franch, B.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Franke, J.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Gerbig, C.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Gioli, B.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Gómez, J. A.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Gomoiu, I.

F. Colao, R. Fantoni, L. Fiorani, A. Palucci, and I. Gomoiu, “Compact scanning lidar fluorosensor for investigations of biodegradation on ancient painted surfaces,” J. Optoelectron. Adv. Mater.7, 3197 (2005).

Goulas, Y.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Grönlund, R.

J. Hällström, K. Barup, R. Grönlund, A. Johansson, S. Svanberg, L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, and C. Conti, “Documentation of soiled and biodeteriorated facades: A case study on the Coliseum, Rome, using hyperspectral imaging fluorescence lidars,” J. Cult. Herit.10(1), 106–115 (2009).
[CrossRef]

V. Raimondi, G. Cecchi, D. Lognoli, L. Palombi, R. Grönlund, A. Johansson, S. Svanberg, K. Barup, and J. Hällström, “The fluorescence lidar technique for the remote sensing of photoautotrophic biodeteriogens in the outdoor cultural heritage: A decade of in situ experiments,” Int. Biodeter. Biodegr.63(7), 823–835 (2009).
[CrossRef]

L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, J. Hällström, K. Barup, C. Conti, R. Grönlund, A. Johansson, and S. Svanberg, “Hyperspectral fluorescence lidar imaging at the Colosseum, Rome: Elucidating past conservation interventions,” Opt. Express16(10), 6794–6808 (2008).
[CrossRef] [PubMed]

Guanter, L.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Gutiérrez-de-la-Cámara, Ó.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Hällström, J.

J. Hällström, K. Barup, R. Grönlund, A. Johansson, S. Svanberg, L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, and C. Conti, “Documentation of soiled and biodeteriorated facades: A case study on the Coliseum, Rome, using hyperspectral imaging fluorescence lidars,” J. Cult. Herit.10(1), 106–115 (2009).
[CrossRef]

V. Raimondi, G. Cecchi, D. Lognoli, L. Palombi, R. Grönlund, A. Johansson, S. Svanberg, K. Barup, and J. Hällström, “The fluorescence lidar technique for the remote sensing of photoautotrophic biodeteriogens in the outdoor cultural heritage: A decade of in situ experiments,” Int. Biodeter. Biodegr.63(7), 823–835 (2009).
[CrossRef]

L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, J. Hällström, K. Barup, C. Conti, R. Grönlund, A. Johansson, and S. Svanberg, “Hyperspectral fluorescence lidar imaging at the Colosseum, Rome: Elucidating past conservation interventions,” Opt. Express16(10), 6794–6808 (2008).
[CrossRef] [PubMed]

Hamdan, A.

E. Hegazi, A. Hamdan, and J. Mastromarino, “Remote fingerprinting of crude oil using time-resolved fluorescence spectra,” Arab. J. Sci. Eng.30, 3–12 (2005).

Hamdi, K.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Hegazi, E.

E. Hegazi, A. Hamdan, and J. Mastromarino, “Remote fingerprinting of crude oil using time-resolved fluorescence spectra,” Arab. J. Sci. Eng.30, 3–12 (2005).

Hoge, F. E.

Hostert, P.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Houston, W. R.

R. M. Measures, W. R. Houston, and D. G. Stephenson, “Laser induced fluorescent decay spectra - a new form of environmental signature,” Opt. Engineer.13, 494–501 (1974).

Jiménez, M.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Johansson, A.

J. Hällström, K. Barup, R. Grönlund, A. Johansson, S. Svanberg, L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, and C. Conti, “Documentation of soiled and biodeteriorated facades: A case study on the Coliseum, Rome, using hyperspectral imaging fluorescence lidars,” J. Cult. Herit.10(1), 106–115 (2009).
[CrossRef]

V. Raimondi, G. Cecchi, D. Lognoli, L. Palombi, R. Grönlund, A. Johansson, S. Svanberg, K. Barup, and J. Hällström, “The fluorescence lidar technique for the remote sensing of photoautotrophic biodeteriogens in the outdoor cultural heritage: A decade of in situ experiments,” Int. Biodeter. Biodegr.63(7), 823–835 (2009).
[CrossRef]

L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, J. Hällström, K. Barup, C. Conti, R. Grönlund, A. Johansson, and S. Svanberg, “Hyperspectral fluorescence lidar imaging at the Colosseum, Rome: Elucidating past conservation interventions,” Opt. Express16(10), 6794–6808 (2008).
[CrossRef] [PubMed]

Johansson, T.

