Abstract

Studying the interaction between molecules and surface plasmon polaritons (SPPs) is of great important in understanding surface-enhanced Raman scattering (SERS). While it is known that SERS consists of excitation and emission enhancements, each of them is manifested by several sub-steps which individually also deserve attention. For example, for emission enhancement, the energy from the excited molecules is first coupled to SPPs, which then radiatively scatter to far-field. To understand these two sequential processes completely, differentiating them one by one is necessary. Here, we decouple them and determine the coupling efficiency of molecules to SPPs by using a phenomenological rate equation model. We find the coupling efficiency, defined as the ratio of the coupling rate from molecules to SPPs to the direct Raman decay rate, can be expressed as the SERS intensity ratio and the SPP absorption and radiative decay rates, which all can be determined by polarization- and angle-dependent Raman and reflectivity spectroscopy. As a demonstration, the coupling efficiencies of 6-mercaptopurine to SPPs propagating in Γ-X direction on Ag nanohole array are measured for several Raman emission wavelengths.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Ferraro, K. Nakamoto, and C. Brown, Introductory Raman Spectroscopy (Academic Press, 2003).
  2. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
    [CrossRef] [PubMed]
  3. E. Le Ru and P. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy: and Related Plasmonic Effects (Elsevier Science, 2008).
  4. K. Kneipp and M. Moskovits, H. Kneipp ed., Surface Enhanced Raman Scattering – Physics and Application (Springer, 2006).
  5. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
    [CrossRef] [PubMed]
  6. J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, A. E. Russell, and A. E. Russell, “Angle-resolved surface-enhanced raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett.5(11), 2262–2267 (2005).
    [CrossRef] [PubMed]
  7. P. Etchegoin, L. F. Cohen, H. Hartigan, R. J. C. Brown, M. J. T. Milton, and J. C. Gallop, “Electromagnetic contribution to surface enhanced Raman scattering revisited,” J. Chem. Phys.119(10), 5281 (2003).
    [CrossRef]
  8. D. W. Ball, “Theory of Raman spectroscopy,” Spectroscopy16, 32 (2001).
  9. D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong, and S. A. Maier, “Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays,” ACS Nano4(1), 432–438 (2010).
    [CrossRef] [PubMed]
  10. C. Y. Chan, J. B. Xu, M. Y. Waye, and H. C. Ong, “Angle resolved surface enhanced Raman scattering (SERS) on two-dimensional metallic arrays with different hole sizes,” Appl. Phys. Lett.96(3), 033104 (2010).
    [CrossRef]
  11. L. Baltog, N. Primeau, R. Reinisch, and J. L. Coutaz, “Surface enhanced Raman scattering on silver grating: Optimized antennalike gain of the stokes signal of 104,” Appl. Phys. Lett.66(10), 1187 (1995).
    [CrossRef]
  12. S. Ushioda and Y. Sasaki, “Raman scattering mediated by surface-plasmon polariton resonance,” Phys. Rev. B27(2), 1401–1404 (1983).
    [CrossRef]
  13. J. P. Goudonnet, T. Inagaki, E. T. Arakawa, and T. Ferrell, “Angular and polarization dependence of surface-enhanced Raman scattering in attenuated-total-reflection geometry,” Phys. Rev. B Condens. Matter36(2), 917–921 (1987).
    [CrossRef] [PubMed]
  14. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  15. H. Y. Lo, C. Y. Chan, and H. C. Ong, “Direct measurement of radiative scattering of surface plasmon polariton resonance from metallic arrays by polarization-resolved reflectivity spectroscopy,” Appl. Phys. Lett.101(22), 223108 (2012).
    [CrossRef]
  16. Z. L. Cao, H. Y. Lo, and H. C. Ong, “Determination of absorption and radiative decay rates of surface plasmon polaritons from nanohole array,” Opt. Lett.37(24), 5166–5168 (2012).
    [CrossRef] [PubMed]
  17. J. Yoon, K. H. Seol, S. H. Song, and R. Magnusson, “Critical coupling in dissipative surface-plasmon resonators with multiple ports,” Opt. Express18(25), 25702–25711 (2010).
    [CrossRef] [PubMed]
  18. S. Wu, Z. Wang, and S. H. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multi-mode cavities,” IEEE, J. Quantum Elect.40(10), 1511–1518 (2004).
    [CrossRef]
  19. H. Yang, Y. Liu, Z. Liu, Y. Yang, J. Jiang, Z. Zhang, G. Shen, and R. Yu, “Raman mapping and in situ SERS spectroelectrochemical studies of 6-Mercaptopurine SAMs on the gold electrode,” J. Phys. Chem. B109(7), 2739–2744 (2005).
    [CrossRef] [PubMed]
  20. K. C. Hui, J. T. K. Wan, J. B. Xu, and H. C. Ong, “Dependence of anisotropic surface plasmon lifetimes of two-dimensional hole arrays on hole geometry,” Appl. Phys. Lett.95(6), 063110 (2009).
    [CrossRef]
  21. C. Farcau and S. Astilean, “Evidence of a surface plasmon-mediated mechanism in the generation of the SERS background,” Chem. Commun. (Camb.)47(13), 3861–3863 (2011).
    [CrossRef] [PubMed]
  22. S. Mahajan, R. M. Cole, J. D. Speed, S. H. Pelfrey, A. E. Russell, P. N. Bartlett, S. M. Barnett, and J. J. Baumberg, “Understanding the surface-enhanced Raman spectroscopy ‘background’,” J. Phys. Chem. C114(16), 7242–7250 (2010).
    [CrossRef]
  23. E. C. LeRu, M. Blackie.E, Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: A comprehensive study,” J. Phys. Chem. C111(37), 13794–13803 (2007).
    [CrossRef]
  24. M. Moskovits and J. S. Suh, “Surface selection rules for surface-enhanced Raman spectroscopy: calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver,” J. Phys. Chem.88(23), 5526–5530 (1984).
    [CrossRef]

