Abstract

An approach for the theoretical evaluation of the damage threshold in optical interference coatings that combine metal and dielectric films is presented. The model that is used combines a matrix formalism to describe the film system with the two temperatures model that describes the energy transfer and the temperatures of electrons and lattice in a solid submitted to a laser irradiation at the femtosecond time scale. With this approach the thermal consequences due to the ultrafast absorption of the metal film can be evaluated in the multilayer stack for single or multiple pulses. Some applications are presented for the case of broadband mirrors for ultrashort pulses with low dispersion. Particularly we study the impact of the metal film (metal element, thickness) and the design on the Laser Induced Damage Threshold in the sub picosecond regime.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. C. Stuart, M.D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B13, 459–468 (1996).
    [CrossRef]
  2. N. Bonod and J. Néauport, “Optical performance and laser induced damage threshold improvement of diffraction gratings used as compressors in ultra high intensity lasers,” Opt. Commun.260, 649–655 (2006).
    [CrossRef]
  3. F. Canova, O. Uteza, J.-P. Chambaret, M. Flury, S. Tonchev, R. Fechner, and O. Parriaux, “High-efficiency, broad band, high-damage threshold high-index gratings for femtosecond pulse compression,” Opt. Express15, 15324–15334 (2007).
    [CrossRef] [PubMed]
  4. S. Palmier, J. Néauport, N. Baclet, E. Lavastre, and G. Dupuy, “High reflection mirrors for pulse compression gratings,” Opt. Express17, 20430–20439 (2009).
    [CrossRef] [PubMed]
  5. J.H. Bechtel, “Heating of solid targets with laser pulses,” J. Appl. Phys.46, 1585–1593 (1975).
    [CrossRef]
  6. M. Mansipur, G.A. Neville Connell, and J.W. Goodman, “Laser-induced local heating of multilayers,” Appl. Opt.21, 1106–1114 (1982).
    [CrossRef]
  7. L. Gallais and M. Commandré, “Photothermal deflection in multilayer coatings: modeling and experiment,” Appl. Opt.44, 5230–5238 (2005).
    [CrossRef] [PubMed]
  8. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP39, 375–377 (1974).
  9. R. Petit, Ondes Electomagnetiques (Dunod, 1989).
  10. P.B. Corkum, F. Brunel, N.K. Sherman, and T. Srinivasan-Rao, “Thermal responses of metals to ultrashort-pulse laser excitation,” Phys. Rev. Lett.61, 2686–2689 (1988).
    [CrossRef]
  11. Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B77, 75133–75133 (2008).
    [CrossRef]
  12. J. Hohlfeld, S. S. Wellershoff, J. Gdde, U. Conrad, V. Jahnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys.251, 237–258 (2000).
    [CrossRef]
  13. Y. Ren, J.K. Chen, and Y. Zhang, “Optical properties and thermal responses of copper films induced by ultrashort-pulsed lasers,” J. Appl. Phys.110, 113102 (2011).
    [CrossRef]
  14. Matlab PDE solver http://www.mathworks.com .
  15. M.J. Webber, Handbook of Optical Materials (CRC Press, 2003).
  16. H.A. Macleod, Thin-film Optical Filters (CRC Press, 2001).
    [CrossRef]
  17. S. S. Wellershoff, J. Hohlfeld, J. Gdde, and E. Matthias, “The role of electron phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A69, S99–S107 (1999).
  18. J. Kruger, D. Dufft, R. Koter, and A. Hertwig, “Femtosecond laser-induced damage of gold films,” Appl. Surf. Sci.253, 7815–7819 (2007).
    [CrossRef]
  19. Y. Dai, M. He, H. Bian, B. Lu, X. Yan, and G. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A106, 567–574 (2012).
    [CrossRef]
  20. M. Kimmel, P. Rambo, R. Broyles, M. Geissel, J. Schwarz, J. Bellum, and B. Atherton, “Optical damage testing at the Z-Backlighter facility at Sandia National Laboratories,” Proc. SPIE7504, 75041G (2009).
    [CrossRef]
  21. L. Gallais, E. Bergeret, B. Wang, M. Guerin, and E. Benevent, “Ultrafast laser ablation of metal films on flexible substrates,” submitted.
  22. X. Y. Wang, D. M. Riffe, Y.-S. Lee, and M. C. Downer, “Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission,” Phys. Rev. B50, 8016–8019 (1994).
    [CrossRef]
  23. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B71, 115109 (2005).
    [CrossRef]
  24. B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kicas, T. Tolenis, and R. Drazdys, “Femtosecond laser damage resistance of oxide and mixture oxide optical coatings,” Opt. Lett.37, 1478–1480 (2012).
    [CrossRef] [PubMed]
  25. J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov, C. Smith, and R. D. Hand, “Stress compensation in hafnia/silica optical coatings by inclusion of alumina layers,” Opt. Express20, 16596–16610 (2012).
    [CrossRef]
  26. C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3for optical interference coatings,” Proc. SPIE7842, 784202 (2010).
    [CrossRef]
  27. M. Mende, H. Ehlers, D. Ristau, and L. Gallais, “Laser damage resistance of ion-beam sputtered Sc2O3/SiO2mixture optical coatings,” Appl. Opt.52, 1368–1376 (2013).
    [CrossRef] [PubMed]
  28. M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng.44, 051107 (2005).
    [CrossRef]
  29. L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys.108, 0435523 (2010).
    [CrossRef]