D. Lognoli, G. Cecchi, I. Mochi, L. Pantani, V. Raimondi, R. Chiari, T. Johansson, P. Weibring, H. Edner, and S. Svanberg, “Fluorescence lidar imaging of the cathedral and baptistery of Parma,” Appl. Phys. B76(4), 457–465 (2003).
[CrossRef]

L. Pantani, G. Ballerini, G. Cecchi, H. Edner, D. Lognoli, T. Johansson, V. Raimondi, S. Svanberg, P. Tiano, L. Tomaselli, and P. Weibring, “Experiments on stony monument monitoring by laser-induced fluorescence,” J. Cult. Herit.1, S345–S348 (2000).
[CrossRef]

Koechler, C.

P. Camagni, G. Colombo, C. Koechler, A. Pedrini, N. Omenetto, and G. Rossi, “Diagnostics of oil pollution by laser-induced fluorescence,” IEEE T. Geosci. Remote26(1), 22–26 (1988).
[CrossRef]

Koechner, W.

W. Koechner, “Solid-State Laser Engineering,” Springer New York1, 490 (2006).

Kosvancova, M.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Lamenti, G.

Livingstone, W.

S. R. Rogers, T. Webster, W. Livingstone, and N. J. O’Driscoll, “Airborne Laser-Induced Fluorescence (LIF) Light Detection and Ranging (LiDAR) for the quantification of dissolved organic matter concentration in natural waters,” Estuaries Coasts35(4), 959–975 (2012).
[CrossRef]

Lognoli, D.

V. Raimondi, G. Cecchi, D. Lognoli, L. Palombi, R. Grönlund, A. Johansson, S. Svanberg, K. Barup, and J. Hällström, “The fluorescence lidar technique for the remote sensing of photoautotrophic biodeteriogens in the outdoor cultural heritage: A decade of in situ experiments,” Int. Biodeter. Biodegr.63(7), 823–835 (2009).
[CrossRef]

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

J. Hällström, K. Barup, R. Grönlund, A. Johansson, S. Svanberg, L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, and C. Conti, “Documentation of soiled and biodeteriorated facades: A case study on the Coliseum, Rome, using hyperspectral imaging fluorescence lidars,” J. Cult. Herit.10(1), 106–115 (2009).
[CrossRef]

L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, J. Hällström, K. Barup, C. Conti, R. Grönlund, A. Johansson, and S. Svanberg, “Hyperspectral fluorescence lidar imaging at the Colosseum, Rome: Elucidating past conservation interventions,” Opt. Express16(10), 6794–6808 (2008).
[CrossRef] [PubMed]

D. Lognoli, G. Cecchi, I. Mochi, L. Pantani, V. Raimondi, R. Chiari, T. Johansson, P. Weibring, H. Edner, and S. Svanberg, “Fluorescence lidar imaging of the cathedral and baptistery of Parma,” Appl. Phys. B76(4), 457–465 (2003).
[CrossRef]

D. Lognoli, G. Lamenti, L. Pantani, D. Tirelli, P. Tiano, and L. Tomaselli, “Detection and Characterization of Biodeteriogens on Stone Cultural Heritage by Fluorescence Lidar,” Appl. Opt.41(9), 1780–1787 (2002).
[CrossRef] [PubMed]

L. Pantani, G. Ballerini, G. Cecchi, H. Edner, D. Lognoli, T. Johansson, V. Raimondi, S. Svanberg, P. Tiano, L. Tomaselli, and P. Weibring, “Experiments on stony monument monitoring by laser-induced fluorescence,” J. Cult. Herit.1, S345–S348 (2000).
[CrossRef]

Mandridis, D.

Mastromarino, J.

E. Hegazi, A. Hamdan, and J. Mastromarino, “Remote fingerprinting of crude oil using time-resolved fluorescence spectra,” Arab. J. Sci. Eng.30, 3–12 (2005).

Measures, R. M.

R. M. Measures, W. R. Houston, and D. G. Stephenson, “Laser induced fluorescent decay spectra - a new form of environmental signature,” Opt. Engineer.13, 494–501 (1974).

Meroni, M.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Miglietta, F.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Mochi, I.

