Abstract

We have investigated crosstalk in HgCdTe photovoltaic pixel arrays employing a photon trapping (PT) structure realized with a periodic array of pillars intended to provide broadband operation. We have found that, compared to non-PT pixel arrays with similar geometry, the array employing the PT structure has a slightly higher optical crosstalk. However, when the total crosstalk is evaluated, the presence of the PT region drastically reduces the total crosstalk; making the use of the PT structure not only useful to obtain broadband operation, but also desirable for reducing crosstalk in small pitch detector arrays.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells” Appl. Phys. Lett.92, 193310 (2008).
  2. C. A. Keasler and E. Bellotti, “A numerical study of broadband absorbers for visible to infrared detectors” Appl. Phys. Lett.99, 091109 (2011).
    [CrossRef]
  3. J. Schuster and E. Bellotti, “Analysis of optical and electrical crosstalk in small pitch photon trapping HgCdTe pixel arrays” Appl. Phys. Lett.101, 261118 (2012).
    [CrossRef]
  4. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House; 3 edition, 2005).
  5. Sentaurus Device Electromagnetic Wave Solver User Guide (Synopsys, Version G-2012.06, June 2012)
  6. Sentaurus Device User Guide (Synopsys, Version G-2012.06, June 2012)
  7. C. A. Keasler and E. Bellotti, “3D electromagnetic and electrical simulation of HgCdTe pixel arrays” J. Electron. Mater.40, 1795 (2011).
    [CrossRef]
  8. E. Bellotti and D. D’Orsogna, “Numerical analysis of HgCdTe simultaneous two-color photovoltaic infrared detectors” IEEE J. Quantum Electron.42, 418 (2006).
    [CrossRef]
  9. D. D’Orsogna, S. Tobin, and E. Bellotti, “Numerical analysis of a very long-wavelength HgCdTe pixel array for infrared detection” J. Electron. Mater.37, 1349 (2008).
    [CrossRef]
  10. D. S. Hobbs and B. D. MacLeod, “Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials” Proc. SPIE5786, 349 (2005).
    [CrossRef]
  11. B. D. MacLeod and D. S. Hobbs, “Long life, high performance anti-reflection treatment for HgCdTe infrared focal plane arrays” Proc. SPIE6940, 69400Y (2008).
    [CrossRef]
  12. T. Campos, “Test bench for infrared detectors” Proc. SPIE5640, 183 (2005).
    [CrossRef]
  13. B. Pinkie and E. Bellotti, “Large-scale numerical simulation of reduced-pitch HgCdTe infrared detector arrays” Proc. SPIE8704, 8704120 (2013).
  14. G. D. Boreman, Modulation Transfer Function in Optical and Electro-optical Systems (SPIE Press2001).
    [CrossRef]

2013 (1)

B. Pinkie and E. Bellotti, “Large-scale numerical simulation of reduced-pitch HgCdTe infrared detector arrays” Proc. SPIE8704, 8704120 (2013).

2012 (1)

J. Schuster and E. Bellotti, “Analysis of optical and electrical crosstalk in small pitch photon trapping HgCdTe pixel arrays” Appl. Phys. Lett.101, 261118 (2012).
[CrossRef]

2011 (2)

C. A. Keasler and E. Bellotti, “3D electromagnetic and electrical simulation of HgCdTe pixel arrays” J. Electron. Mater.40, 1795 (2011).
[CrossRef]

C. A. Keasler and E. Bellotti, “A numerical study of broadband absorbers for visible to infrared detectors” Appl. Phys. Lett.99, 091109 (2011).
[CrossRef]

2008 (2)

D. D’Orsogna, S. Tobin, and E. Bellotti, “Numerical analysis of a very long-wavelength HgCdTe pixel array for infrared detection” J. Electron. Mater.37, 1349 (2008).
[CrossRef]

B. D. MacLeod and D. S. Hobbs, “Long life, high performance anti-reflection treatment for HgCdTe infrared focal plane arrays” Proc. SPIE6940, 69400Y (2008).
[CrossRef]