2012 (2)

H. Y. Lo, C. Y. Chan, and H. C. Ong, “Direct measurement of radiative scattering of surface plasmon polariton resonance from metallic arrays by polarization-resolved reflectivity spectroscopy,” Appl. Phys. Lett.101(22), 223108 (2012).
[CrossRef]

Z. L. Cao, H. Y. Lo, and H. C. Ong, “Determination of absorption and radiative decay rates of surface plasmon polaritons from nanohole array,” Opt. Lett.37(24), 5166–5168 (2012).
[CrossRef] [PubMed]

2011 (1)

C. Farcau and S. Astilean, “Evidence of a surface plasmon-mediated mechanism in the generation of the SERS background,” Chem. Commun. (Camb.)47(13), 3861–3863 (2011).
[CrossRef] [PubMed]

2010 (4)

S. Mahajan, R. M. Cole, J. D. Speed, S. H. Pelfrey, A. E. Russell, P. N. Bartlett, S. M. Barnett, and J. J. Baumberg, “Understanding the surface-enhanced Raman spectroscopy ‘background’,” J. Phys. Chem. C114(16), 7242–7250 (2010).
[CrossRef]

D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong, and S. A. Maier, “Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays,” ACS Nano4(1), 432–438 (2010).
[CrossRef] [PubMed]

C. Y. Chan, J. B. Xu, M. Y. Waye, and H. C. Ong, “Angle resolved surface enhanced Raman scattering (SERS) on two-dimensional metallic arrays with different hole sizes,” Appl. Phys. Lett.96(3), 033104 (2010).
[CrossRef]

J. Yoon, K. H. Seol, S. H. Song, and R. Magnusson, “Critical coupling in dissipative surface-plasmon resonators with multiple ports,” Opt. Express18(25), 25702–25711 (2010).
[CrossRef] [PubMed]

2009 (1)

K. C. Hui, J. T. K. Wan, J. B. Xu, and H. C. Ong, “Dependence of anisotropic surface plasmon lifetimes of two-dimensional hole arrays on hole geometry,” Appl. Phys. Lett.95(6), 063110 (2009).
[CrossRef]

2008 (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

2007 (1)

E. C. LeRu, M. Blackie.E, Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: A comprehensive study,” J. Phys. Chem. C111(37), 13794–13803 (2007).
[CrossRef]

2005 (2)