D. Lognoli, G. Cecchi, I. Mochi, L. Pantani, V. Raimondi, R. Chiari, T. Johansson, P. Weibring, H. Edner, and S. Svanberg, “Fluorescence lidar imaging of the cathedral and baptistery of Parma,” Appl. Phys. B76(4), 457–465 (2003).
[CrossRef]

Moersch, A.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Moreno, J.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Moya, I.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Mullins, O. C.

Neininger, B.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Nguyen, D.

O’Driscoll, N. J.

S. R. Rogers, T. Webster, W. Livingstone, and N. J. O’Driscoll, “Airborne Laser-Induced Fluorescence (LIF) Light Detection and Ranging (LiDAR) for the quantification of dissolved organic matter concentration in natural waters,” Estuaries Coasts35(4), 959–975 (2012).
[CrossRef]

Ohm, K.

K. Ohm, R. Reuter, M. Stolze, and R. Willkomm, “Shipboard oceanographic fluorescence lidar development and evaluation based on measurements in Antarctic waters,” EARSeL Advances in Remote Sensing5, 105–113 (1997).

Okujeni, A.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Omenetto, N.

P. Camagni, G. Colombo, C. Koechler, A. Pedrini, N. Omenetto, and G. Rossi, “Diagnostics of oil pollution by laser-induced fluorescence,” IEEE T. Geosci. Remote26(1), 22–26 (1988).
[CrossRef]

Ounis, A.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Ozdur, I.

Ozharar, S.

Palombi, L.

V. Raimondi, G. Cecchi, D. Lognoli, L. Palombi, R. Grönlund, A. Johansson, S. Svanberg, K. Barup, and J. Hällström, “The fluorescence lidar technique for the remote sensing of photoautotrophic biodeteriogens in the outdoor cultural heritage: A decade of in situ experiments,” Int. Biodeter. Biodegr.63(7), 823–835 (2009).
[CrossRef]

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

J. Hällström, K. Barup, R. Grönlund, A. Johansson, S. Svanberg, L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, and C. Conti, “Documentation of soiled and biodeteriorated facades: A case study on the Coliseum, Rome, using hyperspectral imaging fluorescence lidars,” J. Cult. Herit.10(1), 106–115 (2009).
[CrossRef]

L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, J. Hällström, K. Barup, C. Conti, R. Grönlund, A. Johansson, and S. Svanberg, “Hyperspectral fluorescence lidar imaging at the Colosseum, Rome: Elucidating past conservation interventions,” Opt. Express16(10), 6794–6808 (2008).
[CrossRef] [PubMed]

Palucci, A.

F. Colao, R. Fantoni, L. Fiorani, A. Palucci, and I. Gomoiu, “Compact scanning lidar fluorosensor for investigations of biodegradation on ancient painted surfaces,” J. Optoelectron. Adv. Mater.7, 3197 (2005).

Pantani, L.

D. Lognoli, G. Cecchi, I. Mochi, L. Pantani, V. Raimondi, R. Chiari, T. Johansson, P. Weibring, H. Edner, and S. Svanberg, “Fluorescence lidar imaging of the cathedral and baptistery of Parma,” Appl. Phys. B76(4), 457–465 (2003).
[CrossRef]

D. Lognoli, G. Lamenti, L. Pantani, D. Tirelli, P. Tiano, and L. Tomaselli, “Detection and Characterization of Biodeteriogens on Stone Cultural Heritage by Fluorescence Lidar,” Appl. Opt.41(9), 1780–1787 (2002).
[CrossRef] [PubMed]

G. Ballerini, S. Bracci, L. Pantani, and P. Tiano, “Lidar remote sensing of stone cultural heritage: detection of protective treatments,” Opt. Engineer.40(8), 1579 (2001).
[CrossRef]

L. Pantani, G. Ballerini, G. Cecchi, H. Edner, D. Lognoli, T. Johansson, V. Raimondi, S. Svanberg, P. Tiano, L. Tomaselli, and P. Weibring, “Experiments on stony monument monitoring by laser-induced fluorescence,” J. Cult. Herit.1, S345–S348 (2000).
[CrossRef]

V. Raimondi, G. Cecchi, L. Pantani, and R. Chiari, “Fluorescence lidar monitoring of historic buildings,” Appl. Opt.37(6), 1089–1098 (1998).
[CrossRef] [PubMed]

Parente, M.

A. C. Anigrisani, D. Calcaterra, P. Cappelletti, A. Colella, M. Parente, R. Prikryl, and M. De Gennaro, “Geological features, technological characterization and weathering phenomena of the Miocene Bryozoan and Lithothamnion limestones (central-southern Italy),” Ital. J. Geosci.130, 75–92 (2011).