2006 (1)

E. Bellotti and D. D’Orsogna, “Numerical analysis of HgCdTe simultaneous two-color photovoltaic infrared detectors” IEEE J. Quantum Electron.42, 418 (2006).
[CrossRef]

2005 (2)

T. Campos, “Test bench for infrared detectors” Proc. SPIE5640, 183 (2005).
[CrossRef]

D. S. Hobbs and B. D. MacLeod, “Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials” Proc. SPIE5786, 349 (2005).
[CrossRef]

1933 (1)

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells” Appl. Phys. Lett.92, 193310 (2008).

Bellotti, E.

B. Pinkie and E. Bellotti, “Large-scale numerical simulation of reduced-pitch HgCdTe infrared detector arrays” Proc. SPIE8704, 8704120 (2013).

J. Schuster and E. Bellotti, “Analysis of optical and electrical crosstalk in small pitch photon trapping HgCdTe pixel arrays” Appl. Phys. Lett.101, 261118 (2012).
[CrossRef]

C. A. Keasler and E. Bellotti, “3D electromagnetic and electrical simulation of HgCdTe pixel arrays” J. Electron. Mater.40, 1795 (2011).
[CrossRef]

C. A. Keasler and E. Bellotti, “A numerical study of broadband absorbers for visible to infrared detectors” Appl. Phys. Lett.99, 091109 (2011).
[CrossRef]

D. D’Orsogna, S. Tobin, and E. Bellotti, “Numerical analysis of a very long-wavelength HgCdTe pixel array for infrared detection” J. Electron. Mater.37, 1349 (2008).
[CrossRef]

E. Bellotti and D. D’Orsogna, “Numerical analysis of HgCdTe simultaneous two-color photovoltaic infrared detectors” IEEE J. Quantum Electron.42, 418 (2006).
[CrossRef]

Boreman, G. D.

G. D. Boreman, Modulation Transfer Function in Optical and Electro-optical Systems (SPIE Press2001).
[CrossRef]

Campos, T.

T. Campos, “Test bench for infrared detectors” Proc. SPIE5640, 183 (2005).
[CrossRef]

D’Orsogna, D.

D. D’Orsogna, S. Tobin, and E. Bellotti, “Numerical analysis of a very long-wavelength HgCdTe pixel array for infrared detection” J. Electron. Mater.37, 1349 (2008).
[CrossRef]

E. Bellotti and D. D’Orsogna, “Numerical analysis of HgCdTe simultaneous two-color photovoltaic infrared detectors” IEEE J. Quantum Electron.42, 418 (2006).
[CrossRef]

Duché, D.

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells” Appl. Phys. Lett.92, 193310 (2008).

Escoubas, L.

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells” Appl. Phys. Lett.92, 193310 (2008).

Flory, F.

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells” Appl. Phys. Lett.92, 193310 (2008).

Hobbs, D. S.

B. D. MacLeod and D. S. Hobbs, “Long life, high performance anti-reflection treatment for HgCdTe infrared focal plane arrays” Proc. SPIE6940, 69400Y (2008).
[CrossRef]

D. S. Hobbs and B. D. MacLeod, “Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials” Proc. SPIE5786, 349 (2005).
[CrossRef]

Keasler, C. A.

C. A. Keasler and E. Bellotti, “A numerical study of broadband absorbers for visible to infrared detectors” Appl. Phys. Lett.99, 091109 (2011).
[CrossRef]

C. A. Keasler and E. Bellotti, “3D electromagnetic and electrical simulation of HgCdTe pixel arrays” J. Electron. Mater.40, 1795 (2011).
[CrossRef]

MacLeod, B. D.

B. D. MacLeod and D. S. Hobbs, “Long life, high performance anti-reflection treatment for HgCdTe infrared focal plane arrays” Proc. SPIE6940, 69400Y (2008).
[CrossRef]

D. S. Hobbs and B. D. MacLeod, “Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials” Proc. SPIE5786, 349 (2005).
[CrossRef]

Pinkie, B.