H. Yang, Y. Liu, Z. Liu, Y. Yang, J. Jiang, Z. Zhang, G. Shen, and R. Yu, “Raman mapping and in situ SERS spectroelectrochemical studies of 6-Mercaptopurine SAMs on the gold electrode,” J. Phys. Chem. B109(7), 2739–2744 (2005).
[CrossRef] [PubMed]

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, A. E. Russell, and A. E. Russell, “Angle-resolved surface-enhanced raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett.5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

2004 (1)

S. Wu, Z. Wang, and S. H. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multi-mode cavities,” IEEE, J. Quantum Elect.40(10), 1511–1518 (2004).
[CrossRef]

2003 (1)

P. Etchegoin, L. F. Cohen, H. Hartigan, R. J. C. Brown, M. J. T. Milton, and J. C. Gallop, “Electromagnetic contribution to surface enhanced Raman scattering revisited,” J. Chem. Phys.119(10), 5281 (2003).
[CrossRef]

2001 (1)

D. W. Ball, “Theory of Raman spectroscopy,” Spectroscopy16, 32 (2001).

1997 (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

1995 (1)

L. Baltog, N. Primeau, R. Reinisch, and J. L. Coutaz, “Surface enhanced Raman scattering on silver grating: Optimized antennalike gain of the stokes signal of 104,” Appl. Phys. Lett.66(10), 1187 (1995).
[CrossRef]

1987 (1)

J. P. Goudonnet, T. Inagaki, E. T. Arakawa, and T. Ferrell, “Angular and polarization dependence of surface-enhanced Raman scattering in attenuated-total-reflection geometry,” Phys. Rev. B Condens. Matter36(2), 917–921 (1987).
[CrossRef] [PubMed]

1984 (1)

M. Moskovits and J. S. Suh, “Surface selection rules for surface-enhanced Raman spectroscopy: calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver,” J. Phys. Chem.88(23), 5526–5530 (1984).
[CrossRef]

1983 (1)

S. Ushioda and Y. Sasaki, “Raman scattering mediated by surface-plasmon polariton resonance,” Phys. Rev. B27(2), 1401–1404 (1983).
[CrossRef]

Abdelsalam, M. E.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, A. E. Russell, and A. E. Russell, “Angle-resolved surface-enhanced raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett.5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Arakawa, E. T.

J. P. Goudonnet, T. Inagaki, E. T. Arakawa, and T. Ferrell, “Angular and polarization dependence of surface-enhanced Raman scattering in attenuated-total-reflection geometry,” Phys. Rev. B Condens. Matter36(2), 917–921 (1987).
[CrossRef] [PubMed]

Astilean, S.

C. Farcau and S. Astilean, “Evidence of a surface plasmon-mediated mechanism in the generation of the SERS background,” Chem. Commun. (Camb.)47(13), 3861–3863 (2011).
[CrossRef] [PubMed]

Ball, D. W.

D. W. Ball, “Theory of Raman spectroscopy,” Spectroscopy16, 32 (2001).

Baltog, L.

L. Baltog, N. Primeau, R. Reinisch, and J. L. Coutaz, “Surface enhanced Raman scattering on silver grating: Optimized antennalike gain of the stokes signal of 104,” Appl. Phys. Lett.66(10), 1187 (1995).
[CrossRef]

Barnett, S. M.

S. Mahajan, R. M. Cole, J. D. Speed, S. H. Pelfrey, A. E. Russell, P. N. Bartlett, S. M. Barnett, and J. J. Baumberg, “Understanding the surface-enhanced Raman spectroscopy ‘background’,” J. Phys. Chem. C114(16), 7242–7250 (2010).
[CrossRef]

Bartlett, P. N.

S. Mahajan, R. M. Cole, J. D. Speed, S. H. Pelfrey, A. E. Russell, P. N. Bartlett, S. M. Barnett, and J. J. Baumberg, “Understanding the surface-enhanced Raman spectroscopy ‘background’,” J. Phys. Chem. C114(16), 7242–7250 (2010).
[CrossRef]

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, A. E. Russell, and A. E. Russell, “Angle-resolved surface-enhanced raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett.5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Baumberg, J. J.