2013 (1)

2012 (3)

2011 (1)

Y. Ren, J.K. Chen, and Y. Zhang, “Optical properties and thermal responses of copper films induced by ultrashort-pulsed lasers,” J. Appl. Phys.110, 113102 (2011).
[CrossRef]

2010 (2)

C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3for optical interference coatings,” Proc. SPIE7842, 784202 (2010).
[CrossRef]

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys.108, 0435523 (2010).
[CrossRef]

2009 (2)

M. Kimmel, P. Rambo, R. Broyles, M. Geissel, J. Schwarz, J. Bellum, and B. Atherton, “Optical damage testing at the Z-Backlighter facility at Sandia National Laboratories,” Proc. SPIE7504, 75041G (2009).
[CrossRef]

S. Palmier, J. Néauport, N. Baclet, E. Lavastre, and G. Dupuy, “High reflection mirrors for pulse compression gratings,” Opt. Express17, 20430–20439 (2009).
[CrossRef] [PubMed]

2008 (1)

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B77, 75133–75133 (2008).
[CrossRef]

2007 (2)

2006 (1)

N. Bonod and J. Néauport, “Optical performance and laser induced damage threshold improvement of diffraction gratings used as compressors in ultra high intensity lasers,” Opt. Commun.260, 649–655 (2006).
[CrossRef]

2005 (3)

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B71, 115109 (2005).
[CrossRef]

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng.44, 051107 (2005).
[CrossRef]

L. Gallais and M. Commandré, “Photothermal deflection in multilayer coatings: modeling and experiment,” Appl. Opt.44, 5230–5238 (2005).
[CrossRef] [PubMed]

2000 (1)

J. Hohlfeld, S. S. Wellershoff, J. Gdde, U. Conrad, V. Jahnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys.251, 237–258 (2000).
[CrossRef]

1999 (1)

S. S. Wellershoff, J. Hohlfeld, J. Gdde, and E. Matthias, “The role of electron phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A69, S99–S107 (1999).

1996 (1)

1994 (1)

X. Y. Wang, D. M. Riffe, Y.-S. Lee, and M. C. Downer, “Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission,” Phys. Rev. B50, 8016–8019 (1994).
[CrossRef]

1988 (1)

P.B. Corkum, F. Brunel, N.K. Sherman, and T. Srinivasan-Rao, “Thermal responses of metals to ultrashort-pulse laser excitation,” Phys. Rev. Lett.61, 2686–2689 (1988).
[CrossRef]

1982 (1)

1975 (1)

J.H. Bechtel, “Heating of solid targets with laser pulses,” J. Appl. Phys.46, 1585–1593 (1975).
[CrossRef]

1974 (1)

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP39, 375–377 (1974).

Anisimov, S. I.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP39, 375–377 (1974).

Atherton, B.