B. Pinkie and E. Bellotti, “Large-scale numerical simulation of reduced-pitch HgCdTe infrared detector arrays” Proc. SPIE8704, 8704120 (2013).

Schuster, J.

J. Schuster and E. Bellotti, “Analysis of optical and electrical crosstalk in small pitch photon trapping HgCdTe pixel arrays” Appl. Phys. Lett.101, 261118 (2012).
[CrossRef]

Simon, J.-J.

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells” Appl. Phys. Lett.92, 193310 (2008).

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House; 3 edition, 2005).

Tobin, S.

D. D’Orsogna, S. Tobin, and E. Bellotti, “Numerical analysis of a very long-wavelength HgCdTe pixel array for infrared detection” J. Electron. Mater.37, 1349 (2008).
[CrossRef]

Torchio, P.

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells” Appl. Phys. Lett.92, 193310 (2008).

Vervisch, W.

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells” Appl. Phys. Lett.92, 193310 (2008).

Appl. Phys. Lett. (3)

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells” Appl. Phys. Lett.92, 193310 (2008).

C. A. Keasler and E. Bellotti, “A numerical study of broadband absorbers for visible to infrared detectors” Appl. Phys. Lett.99, 091109 (2011).
[CrossRef]

J. Schuster and E. Bellotti, “Analysis of optical and electrical crosstalk in small pitch photon trapping HgCdTe pixel arrays” Appl. Phys. Lett.101, 261118 (2012).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. Bellotti and D. D’Orsogna, “Numerical analysis of HgCdTe simultaneous two-color photovoltaic infrared detectors” IEEE J. Quantum Electron.42, 418 (2006).
[CrossRef]

J. Electron. Mater. (2)

D. D’Orsogna, S. Tobin, and E. Bellotti, “Numerical analysis of a very long-wavelength HgCdTe pixel array for infrared detection” J. Electron. Mater.37, 1349 (2008).
[CrossRef]

C. A. Keasler and E. Bellotti, “3D electromagnetic and electrical simulation of HgCdTe pixel arrays” J. Electron. Mater.40, 1795 (2011).
[CrossRef]

Proc. SPIE (4)

D. S. Hobbs and B. D. MacLeod, “Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials” Proc. SPIE5786, 349 (2005).
[CrossRef]

B. D. MacLeod and D. S. Hobbs, “Long life, high performance anti-reflection treatment for HgCdTe infrared focal plane arrays” Proc. SPIE6940, 69400Y (2008).
[CrossRef]

T. Campos, “Test bench for infrared detectors” Proc. SPIE5640, 183 (2005).
[CrossRef]

B. Pinkie and E. Bellotti, “Large-scale numerical simulation of reduced-pitch HgCdTe infrared detector arrays” Proc. SPIE8704, 8704120 (2013).

Other (4)

G. D. Boreman, Modulation Transfer Function in Optical and Electro-optical Systems (SPIE Press2001).
[CrossRef]

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House; 3 edition, 2005).

Sentaurus Device Electromagnetic Wave Solver User Guide (Synopsys, Version G-2012.06, June 2012)

Sentaurus Device User Guide (Synopsys, Version G-2012.06, June 2012)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic representing the geometry of a single pixel of an array with 8μm pixels incorporating a PT structure.

Fig. 2
Fig. 2

Three dimensional view of the geometry of the 3 × 3 pixel array with 8μm pixels incorporating a PT structure used in this work.

Fig. 3
Fig. 3

Left: Structured tensor mesh for the PT structure used in electromagnetic simulations (vacuum removed). Geometry is approximated by rectangular prisms with variable volume. Right: Finite element mesh for the PT structure used for the drift-diffusion simulations (vacuum removed). The mesh consists of triangular pyramids of varying dimensions. The approximation of the curved surfaces of the pillars requires a significant number of mesh points.

Fig. 4
Fig. 4

Calculated reflectance spectra for a single 6μm pixel of the PT and non-PT arrays.