Pedrini, A.

P. Camagni, G. Colombo, C. Koechler, A. Pedrini, N. Omenetto, and G. Rossi, “Diagnostics of oil pollution by laser-induced fluorescence,” IEEE T. Geosci. Remote26(1), 22–26 (1988).
[CrossRef]

Piracha, M. U.

Prikryl, R.

A. C. Anigrisani, D. Calcaterra, P. Cappelletti, A. Colella, M. Parente, R. Prikryl, and M. De Gennaro, “Geological features, technological characterization and weathering phenomena of the Miocene Bryozoan and Lithothamnion limestones (central-southern Italy),” Ital. J. Geosci.130, 75–92 (2011).

Raimondi, V.

V. Raimondi, G. Cecchi, D. Lognoli, L. Palombi, R. Grönlund, A. Johansson, S. Svanberg, K. Barup, and J. Hällström, “The fluorescence lidar technique for the remote sensing of photoautotrophic biodeteriogens in the outdoor cultural heritage: A decade of in situ experiments,” Int. Biodeter. Biodegr.63(7), 823–835 (2009).
[CrossRef]

J. Hällström, K. Barup, R. Grönlund, A. Johansson, S. Svanberg, L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, and C. Conti, “Documentation of soiled and biodeteriorated facades: A case study on the Coliseum, Rome, using hyperspectral imaging fluorescence lidars,” J. Cult. Herit.10(1), 106–115 (2009).
[CrossRef]

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, J. Hällström, K. Barup, C. Conti, R. Grönlund, A. Johansson, and S. Svanberg, “Hyperspectral fluorescence lidar imaging at the Colosseum, Rome: Elucidating past conservation interventions,” Opt. Express16(10), 6794–6808 (2008).
[CrossRef] [PubMed]

D. Lognoli, G. Cecchi, I. Mochi, L. Pantani, V. Raimondi, R. Chiari, T. Johansson, P. Weibring, H. Edner, and S. Svanberg, “Fluorescence lidar imaging of the cathedral and baptistery of Parma,” Appl. Phys. B76(4), 457–465 (2003).
[CrossRef]

L. Pantani, G. Ballerini, G. Cecchi, H. Edner, D. Lognoli, T. Johansson, V. Raimondi, S. Svanberg, P. Tiano, L. Tomaselli, and P. Weibring, “Experiments on stony monument monitoring by laser-induced fluorescence,” J. Cult. Herit.1, S345–S348 (2000).
[CrossRef]

V. Raimondi, G. Cecchi, L. Pantani, and R. Chiari, “Fluorescence lidar monitoring of historic buildings,” Appl. Opt.37(6), 1089–1098 (1998).
[CrossRef] [PubMed]

Rascher, U.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Reuter, R.

K. Ohm, R. Reuter, M. Stolze, and R. Willkomm, “Shipboard oceanographic fluorescence lidar development and evaluation based on measurements in Antarctic waters,” EARSeL Advances in Remote Sensing5, 105–113 (1997).

Rogers, S. R.

S. R. Rogers, T. Webster, W. Livingstone, and N. J. O’Driscoll, “Airborne Laser-Induced Fluorescence (LIF) Light Detection and Ranging (LiDAR) for the quantification of dissolved organic matter concentration in natural waters,” Estuaries Coasts35(4), 959–975 (2012).
[CrossRef]

Rossi, G.

P. Camagni, G. Colombo, C. Koechler, A. Pedrini, N. Omenetto, and G. Rossi, “Diagnostics of oil pollution by laser-induced fluorescence,” IEEE T. Geosci. Remote26(1), 22–26 (1988).
[CrossRef]

Sales, R. C. M.

R. C. M. Sales and D. D. Brunelli, “Luminescence spectroscopy applied to a study of the curing process of diglycidyl-ether of bisphenol-A (DGEBA),” Mater. Res.8(3), 299–304 (2005).
[CrossRef]

Schickling, A.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Schirtzinger, C. R.

Sobrino, J. A.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Song, J. C.

J. C. Song and C. S. P. Sung, “Fluorescence studies of diaminodiphenyl sulfone curing agent for epoxy cure characterization,” Macromolecules26(18), 4818–4824 (1993).
[CrossRef]

Stellmes, M.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Stephenson, D. G.