M. Kimmel, P. Rambo, R. Broyles, M. Geissel, J. Schwarz, J. Bellum, and B. Atherton, “Optical damage testing at the Z-Backlighter facility at Sandia National Laboratories,” Proc. SPIE7504, 75041G (2009).
[CrossRef]

Baclet, N.

Bechtel, J.H.

J.H. Bechtel, “Heating of solid targets with laser pulses,” J. Appl. Phys.46, 1585–1593 (1975).
[CrossRef]

Bellum, J.

M. Kimmel, P. Rambo, R. Broyles, M. Geissel, J. Schwarz, J. Bellum, and B. Atherton, “Optical damage testing at the Z-Backlighter facility at Sandia National Laboratories,” Proc. SPIE7504, 75041G (2009).
[CrossRef]

Benevent, E.

L. Gallais, E. Bergeret, B. Wang, M. Guerin, and E. Benevent, “Ultrafast laser ablation of metal films on flexible substrates,” submitted.

Bergeret, E.

L. Gallais, E. Bergeret, B. Wang, M. Guerin, and E. Benevent, “Ultrafast laser ablation of metal films on flexible substrates,” submitted.

Bian, H.

Y. Dai, M. He, H. Bian, B. Lu, X. Yan, and G. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A106, 567–574 (2012).
[CrossRef]

Bonod, N.

N. Bonod and J. Néauport, “Optical performance and laser induced damage threshold improvement of diffraction gratings used as compressors in ultra high intensity lasers,” Opt. Commun.260, 649–655 (2006).
[CrossRef]

Broyles, R.

M. Kimmel, P. Rambo, R. Broyles, M. Geissel, J. Schwarz, J. Bellum, and B. Atherton, “Optical damage testing at the Z-Backlighter facility at Sandia National Laboratories,” Proc. SPIE7504, 75041G (2009).
[CrossRef]

Brunel, F.

P.B. Corkum, F. Brunel, N.K. Sherman, and T. Srinivasan-Rao, “Thermal responses of metals to ultrashort-pulse laser excitation,” Phys. Rev. Lett.61, 2686–2689 (1988).
[CrossRef]

Canova, F.

Celli, V.

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B77, 75133–75133 (2008).
[CrossRef]

Chambaret, J.-P.

Chen, J.K.

Y. Ren, J.K. Chen, and Y. Zhang, “Optical properties and thermal responses of copper films induced by ultrashort-pulsed lasers,” J. Appl. Phys.110, 113102 (2011).
[CrossRef]

Clapp, B.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng.44, 051107 (2005).
[CrossRef]

Commandré, M.

Conrad, U.

J. Hohlfeld, S. S. Wellershoff, J. Gdde, U. Conrad, V. Jahnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys.251, 237–258 (2000).
[CrossRef]

Corkum, P.B.

P.B. Corkum, F. Brunel, N.K. Sherman, and T. Srinivasan-Rao, “Thermal responses of metals to ultrashort-pulse laser excitation,” Phys. Rev. Lett.61, 2686–2689 (1988).
[CrossRef]

Dai, Y.

Y. Dai, M. He, H. Bian, B. Lu, X. Yan, and G. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A106, 567–574 (2012).
[CrossRef]

Downer, M. C.

X. Y. Wang, D. M. Riffe, Y.-S. Lee, and M. C. Downer, “Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission,” Phys. Rev. B50, 8016–8019 (1994).
[CrossRef]

Drazdys, R.

Dufft, D.

J. Kruger, D. Dufft, R. Koter, and A. Hertwig, “Femtosecond laser-induced damage of gold films,” Appl. Surf. Sci.253, 7815–7819 (2007).
[CrossRef]

Dupuy, G.

Ehlers, H.

Emmert, L. A.

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys.108, 0435523 (2010).
[CrossRef]

C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3for optical interference coatings,” Proc. SPIE7842, 784202 (2010).
[CrossRef]

Fechner, R.

Feit, M.D.

Fejer, M.

C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3for optical interference coatings,” Proc. SPIE7842, 784202 (2010).
[CrossRef]

Flury, M.

Gallais, L.

Gdde, J.