S. Mahajan, R. M. Cole, J. D. Speed, S. H. Pelfrey, A. E. Russell, P. N. Bartlett, S. M. Barnett, and J. J. Baumberg, “Understanding the surface-enhanced Raman spectroscopy ‘background’,” J. Phys. Chem. C114(16), 7242–7250 (2010).
[CrossRef]

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, A. E. Russell, and A. E. Russell, “Angle-resolved surface-enhanced raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett.5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Blackie.E, M.

E. C. LeRu, M. Blackie.E, Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: A comprehensive study,” J. Phys. Chem. C111(37), 13794–13803 (2007).
[CrossRef]

Brown, R. J. C.

P. Etchegoin, L. F. Cohen, H. Hartigan, R. J. C. Brown, M. J. T. Milton, and J. C. Gallop, “Electromagnetic contribution to surface enhanced Raman scattering revisited,” J. Chem. Phys.119(10), 5281 (2003).
[CrossRef]

Cao, Z. L.

Chan, C. Y.

H. Y. Lo, C. Y. Chan, and H. C. Ong, “Direct measurement of radiative scattering of surface plasmon polariton resonance from metallic arrays by polarization-resolved reflectivity spectroscopy,” Appl. Phys. Lett.101(22), 223108 (2012).
[CrossRef]

C. Y. Chan, J. B. Xu, M. Y. Waye, and H. C. Ong, “Angle resolved surface enhanced Raman scattering (SERS) on two-dimensional metallic arrays with different hole sizes,” Appl. Phys. Lett.96(3), 033104 (2010).
[CrossRef]

Cintra, S.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, A. E. Russell, and A. E. Russell, “Angle-resolved surface-enhanced raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett.5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Cohen, L. F.

P. Etchegoin, L. F. Cohen, H. Hartigan, R. J. C. Brown, M. J. T. Milton, and J. C. Gallop, “Electromagnetic contribution to surface enhanced Raman scattering revisited,” J. Chem. Phys.119(10), 5281 (2003).
[CrossRef]

Cole, R. M.

S. Mahajan, R. M. Cole, J. D. Speed, S. H. Pelfrey, A. E. Russell, P. N. Bartlett, S. M. Barnett, and J. J. Baumberg, “Understanding the surface-enhanced Raman spectroscopy ‘background’,” J. Phys. Chem. C114(16), 7242–7250 (2010).
[CrossRef]

Coutaz, J. L.

L. Baltog, N. Primeau, R. Reinisch, and J. L. Coutaz, “Surface enhanced Raman scattering on silver grating: Optimized antennalike gain of the stokes signal of 104,” Appl. Phys. Lett.66(10), 1187 (1995).
[CrossRef]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Etchegoin, P.

P. Etchegoin, L. F. Cohen, H. Hartigan, R. J. C. Brown, M. J. T. Milton, and J. C. Gallop, “Electromagnetic contribution to surface enhanced Raman scattering revisited,” J. Chem. Phys.119(10), 5281 (2003).
[CrossRef]

Etchegoin, P. G.

E. C. LeRu, M. Blackie.E, Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: A comprehensive study,” J. Phys. Chem. C111(37), 13794–13803 (2007).
[CrossRef]

Fan, S. H.

S. Wu, Z. Wang, and S. H. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multi-mode cavities,” IEEE, J. Quantum Elect.40(10), 1511–1518 (2004).
[CrossRef]

Farcau, C.

C. Farcau and S. Astilean, “Evidence of a surface plasmon-mediated mechanism in the generation of the SERS background,” Chem. Commun. (Camb.)47(13), 3861–3863 (2011).
[CrossRef] [PubMed]

Fernández-Domínguez, A. I.

D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong, and S. A. Maier, “Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays,” ACS Nano4(1), 432–438 (2010).
[CrossRef] [PubMed]

Ferrell, T.

J. P. Goudonnet, T. Inagaki, E. T. Arakawa, and T. Ferrell, “Angular and polarization dependence of surface-enhanced Raman scattering in attenuated-total-reflection geometry,” Phys. Rev. B Condens. Matter36(2), 917–921 (1987).
[CrossRef] [PubMed]

Gallop, J. C.

P. Etchegoin, L. F. Cohen, H. Hartigan, R. J. C. Brown, M. J. T. Milton, and J. C. Gallop, “Electromagnetic contribution to surface enhanced Raman scattering revisited,” J. Chem. Phys.119(10), 5281 (2003).
[CrossRef]

Goudonnet, J. P.