R. M. Measures, W. R. Houston, and D. G. Stephenson, “Laser induced fluorescent decay spectra - a new form of environmental signature,” Opt. Engineer.13, 494–501 (1974).

Stolze, M.

K. Ohm, R. Reuter, M. Stolze, and R. Willkomm, “Shipboard oceanographic fluorescence lidar development and evaluation based on measurements in Antarctic waters,” EARSeL Advances in Remote Sensing5, 105–113 (1997).

Sung, C. S. P.

J. C. Song and C. S. P. Sung, “Fluorescence studies of diaminodiphenyl sulfone curing agent for epoxy cure characterization,” Macromolecules26(18), 4818–4824 (1993).
[CrossRef]

Svanberg, S.

V. Raimondi, G. Cecchi, D. Lognoli, L. Palombi, R. Grönlund, A. Johansson, S. Svanberg, K. Barup, and J. Hällström, “The fluorescence lidar technique for the remote sensing of photoautotrophic biodeteriogens in the outdoor cultural heritage: A decade of in situ experiments,” Int. Biodeter. Biodegr.63(7), 823–835 (2009).
[CrossRef]

J. Hällström, K. Barup, R. Grönlund, A. Johansson, S. Svanberg, L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, and C. Conti, “Documentation of soiled and biodeteriorated facades: A case study on the Coliseum, Rome, using hyperspectral imaging fluorescence lidars,” J. Cult. Herit.10(1), 106–115 (2009).
[CrossRef]

L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, J. Hällström, K. Barup, C. Conti, R. Grönlund, A. Johansson, and S. Svanberg, “Hyperspectral fluorescence lidar imaging at the Colosseum, Rome: Elucidating past conservation interventions,” Opt. Express16(10), 6794–6808 (2008).
[CrossRef] [PubMed]

D. Lognoli, G. Cecchi, I. Mochi, L. Pantani, V. Raimondi, R. Chiari, T. Johansson, P. Weibring, H. Edner, and S. Svanberg, “Fluorescence lidar imaging of the cathedral and baptistery of Parma,” Appl. Phys. B76(4), 457–465 (2003).
[CrossRef]

P. Weibring, H. Edner, and S. Svanberg, “Versatile mobile LiDAR system for environmental monitoring,” Appl. Opt.42(18), 3583–3594 (2003).
[CrossRef] [PubMed]

L. Pantani, G. Ballerini, G. Cecchi, H. Edner, D. Lognoli, T. Johansson, V. Raimondi, S. Svanberg, P. Tiano, L. Tomaselli, and P. Weibring, “Experiments on stony monument monitoring by laser-induced fluorescence,” J. Cult. Herit.1, S345–S348 (2000).
[CrossRef]

S. Svanberg, “Fluorescence lidar monitoring of vegetation status,” Phys. Scr. TT58, 79–85 (1995).
[CrossRef]

Swift, R. N.

Tiano, P.

D. Lognoli, G. Lamenti, L. Pantani, D. Tirelli, P. Tiano, and L. Tomaselli, “Detection and Characterization of Biodeteriogens on Stone Cultural Heritage by Fluorescence Lidar,” Appl. Opt.41(9), 1780–1787 (2002).
[CrossRef] [PubMed]

G. Ballerini, S. Bracci, L. Pantani, and P. Tiano, “Lidar remote sensing of stone cultural heritage: detection of protective treatments,” Opt. Engineer.40(8), 1579 (2001).
[CrossRef]

L. Pantani, G. Ballerini, G. Cecchi, H. Edner, D. Lognoli, T. Johansson, V. Raimondi, S. Svanberg, P. Tiano, L. Tomaselli, and P. Weibring, “Experiments on stony monument monitoring by laser-induced fluorescence,” J. Cult. Herit.1, S345–S348 (2000).
[CrossRef]

Tirelli, D.

Toci, G.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Tomaselli, L.

D. Lognoli, G. Lamenti, L. Pantani, D. Tirelli, P. Tiano, and L. Tomaselli, “Detection and Characterization of Biodeteriogens on Stone Cultural Heritage by Fluorescence Lidar,” Appl. Opt.41(9), 1780–1787 (2002).
[CrossRef] [PubMed]

L. Pantani, G. Ballerini, G. Cecchi, H. Edner, D. Lognoli, T. Johansson, V. Raimondi, S. Svanberg, P. Tiano, L. Tomaselli, and P. Weibring, “Experiments on stony monument monitoring by laser-induced fluorescence,” J. Cult. Herit.1, S345–S348 (2000).
[CrossRef]

Toscano, P.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Udelhoven, T.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

van der Linden, S.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Wang, J.