J. Hohlfeld, S. S. Wellershoff, J. Gdde, U. Conrad, V. Jahnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys.251, 237–258 (2000).
[CrossRef]

S. S. Wellershoff, J. Hohlfeld, J. Gdde, and E. Matthias, “The role of electron phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A69, S99–S107 (1999).

Geissel, M.

M. Kimmel, P. Rambo, R. Broyles, M. Geissel, J. Schwarz, J. Bellum, and B. Atherton, “Optical damage testing at the Z-Backlighter facility at Sandia National Laboratories,” Proc. SPIE7504, 75041G (2009).
[CrossRef]

Goodman, J.W.

Guerin, M.

L. Gallais, E. Bergeret, B. Wang, M. Guerin, and E. Benevent, “Ultrafast laser ablation of metal films on flexible substrates,” submitted.

Hand, R. D.

He, M.

Y. Dai, M. He, H. Bian, B. Lu, X. Yan, and G. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A106, 567–574 (2012).
[CrossRef]

Herman, S.

Hertwig, A.

J. Kruger, D. Dufft, R. Koter, and A. Hertwig, “Femtosecond laser-induced damage of gold films,” Appl. Surf. Sci.253, 7815–7819 (2007).
[CrossRef]

Hohlfeld, J.

J. Hohlfeld, S. S. Wellershoff, J. Gdde, U. Conrad, V. Jahnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys.251, 237–258 (2000).
[CrossRef]

S. S. Wellershoff, J. Hohlfeld, J. Gdde, and E. Matthias, “The role of electron phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A69, S99–S107 (1999).

Jahnke, V.

J. Hohlfeld, S. S. Wellershoff, J. Gdde, U. Conrad, V. Jahnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys.251, 237–258 (2000).
[CrossRef]

Jasapara, J. C.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng.44, 051107 (2005).
[CrossRef]

Jensen, L.

Jupé, M.

Kapeliovich, B. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP39, 375–377 (1974).

Kautek, W.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng.44, 051107 (2005).
[CrossRef]

Kicas, S.

Kimmel, M.

M. Kimmel, P. Rambo, R. Broyles, M. Geissel, J. Schwarz, J. Bellum, and B. Atherton, “Optical damage testing at the Z-Backlighter facility at Sandia National Laboratories,” Proc. SPIE7504, 75041G (2009).
[CrossRef]

Koter, R.

J. Kruger, D. Dufft, R. Koter, and A. Hertwig, “Femtosecond laser-induced damage of gold films,” Appl. Surf. Sci.253, 7815–7819 (2007).
[CrossRef]

Kozlov, A.

Krous, E. M.

C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3for optical interference coatings,” Proc. SPIE7842, 784202 (2010).
[CrossRef]

Kruger, J.

J. Kruger, D. Dufft, R. Koter, and A. Hertwig, “Femtosecond laser-induced damage of gold films,” Appl. Surf. Sci.253, 7815–7819 (2007).
[CrossRef]

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng.44, 051107 (2005).
[CrossRef]

Kupinski, P.

Lambropoulos, J. C.

Langston, P.

C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3for optical interference coatings,” Proc. SPIE7842, 784202 (2010).
[CrossRef]

Lavastre, E.

Lee, Y.-S.

X. Y. Wang, D. M. Riffe, Y.-S. Lee, and M. C. Downer, “Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission,” Phys. Rev. B50, 8016–8019 (1994).
[CrossRef]

Lin, Z.

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B77, 75133–75133 (2008).
[CrossRef]

Liu, J.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B71, 115109 (2005).
[CrossRef]

Lu, B.

Y. Dai, M. He, H. Bian, B. Lu, X. Yan, and G. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A106, 567–574 (2012).
[CrossRef]

Ma, G.

Y. Dai, M. He, H. Bian, B. Lu, X. Yan, and G. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A106, 567–574 (2012).
[CrossRef]

Macleod, H.A.

H.A. Macleod, Thin-film Optical Filters (CRC Press, 2001).
[CrossRef]

Mangote, B.

Mansipur, M.

Markosyan, A.

C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3for optical interference coatings,” Proc. SPIE7842, 784202 (2010).
[CrossRef]

Martin, S.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng.44, 051107 (2005).
[CrossRef]

Matthias, E.