J. P. Goudonnet, T. Inagaki, E. T. Arakawa, and T. Ferrell, “Angular and polarization dependence of surface-enhanced Raman scattering in attenuated-total-reflection geometry,” Phys. Rev. B Condens. Matter36(2), 917–921 (1987).
[CrossRef] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Hartigan, H.

P. Etchegoin, L. F. Cohen, H. Hartigan, R. J. C. Brown, M. J. T. Milton, and J. C. Gallop, “Electromagnetic contribution to surface enhanced Raman scattering revisited,” J. Chem. Phys.119(10), 5281 (2003).
[CrossRef]

Hui, K. C.

K. C. Hui, J. T. K. Wan, J. B. Xu, and H. C. Ong, “Dependence of anisotropic surface plasmon lifetimes of two-dimensional hole arrays on hole geometry,” Appl. Phys. Lett.95(6), 063110 (2009).
[CrossRef]

Inagaki, T.

J. P. Goudonnet, T. Inagaki, E. T. Arakawa, and T. Ferrell, “Angular and polarization dependence of surface-enhanced Raman scattering in attenuated-total-reflection geometry,” Phys. Rev. B Condens. Matter36(2), 917–921 (1987).
[CrossRef] [PubMed]

Jiang, J.

H. Yang, Y. Liu, Z. Liu, Y. Yang, J. Jiang, Z. Zhang, G. Shen, and R. Yu, “Raman mapping and in situ SERS spectroelectrochemical studies of 6-Mercaptopurine SAMs on the gold electrode,” J. Phys. Chem. B109(7), 2739–2744 (2005).
[CrossRef] [PubMed]

Kelf, T. A.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, A. E. Russell, and A. E. Russell, “Angle-resolved surface-enhanced raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett.5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Lei, D. Y.

D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong, and S. A. Maier, “Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays,” ACS Nano4(1), 432–438 (2010).
[CrossRef] [PubMed]

LeRu, E. C.

E. C. LeRu, M. Blackie.E, Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: A comprehensive study,” J. Phys. Chem. C111(37), 13794–13803 (2007).
[CrossRef]

Li, J.

D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong, and S. A. Maier, “Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays,” ACS Nano4(1), 432–438 (2010).
[CrossRef] [PubMed]

Liu, Y.

H. Yang, Y. Liu, Z. Liu, Y. Yang, J. Jiang, Z. Zhang, G. Shen, and R. Yu, “Raman mapping and in situ SERS spectroelectrochemical studies of 6-Mercaptopurine SAMs on the gold electrode,” J. Phys. Chem. B109(7), 2739–2744 (2005).
[CrossRef] [PubMed]

Liu, Z.

H. Yang, Y. Liu, Z. Liu, Y. Yang, J. Jiang, Z. Zhang, G. Shen, and R. Yu, “Raman mapping and in situ SERS spectroelectrochemical studies of 6-Mercaptopurine SAMs on the gold electrode,” J. Phys. Chem. B109(7), 2739–2744 (2005).
[CrossRef] [PubMed]

Lo, H. Y.

Z. L. Cao, H. Y. Lo, and H. C. Ong, “Determination of absorption and radiative decay rates of surface plasmon polaritons from nanohole array,” Opt. Lett.37(24), 5166–5168 (2012).
[CrossRef] [PubMed]

H. Y. Lo, C. Y. Chan, and H. C. Ong, “Direct measurement of radiative scattering of surface plasmon polariton resonance from metallic arrays by polarization-resolved reflectivity spectroscopy,” Appl. Phys. Lett.101(22), 223108 (2012).
[CrossRef]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Magnusson, R.

Mahajan, S.

S. Mahajan, R. M. Cole, J. D. Speed, S. H. Pelfrey, A. E. Russell, P. N. Bartlett, S. M. Barnett, and J. J. Baumberg, “Understanding the surface-enhanced Raman spectroscopy ‘background’,” J. Phys. Chem. C114(16), 7242–7250 (2010).
[CrossRef]

Maier, S. A.

D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong, and S. A. Maier, “Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays,” ACS Nano4(1), 432–438 (2010).
[CrossRef] [PubMed]

Meyer,

E. C. LeRu, M. Blackie.E, Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: A comprehensive study,” J. Phys. Chem. C111(37), 13794–13803 (2007).
[CrossRef]

Milton, M. J. T.