Webster, T.

S. R. Rogers, T. Webster, W. Livingstone, and N. J. O’Driscoll, “Airborne Laser-Induced Fluorescence (LIF) Light Detection and Ranging (LiDAR) for the quantification of dissolved organic matter concentration in natural waters,” Estuaries Coasts35(4), 959–975 (2012).
[CrossRef]

Weibring, P.

P. Weibring, H. Edner, and S. Svanberg, “Versatile mobile LiDAR system for environmental monitoring,” Appl. Opt.42(18), 3583–3594 (2003).
[CrossRef] [PubMed]

D. Lognoli, G. Cecchi, I. Mochi, L. Pantani, V. Raimondi, R. Chiari, T. Johansson, P. Weibring, H. Edner, and S. Svanberg, “Fluorescence lidar imaging of the cathedral and baptistery of Parma,” Appl. Phys. B76(4), 457–465 (2003).
[CrossRef]

L. Pantani, G. Ballerini, G. Cecchi, H. Edner, D. Lognoli, T. Johansson, V. Raimondi, S. Svanberg, P. Tiano, L. Tomaselli, and P. Weibring, “Experiments on stony monument monitoring by laser-induced fluorescence,” J. Cult. Herit.1, S345–S348 (2000).
[CrossRef]

Willkomm, R.

K. Ohm, R. Reuter, M. Stolze, and R. Willkomm, “Shipboard oceanographic fluorescence lidar development and evaluation based on measurements in Antarctic waters,” EARSeL Advances in Remote Sensing5, 105–113 (1997).

Wright, C. W.

Yilmaz, T.

Yungel, J. K.

Zaldei, A.

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (1)

D. Lognoli, G. Cecchi, I. Mochi, L. Pantani, V. Raimondi, R. Chiari, T. Johansson, P. Weibring, H. Edner, and S. Svanberg, “Fluorescence lidar imaging of the cathedral and baptistery of Parma,” Appl. Phys. B76(4), 457–465 (2003).
[CrossRef]

Appl. Spectrosc. (1)

Arab. J. Sci. Eng. (1)

E. Hegazi, A. Hamdan, and J. Mastromarino, “Remote fingerprinting of crude oil using time-resolved fluorescence spectra,” Arab. J. Sci. Eng.30, 3–12 (2005).

Biogeosciences (1)

U. Rascher, G. Agati, L. Alonso, G. Cecchi, S. Champagne, R. Colombo, A. Damm, F. Daumard, E. de Miguel, G. Fernandez, B. Franch, J. Franke, C. Gerbig, B. Gioli, J. A. Gómez, Y. Goulas, L. Guanter, Ó. Gutiérrez-de-la-Cámara, K. Hamdi, P. Hostert, M. Jiménez, M. Kosvancova, D. Lognoli, M. Meroni, F. Miglietta, A. Moersch, J. Moreno, I. Moya, B. Neininger, A. Okujeni, A. Ounis, L. Palombi, V. Raimondi, A. Schickling, J. A. Sobrino, M. Stellmes, G. Toci, P. Toscano, T. Udelhoven, S. van der Linden, and A. Zaldei, “CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands,” Biogeosciences6(7), 1181–1198 (2009).
[CrossRef]

EARSeL Advances in Remote Sensing (1)

K. Ohm, R. Reuter, M. Stolze, and R. Willkomm, “Shipboard oceanographic fluorescence lidar development and evaluation based on measurements in Antarctic waters,” EARSeL Advances in Remote Sensing5, 105–113 (1997).

Estuaries Coasts (1)

S. R. Rogers, T. Webster, W. Livingstone, and N. J. O’Driscoll, “Airborne Laser-Induced Fluorescence (LIF) Light Detection and Ranging (LiDAR) for the quantification of dissolved organic matter concentration in natural waters,” Estuaries Coasts35(4), 959–975 (2012).
[CrossRef]

IEEE T. Geosci. Remote (1)

P. Camagni, G. Colombo, C. Koechler, A. Pedrini, N. Omenetto, and G. Rossi, “Diagnostics of oil pollution by laser-induced fluorescence,” IEEE T. Geosci. Remote26(1), 22–26 (1988).
[CrossRef]

Int. Biodeter. Biodegr. (1)