J. Hohlfeld, S. S. Wellershoff, J. Gdde, U. Conrad, V. Jahnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys.251, 237–258 (2000).
[CrossRef]

S. S. Wellershoff, J. Hohlfeld, J. Gdde, and E. Matthias, “The role of electron phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A69, S99–S107 (1999).

Melninkaitis, A.

Mende, M.

Menoni, C. S.

C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3for optical interference coatings,” Proc. SPIE7842, 784202 (2010).
[CrossRef]

Mero, M.

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys.108, 0435523 (2010).
[CrossRef]

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng.44, 051107 (2005).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B71, 115109 (2005).
[CrossRef]

Mirauskas, J.

Néauport, J.

S. Palmier, J. Néauport, N. Baclet, E. Lavastre, and G. Dupuy, “High reflection mirrors for pulse compression gratings,” Opt. Express17, 20430–20439 (2009).
[CrossRef] [PubMed]

N. Bonod and J. Néauport, “Optical performance and laser induced damage threshold improvement of diffraction gratings used as compressors in ultra high intensity lasers,” Opt. Commun.260, 649–655 (2006).
[CrossRef]

Neville Connell, G.A.

Nguyen, D. N.

C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3for optical interference coatings,” Proc. SPIE7842, 784202 (2010).
[CrossRef]

Oliver, J. B.

Palmier, S.

Papernov, S.

Parriaux, O.

Patel, D.

C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3for optical interference coatings,” Proc. SPIE7842, 784202 (2010).
[CrossRef]

Perel’man, T. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP39, 375–377 (1974).

Perry, M. D.

Petit, R.

R. Petit, Ondes Electomagnetiques (Dunod, 1989).

Rambo, P.

M. Kimmel, P. Rambo, R. Broyles, M. Geissel, J. Schwarz, J. Bellum, and B. Atherton, “Optical damage testing at the Z-Backlighter facility at Sandia National Laboratories,” Proc. SPIE7504, 75041G (2009).
[CrossRef]

Ren, Y.

Y. Ren, J.K. Chen, and Y. Zhang, “Optical properties and thermal responses of copper films induced by ultrashort-pulsed lasers,” J. Appl. Phys.110, 113102 (2011).
[CrossRef]

Riffe, D. M.

X. Y. Wang, D. M. Riffe, Y.-S. Lee, and M. C. Downer, “Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission,” Phys. Rev. B50, 8016–8019 (1994).
[CrossRef]

Rigatti, A. L.

Ristau, D.

M. Mende, H. Ehlers, D. Ristau, and L. Gallais, “Laser damage resistance of ion-beam sputtered Sc2O3/SiO2mixture optical coatings,” Appl. Opt.52, 1368–1376 (2013).
[CrossRef] [PubMed]

B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kicas, T. Tolenis, and R. Drazdys, “Femtosecond laser damage resistance of oxide and mixture oxide optical coatings,” Opt. Lett.37, 1478–1480 (2012).
[CrossRef] [PubMed]

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng.44, 051107 (2005).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B71, 115109 (2005).
[CrossRef]

Route, R.

C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3for optical interference coatings,” Proc. SPIE7842, 784202 (2010).
[CrossRef]

Rubenchik, A. M.

Rudolph, W.

C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3for optical interference coatings,” Proc. SPIE7842, 784202 (2010).
[CrossRef]

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys.108, 0435523 (2010).
[CrossRef]

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng.44, 051107 (2005).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B71, 115109 (2005).
[CrossRef]

Schmid, A. W.

Schwarz, J.

M. Kimmel, P. Rambo, R. Broyles, M. Geissel, J. Schwarz, J. Bellum, and B. Atherton, “Optical damage testing at the Z-Backlighter facility at Sandia National Laboratories,” Proc. SPIE7504, 75041G (2009).
[CrossRef]

Sherman, N.K.

P.B. Corkum, F. Brunel, N.K. Sherman, and T. Srinivasan-Rao, “Thermal responses of metals to ultrashort-pulse laser excitation,” Phys. Rev. Lett.61, 2686–2689 (1988).
[CrossRef]

Shore, B. W.

Sirutkaitis, V.

Smith, C.

Srinivasan-Rao, T.