P. Etchegoin, L. F. Cohen, H. Hartigan, R. J. C. Brown, M. J. T. Milton, and J. C. Gallop, “Electromagnetic contribution to surface enhanced Raman scattering revisited,” J. Chem. Phys.119(10), 5281 (2003).
[CrossRef]

Moskovits, M.

M. Moskovits and J. S. Suh, “Surface selection rules for surface-enhanced Raman spectroscopy: calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver,” J. Phys. Chem.88(23), 5526–5530 (1984).
[CrossRef]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Ong, H. C.

Z. L. Cao, H. Y. Lo, and H. C. Ong, “Determination of absorption and radiative decay rates of surface plasmon polaritons from nanohole array,” Opt. Lett.37(24), 5166–5168 (2012).
[CrossRef] [PubMed]

H. Y. Lo, C. Y. Chan, and H. C. Ong, “Direct measurement of radiative scattering of surface plasmon polariton resonance from metallic arrays by polarization-resolved reflectivity spectroscopy,” Appl. Phys. Lett.101(22), 223108 (2012).
[CrossRef]

D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong, and S. A. Maier, “Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays,” ACS Nano4(1), 432–438 (2010).
[CrossRef] [PubMed]

C. Y. Chan, J. B. Xu, M. Y. Waye, and H. C. Ong, “Angle resolved surface enhanced Raman scattering (SERS) on two-dimensional metallic arrays with different hole sizes,” Appl. Phys. Lett.96(3), 033104 (2010).
[CrossRef]

K. C. Hui, J. T. K. Wan, J. B. Xu, and H. C. Ong, “Dependence of anisotropic surface plasmon lifetimes of two-dimensional hole arrays on hole geometry,” Appl. Phys. Lett.95(6), 063110 (2009).
[CrossRef]

Pelfrey, S. H.

S. Mahajan, R. M. Cole, J. D. Speed, S. H. Pelfrey, A. E. Russell, P. N. Bartlett, S. M. Barnett, and J. J. Baumberg, “Understanding the surface-enhanced Raman spectroscopy ‘background’,” J. Phys. Chem. C114(16), 7242–7250 (2010).
[CrossRef]

Primeau, N.

L. Baltog, N. Primeau, R. Reinisch, and J. L. Coutaz, “Surface enhanced Raman scattering on silver grating: Optimized antennalike gain of the stokes signal of 104,” Appl. Phys. Lett.66(10), 1187 (1995).
[CrossRef]

Reinisch, R.

L. Baltog, N. Primeau, R. Reinisch, and J. L. Coutaz, “Surface enhanced Raman scattering on silver grating: Optimized antennalike gain of the stokes signal of 104,” Appl. Phys. Lett.66(10), 1187 (1995).
[CrossRef]

Russell, A. E.

S. Mahajan, R. M. Cole, J. D. Speed, S. H. Pelfrey, A. E. Russell, P. N. Bartlett, S. M. Barnett, and J. J. Baumberg, “Understanding the surface-enhanced Raman spectroscopy ‘background’,” J. Phys. Chem. C114(16), 7242–7250 (2010).
[CrossRef]

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, A. E. Russell, and A. E. Russell, “Angle-resolved surface-enhanced raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett.5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, A. E. Russell, and A. E. Russell, “Angle-resolved surface-enhanced raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett.5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Sasaki, Y.

S. Ushioda and Y. Sasaki, “Raman scattering mediated by surface-plasmon polariton resonance,” Phys. Rev. B27(2), 1401–1404 (1983).
[CrossRef]

Seol, K. H.

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Shen, G.

H. Yang, Y. Liu, Z. Liu, Y. Yang, J. Jiang, Z. Zhang, G. Shen, and R. Yu, “Raman mapping and in situ SERS spectroelectrochemical studies of 6-Mercaptopurine SAMs on the gold electrode,” J. Phys. Chem. B109(7), 2739–2744 (2005).
[CrossRef] [PubMed]

Song, S. H.

Speed, J. D.