V. Raimondi, G. Cecchi, D. Lognoli, L. Palombi, R. Grönlund, A. Johansson, S. Svanberg, K. Barup, and J. Hällström, “The fluorescence lidar technique for the remote sensing of photoautotrophic biodeteriogens in the outdoor cultural heritage: A decade of in situ experiments,” Int. Biodeter. Biodegr.63(7), 823–835 (2009).
[CrossRef]

Ital. J. Geosci. (1)

A. C. Anigrisani, D. Calcaterra, P. Cappelletti, A. Colella, M. Parente, R. Prikryl, and M. De Gennaro, “Geological features, technological characterization and weathering phenomena of the Miocene Bryozoan and Lithothamnion limestones (central-southern Italy),” Ital. J. Geosci.130, 75–92 (2011).

J. Cult. Herit. (2)

J. Hällström, K. Barup, R. Grönlund, A. Johansson, S. Svanberg, L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, and C. Conti, “Documentation of soiled and biodeteriorated facades: A case study on the Coliseum, Rome, using hyperspectral imaging fluorescence lidars,” J. Cult. Herit.10(1), 106–115 (2009).
[CrossRef]

L. Pantani, G. Ballerini, G. Cecchi, H. Edner, D. Lognoli, T. Johansson, V. Raimondi, S. Svanberg, P. Tiano, L. Tomaselli, and P. Weibring, “Experiments on stony monument monitoring by laser-induced fluorescence,” J. Cult. Herit.1, S345–S348 (2000).
[CrossRef]

J. Optoelectron. Adv. Mater. (1)

F. Colao, R. Fantoni, L. Fiorani, A. Palucci, and I. Gomoiu, “Compact scanning lidar fluorosensor for investigations of biodegradation on ancient painted surfaces,” J. Optoelectron. Adv. Mater.7, 3197 (2005).

Macromolecules (1)

J. C. Song and C. S. P. Sung, “Fluorescence studies of diaminodiphenyl sulfone curing agent for epoxy cure characterization,” Macromolecules26(18), 4818–4824 (1993).
[CrossRef]

Mar. Pollut. Bull. (1)

C. E. Brown and M. F. M. Fingas, “Review of the development of laser fluorosensors for oil spill application,” Mar. Pollut. Bull.47(9-12), 477–484 (2003).
[CrossRef] [PubMed]

Mater. Res. (1)

R. C. M. Sales and D. D. Brunelli, “Luminescence spectroscopy applied to a study of the curing process of diglycidyl-ether of bisphenol-A (DGEBA),” Mater. Res.8(3), 299–304 (2005).
[CrossRef]

Opt. Engineer. (2)

R. M. Measures, W. R. Houston, and D. G. Stephenson, “Laser induced fluorescent decay spectra - a new form of environmental signature,” Opt. Engineer.13, 494–501 (1974).

G. Ballerini, S. Bracci, L. Pantani, and P. Tiano, “Lidar remote sensing of stone cultural heritage: detection of protective treatments,” Opt. Engineer.40(8), 1579 (2001).
[CrossRef]

Opt. Express (2)

Phys. Scr. T (1)

S. Svanberg, “Fluorescence lidar monitoring of vegetation status,” Phys. Scr. TT58, 79–85 (1995).
[CrossRef]

Springer New York (1)

W. Koechner, “Solid-State Laser Engineering,” Springer New York1, 490 (2006).

Other (9)

C. De Boor, A Practical Guide to Splines (Springer-Verlag, 1978), Vol. 27, p. 325.

R. Barbini, F. Colao, R. Fantoni, C. Frassanito, A. Palucci, and S. Ribezzo, “Range resolved lidar fluorosensor for marine investigation,” in EARSeL-SIG-Workshop LIDAR (2000), pp. 175–184.

V. Raimondi, L. Palombi, D. Lognoli, G. Cecchi, and L. Masotti, “Design and development of a new high speed performance fluorescence imaging lidar for the diagnostic of indoor and outdoor cultural heritage,” in Lasers in the Conservation of Artworks, M. Castillejo, P. Moreno, M. Oujja, R. Radvan, and J. Ruiz, eds. (CRC Press 2008, 2008), pp. 163–168.

L. Pantani, G. Cecchi, D. Lognoli, I. Mochi, V. Raimondi, D. Tirelli, M. Trambusti, G. Valmori, P. K. A. Weibring, H. Edner, T. Johansson, and S. Svanberg, “Lithotypes characterization with a fluorescence lidar imaging system using a multi-wavelength excitation source,” in Remote Sensing for Environmental Monitoring, GIS Applications, and Geology II, M. Ehlers, ed. (2003), pp. 151–159.