P.B. Corkum, F. Brunel, N.K. Sherman, and T. Srinivasan-Rao, “Thermal responses of metals to ultrashort-pulse laser excitation,” Phys. Rev. Lett.61, 2686–2689 (1988).
[CrossRef]

Starke, K.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B71, 115109 (2005).
[CrossRef]

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng.44, 051107 (2005).
[CrossRef]

Stuart, B. C.

Tolenis, T.

Tollerud, J.

C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3for optical interference coatings,” Proc. SPIE7842, 784202 (2010).
[CrossRef]

Tonchev, S.

Uteza, O.

Wang, B.

L. Gallais, E. Bergeret, B. Wang, M. Guerin, and E. Benevent, “Ultrafast laser ablation of metal films on flexible substrates,” submitted.

Wang, X. Y.

X. Y. Wang, D. M. Riffe, Y.-S. Lee, and M. C. Downer, “Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission,” Phys. Rev. B50, 8016–8019 (1994).
[CrossRef]

Webber, M.J.

M.J. Webber, Handbook of Optical Materials (CRC Press, 2003).

Wellershoff, S. S.

J. Hohlfeld, S. S. Wellershoff, J. Gdde, U. Conrad, V. Jahnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys.251, 237–258 (2000).
[CrossRef]

S. S. Wellershoff, J. Hohlfeld, J. Gdde, and E. Matthias, “The role of electron phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A69, S99–S107 (1999).

Yan, X.

Y. Dai, M. He, H. Bian, B. Lu, X. Yan, and G. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A106, 567–574 (2012).
[CrossRef]

Zhang, Y.

Y. Ren, J.K. Chen, and Y. Zhang, “Optical properties and thermal responses of copper films induced by ultrashort-pulsed lasers,” J. Appl. Phys.110, 113102 (2011).
[CrossRef]

Zhigilei, L. V.

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B77, 75133–75133 (2008).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. A (2)

S. S. Wellershoff, J. Hohlfeld, J. Gdde, and E. Matthias, “The role of electron phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A69, S99–S107 (1999).

Y. Dai, M. He, H. Bian, B. Lu, X. Yan, and G. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys. A106, 567–574 (2012).
[CrossRef]

Appl. Surf. Sci. (1)

J. Kruger, D. Dufft, R. Koter, and A. Hertwig, “Femtosecond laser-induced damage of gold films,” Appl. Surf. Sci.253, 7815–7819 (2007).
[CrossRef]

Chem. Phys. (1)

J. Hohlfeld, S. S. Wellershoff, J. Gdde, U. Conrad, V. Jahnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys.251, 237–258 (2000).
[CrossRef]

J. Appl. Phys. (3)

Y. Ren, J.K. Chen, and Y. Zhang, “Optical properties and thermal responses of copper films induced by ultrashort-pulsed lasers,” J. Appl. Phys.110, 113102 (2011).
[CrossRef]

J.H. Bechtel, “Heating of solid targets with laser pulses,” J. Appl. Phys.46, 1585–1593 (1975).
[CrossRef]

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys.108, 0435523 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

N. Bonod and J. Néauport, “Optical performance and laser induced damage threshold improvement of diffraction gratings used as compressors in ultra high intensity lasers,” Opt. Commun.260, 649–655 (2006).
[CrossRef]

Opt. Eng. (1)

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng.44, 051107 (2005).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (3)

X. Y. Wang, D. M. Riffe, Y.-S. Lee, and M. C. Downer, “Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission,” Phys. Rev. B50, 8016–8019 (1994).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B71, 115109 (2005).
[CrossRef]

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B77, 75133–75133 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

P.B. Corkum, F. Brunel, N.K. Sherman, and T. Srinivasan-Rao, “Thermal responses of metals to ultrashort-pulse laser excitation,” Phys. Rev. Lett.61, 2686–2689 (1988).
[CrossRef]

Proc. SPIE (2)

C. S. Menoni, E. M. Krous, D. Patel, P. Langston, J. Tollerud, D. N. Nguyen, L. A. Emmert, A. Markosyan, R. Route, M. Fejer, and W. Rudolph, “Advances in ion beam sputtered Sc2O3for optical interference coatings,” Proc. SPIE7842, 784202 (2010).
[CrossRef]

M. Kimmel, P. Rambo, R. Broyles, M. Geissel, J. Schwarz, J. Bellum, and B. Atherton, “Optical damage testing at the Z-Backlighter facility at Sandia National Laboratories,” Proc. SPIE7504, 75041G (2009).
[CrossRef]

Sov. Phys. JETP (1)

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP39, 375–377 (1974).