S. Mahajan, R. M. Cole, J. D. Speed, S. H. Pelfrey, A. E. Russell, P. N. Bartlett, S. M. Barnett, and J. J. Baumberg, “Understanding the surface-enhanced Raman spectroscopy ‘background’,” J. Phys. Chem. C114(16), 7242–7250 (2010).
[CrossRef]

Sugawara, Y.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, A. E. Russell, and A. E. Russell, “Angle-resolved surface-enhanced raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett.5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Suh, J. S.

M. Moskovits and J. S. Suh, “Surface selection rules for surface-enhanced Raman spectroscopy: calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver,” J. Phys. Chem.88(23), 5526–5530 (1984).
[CrossRef]

Ushioda, S.

S. Ushioda and Y. Sasaki, “Raman scattering mediated by surface-plasmon polariton resonance,” Phys. Rev. B27(2), 1401–1404 (1983).
[CrossRef]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Wan, J. T. K.

K. C. Hui, J. T. K. Wan, J. B. Xu, and H. C. Ong, “Dependence of anisotropic surface plasmon lifetimes of two-dimensional hole arrays on hole geometry,” Appl. Phys. Lett.95(6), 063110 (2009).
[CrossRef]

Wang, Z.

S. Wu, Z. Wang, and S. H. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multi-mode cavities,” IEEE, J. Quantum Elect.40(10), 1511–1518 (2004).
[CrossRef]

Waye, M. Y.

C. Y. Chan, J. B. Xu, M. Y. Waye, and H. C. Ong, “Angle resolved surface enhanced Raman scattering (SERS) on two-dimensional metallic arrays with different hole sizes,” Appl. Phys. Lett.96(3), 033104 (2010).
[CrossRef]

Wu, S.

S. Wu, Z. Wang, and S. H. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multi-mode cavities,” IEEE, J. Quantum Elect.40(10), 1511–1518 (2004).
[CrossRef]

Xu, J. B.

C. Y. Chan, J. B. Xu, M. Y. Waye, and H. C. Ong, “Angle resolved surface enhanced Raman scattering (SERS) on two-dimensional metallic arrays with different hole sizes,” Appl. Phys. Lett.96(3), 033104 (2010).
[CrossRef]

K. C. Hui, J. T. K. Wan, J. B. Xu, and H. C. Ong, “Dependence of anisotropic surface plasmon lifetimes of two-dimensional hole arrays on hole geometry,” Appl. Phys. Lett.95(6), 063110 (2009).
[CrossRef]

Yang, H.

H. Yang, Y. Liu, Z. Liu, Y. Yang, J. Jiang, Z. Zhang, G. Shen, and R. Yu, “Raman mapping and in situ SERS spectroelectrochemical studies of 6-Mercaptopurine SAMs on the gold electrode,” J. Phys. Chem. B109(7), 2739–2744 (2005).
[CrossRef] [PubMed]

Yang, Y.

H. Yang, Y. Liu, Z. Liu, Y. Yang, J. Jiang, Z. Zhang, G. Shen, and R. Yu, “Raman mapping and in situ SERS spectroelectrochemical studies of 6-Mercaptopurine SAMs on the gold electrode,” J. Phys. Chem. B109(7), 2739–2744 (2005).
[CrossRef] [PubMed]

Yoon, J.

Yu, R.

H. Yang, Y. Liu, Z. Liu, Y. Yang, J. Jiang, Z. Zhang, G. Shen, and R. Yu, “Raman mapping and in situ SERS spectroelectrochemical studies of 6-Mercaptopurine SAMs on the gold electrode,” J. Phys. Chem. B109(7), 2739–2744 (2005).
[CrossRef] [PubMed]

Zhang, Z.

H. Yang, Y. Liu, Z. Liu, Y. Yang, J. Jiang, Z. Zhang, G. Shen, and R. Yu, “Raman mapping and in situ SERS spectroelectrochemical studies of 6-Mercaptopurine SAMs on the gold electrode,” J. Phys. Chem. B109(7), 2739–2744 (2005).
[CrossRef] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

ACS Nano (1)

D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong, and S. A. Maier, “Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays,” ACS Nano4(1), 432–438 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

C. Y. Chan, J. B. Xu, M. Y. Waye, and H. C. Ong, “Angle resolved surface enhanced Raman scattering (SERS) on two-dimensional metallic arrays with different hole sizes,” Appl. Phys. Lett.96(3), 033104 (2010).
[CrossRef]