F. Castagnoli, G. Cecchi, L. Pantani, I. Pippi, B. Radicati, and P. Mazzinghi, “A Fluorescence LIDAR For Land And Sea Remote Sensing,” in Laser Radar Technology and Applications I, J. M. Cruickshank and R. C. Harney, eds. (1986), pp. 212–216.

I. Mochi, M. Bazzani, G. Cecchi, C. Cucci, D. Lognoli, L. Pantani, V. Raimondi, D. Tirelli, G. Valmori, M. Abbate, and S. Fontani, “High-resolution lidar fluorescence spectra for the characterization of phytoplankton,” in International Symposium on Remote Sensing, M. Owe, C. R. Bostater, Jr., H. Fujisada, K. P. Schaefer, A. Kohnle, S. B. Serpico, M. Ehlers, F. Posa, J. D. Gonglewski, O. Lado-Bordowsky, J. B. Lurie, R. Santoleri, G. D’Urso, L. Toulios, M. L. Aten, A. Comeron, R. H. Picard, and K. Weber, eds. (2003), pp. 117–126.
[CrossRef]

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, 1984).

B. Valeur and M. N. Berberan-Santos, Molecular Fluorescence, Second Edi (Wiley-VCH, 2012), pp. 1–569.

V. Raimondi, G. Cecchi, D. Lognoli, L. Palombi, and G. Ballerini, “The fluorescence LIDAR technique for the cultural heritage,” in Handbook on the Use of Lasers in Conservation and Conservation Science, M. Schreiner and M. Strilic, eds. (COST Office, 2008), Vol. 7, pp. 3.6.1–3.6.18.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Scheme of the HyT-FLIDAR.

Fig. 2
Fig. 2

Timing diagram of the acquisition procedure for a single fluorescence spectra.

Fig. 3
Fig. 3

Timing diagram of the temporal resolved acquisition procedure.

Fig. 4
Fig. 4

Temporal impulse response of the sensor (intensity normalized at unitary integral).

Fig. 5
Fig. 5

Time –Wavelength, false color, intensity distribution of the acquired optical signal for sample #1 (left side) and sample #2 (right side). The intensity scale is natural logarithmic and normalized for each sample to the maximum of the entire data set. The time Tm corresponds to the maximum of the measured temporal impulse response of the sensor.

Fig. 6
Fig. 6

Time resolved (solid line) and time averaged (dot line) spectra for samples #1 and #2, left and right side respectively. The time resolved spectra have been acquired at the indicated delays. Spectra are intensity normalized at unitary integral.

Fig. 7
Fig. 7

Fluorescence time-wavelength intensity distribution normalized at the maximum at each acquisition wavelength. The time Tm corresponds to the maximum of the measured temporal impulse response of the sensor.

Fig. 8
Fig. 8

Fluorescence intensity decay profiles at various acquisition wavelengths. Blue lines for sample #1 in band #1 (solid) and band #2 (dashed). Green lines for sample #2 in band #1 (solid) and band #2 (dashed). Black solid line for the system temporal impulse response for comparison. The plot reports the natural logarithm of data normalized to their maximum.

Fig. 9
Fig. 9

Composite target used to test the LIDAR mapping capabilities, constituted by the G10 epoxy fiberglass slab (left side) and the Botticino sandstone slab (right side). The background is a black polymer screen.

Fig. 10
Fig. 10

Spatial distribution of the ratio between the fluorescence intensity in the spectral bands #1 and #2. The fluorescence intensity was previously averaged over the full 80 ns measured time lapse. The ratio value corresponding to the black background was set to zero. Ratio for the G10 epoxy fiberglass slab and the Botticino sandstone slab are, respectively, 8.1 ± 0.2 and 3.0 ± 0.4 (mean ± std).

Fig. 11
Fig. 11

Spatial distribution of the time needed to reach e−4 of the maximum of fluorescence in the spectral band #1. The time constant for the background is set to zero. Time delays for the G10 epoxy fiberglass slab and the Botticino sandstone slab are, respectively, 42.5 ± 0.2 ns and 32.8 ± 1.6 ns (mean ± std).

Tables (1)

Tables Icon

Table 1 HyT-FLIDAR main features.

Metrics