Other (5)

R. Petit, Ondes Electomagnetiques (Dunod, 1989).

Matlab PDE solver http://www.mathworks.com .

M.J. Webber, Handbook of Optical Materials (CRC Press, 2003).

H.A. Macleod, Thin-film Optical Filters (CRC Press, 2001).
[CrossRef]

L. Gallais, E. Bergeret, B. Wang, M. Guerin, and E. Benevent, “Ultrafast laser ablation of metal films on flexible substrates,” submitted.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic and coordinates of the system under study. H: high refractive index layer, L: Low refractive index layer

Fig. 2
Fig. 2

Calculated temperature profiles (Te: electronic temperature, Tl: lattice temperature) at the surface of a gold film irradiated by a pulsed laser. Laser wavelength is 800nm, pulse duration is 500fs and the fluence is 0.85J/cm2. The gold film thickness is 100nm, and the substrate is silica.

Fig. 3
Fig. 3

Calculations of the lattice temperature with the two temperatures in the case of a metal multidielectric mirror composed of a dielectric mirror ((HfO2/SiO2)4) on a gold film, deposited on a silica substrate. The laser irradiation is 4J/cm2 with a pulse duration of 500fs at 800nm. The temperature in the stack is plotted as a function of time up to 5ns after the end of the pulse in order to observe the temperature decay and diffusion.

Fig. 4
Fig. 4

Temperature evolution as a function of time of a metal/multidielectric stack (same design as in Fig. 3) submitted to multiple pulses irradiation. The temperature is plotted in the metal film, where it reaches its maximum value. The irradiation conditions are: pulse duration of 500fs, 1MHz repetition rate, 3.5J/cm2 per pulse, and 800nm wavelength.

Fig. 5
Fig. 5

Reflectance of commonly used metals as a function of wavelength from 200 to 2000nm. The plot is extracted from the data in [15]

Fig. 6
Fig. 6

Theoretical thresholds for single layer metal film with different thicknesses, calculated at 800nm, 50fs, using the material parameters listed in table 2. The experimental data correspond to the values given in table 1.

Fig. 7
Fig. 7

A comparison of the Reflectance and Group Delay Dispersion of a dielectric mirror Silica/(HfO2/SiO2)15/HfO2 (D), a MMLD mirror Silica/Gold/(SiO2/HfO2)5 (M), and a metallic gold mirror (B).

Fig. 8
Fig. 8

Electric field distribution in the stack Silica/Gold/(SiO2/HfO2)5, calculated at 800nm.

Fig. 9
Fig. 9

Case of MMLD mirrors with different high index materials: calculation of the fluence needed to reach the melting point of the gold film (dotted lines) and comparison to the fluence needed to initiate damage in the high index material (plain line).

Fig. 10
Fig. 10

Calculation of the fluence needed to reach the melting point of the gold film in the case of a MMLD mirror (Silica/Gold/(SiO2/HfO2)5) irradiated with different number of laser pulses at various repetition rates. The dotted line corresponds to the fluence needed to initiate damage in the high index material of the stack.

Tables (2)

Tables Icon

Table 1 Summary of ultra-short laser damage thresholds of metal films and bulk materials, in the case of single shot irradiation and in normal incidence

Tables Icon

Table 2 Material parameters used in the TTM calculations.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

C e T e t = ( K e T e ) ) g ( T e T l ) + S ( z , t )
C l T l t = ( K l T l ) ) + g ( T e T l )
t c = ( 8 π ) 1 4 ( C l 3 C e g 2 T m )
S ( z , t ) = S 1 , pulse ( z , t ) * n = 1 n = N δ ( t n T )
LIDT stack = | E inc / E max | 2 × LIDT material
t i < < R 2 / D

Metrics