Fig. 5
Fig. 5

Optical generation profile of the 3 × 3 array back-illuminated (along the +z–axis) with planewaves at a wavelength of 2.0 μm with a photon flux 1 × 1015 photons cm−2s−1.

Fig. 6
Fig. 6

Optical generation profile of a single pillar back-illuminated with planewaves ranging from 0.5 – 5.0μm (figure courtesy of Dr. Craig Keasler from unpublished work).

Fig. 7
Fig. 7

Optical generation profile of the 3 × 3 array back-illuminated with a Gaussian beam with 2.0 μm wavelength. The beam radius was set to 3.0 μm and Imax was calculated using an incident photon flux of 1 × 1015 photons cm−2s−1.

Fig. 8
Fig. 8

Left: Absolute value of the calculated dark current density as a function of the applied bias voltage at 140 K. Right: dynamic resistance multiplied by the area computed using the I(V) data.

Fig. 9
Fig. 9

Calculated QE of the center pixel of the 3 × 3 array with 6μm pixels versus wavelength when the entire array is uniformly (flood) back-illuminated with planewaves with an incident photon flux of 1 × 1015 photons cm−2 s−1, at 140 K.

Fig. 10
Fig. 10

Normalized optical generation of the center pixel with respect to the optical generation of the entire array (left) and the optical crosstalk (right) of the nearest neighbors and next-nearest neighbors for the PT and non-PT arrays. The optical generation is plotted for 6μm pixels (beam radius set to 3.0 μm) and 8μm pixels (beam radii set to 3.0 μm and 4.0 μm) when the 3 × 3 array is back-illuminated with Gaussian beams using an incident photon flux of 1 × 1015 photons cm−2 s−1.

Fig. 11
Fig. 11

Left: calculated total (optical + diffusion) crosstalk for 6μm and 8μm pixels with the beam radius set to 3μm. Right: calculated total crosstalk for 8μm pixels with the beam radius set to 4μm. The crosstalk is plotted for the nearest neighbors (NR) and next-nearest neighbors (NNR) for the PT and non-PT arrays when the 3 × 3 array is back-illuminated with Gaussian beams using an incident photon flux of 1 × 1015 photons cm−2 s−1.

Fig. 12
Fig. 12

Spot scan (left) and normalized spot scan (right) of the 3 × 3 array with 8μm pixels back-illuminated with Gaussian beams at a wavelength of 2.0μm with the beam radius set to 2.0μm using an incident photon flux of 1 × 1015 photons cm−2 s−1. The vertical gray lines indicate the pixel boundaries with two edge pixels and center pixel visible in the plot.

Fig. 13
Fig. 13

MTF calculated from taking the Fourier transform of the spot scan profile. Left: MTF calculated using the optical generation rate from the FDTD simulations. The spatial frequency has been normalized by the pixel pitch such that a detector limited by spatial averaging will intersect the horizontal axis at 1. Right: MTF calculated using the photocurrent from the FEM simulations. The 3 × 3 array with 8μm pixels was back-illuminated with Gaussian beams at a wavelength of 2.0μm with the beam radius set to 2.0μm using an incident photon flux of 1 × 1015 photons cm−2 s−1.

Tables (2)

Tables Icon

Table 1 Number of nodes in the FDTD Mesh in the PT array for 6μm and 8μm pixels.

Tables Icon

Table 2 Number of mesh points in the FEM mesh in the PT and non-PT arrays for 6μm and 8μm pixels.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

η un = I ph q ϕ A
Crosstalk opt = 1 N n p n p Ω n p G opt d V Ω array G opt d V
P = 1 2 ( E E * / Z 0 ) d A ,
E ( x , y ) = E max exp [ r ( x , y ) / ω 2 ] .
P c = I max A c p exp [ 2 ( x 2 + y 2 ) / ω 2 ] d A ,
P array = I max π ω 2 / 2 .
Crosstalk tot = 1 N n p p I ph , p I ph , c

Metrics