L. Baltog, N. Primeau, R. Reinisch, and J. L. Coutaz, “Surface enhanced Raman scattering on silver grating: Optimized antennalike gain of the stokes signal of 104,” Appl. Phys. Lett.66(10), 1187 (1995).
[CrossRef]

H. Y. Lo, C. Y. Chan, and H. C. Ong, “Direct measurement of radiative scattering of surface plasmon polariton resonance from metallic arrays by polarization-resolved reflectivity spectroscopy,” Appl. Phys. Lett.101(22), 223108 (2012).
[CrossRef]

K. C. Hui, J. T. K. Wan, J. B. Xu, and H. C. Ong, “Dependence of anisotropic surface plasmon lifetimes of two-dimensional hole arrays on hole geometry,” Appl. Phys. Lett.95(6), 063110 (2009).
[CrossRef]

Chem. Commun. (Camb.) (1)

C. Farcau and S. Astilean, “Evidence of a surface plasmon-mediated mechanism in the generation of the SERS background,” Chem. Commun. (Camb.)47(13), 3861–3863 (2011).
[CrossRef] [PubMed]

IEEE, J. Quantum Elect. (1)

S. Wu, Z. Wang, and S. H. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multi-mode cavities,” IEEE, J. Quantum Elect.40(10), 1511–1518 (2004).
[CrossRef]

J. Chem. Phys. (1)

P. Etchegoin, L. F. Cohen, H. Hartigan, R. J. C. Brown, M. J. T. Milton, and J. C. Gallop, “Electromagnetic contribution to surface enhanced Raman scattering revisited,” J. Chem. Phys.119(10), 5281 (2003).
[CrossRef]

J. Phys. Chem. (1)

M. Moskovits and J. S. Suh, “Surface selection rules for surface-enhanced Raman spectroscopy: calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver,” J. Phys. Chem.88(23), 5526–5530 (1984).
[CrossRef]

J. Phys. Chem. B (1)

H. Yang, Y. Liu, Z. Liu, Y. Yang, J. Jiang, Z. Zhang, G. Shen, and R. Yu, “Raman mapping and in situ SERS spectroelectrochemical studies of 6-Mercaptopurine SAMs on the gold electrode,” J. Phys. Chem. B109(7), 2739–2744 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. C (2)

S. Mahajan, R. M. Cole, J. D. Speed, S. H. Pelfrey, A. E. Russell, P. N. Bartlett, S. M. Barnett, and J. J. Baumberg, “Understanding the surface-enhanced Raman spectroscopy ‘background’,” J. Phys. Chem. C114(16), 7242–7250 (2010).
[CrossRef]

E. C. LeRu, M. Blackie.E, Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: A comprehensive study,” J. Phys. Chem. C111(37), 13794–13803 (2007).
[CrossRef]

Nano Lett. (1)

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, A. E. Russell, and A. E. Russell, “Angle-resolved surface-enhanced raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett.5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

S. Ushioda and Y. Sasaki, “Raman scattering mediated by surface-plasmon polariton resonance,” Phys. Rev. B27(2), 1401–1404 (1983).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

J. P. Goudonnet, T. Inagaki, E. T. Arakawa, and T. Ferrell, “Angular and polarization dependence of surface-enhanced Raman scattering in attenuated-total-reflection geometry,” Phys. Rev. B Condens. Matter36(2), 917–921 (1987).
[CrossRef] [PubMed]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Spectroscopy (1)

D. W. Ball, “Theory of Raman spectroscopy,” Spectroscopy16, 32 (2001).

Other (4)

J. R. Ferraro, K. Nakamoto, and C. Brown, Introductory Raman Spectroscopy (Academic Press, 2003).

E. Le Ru and P. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy: and Related Plasmonic Effects (Elsevier Science, 2008).

K. Kneipp and M. Moskovits, H. Kneipp ed., Surface Enhanced Raman Scattering – Physics and Application (Springer, 2006).

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

An illustration to describe the SPP mediated Raman scattering process. Molecule can be excited by the ingoing SPPs generated by the excitation. The molecule can transfer its energy either directly to far-field at rate Γr or to the outgoing SPPs at Γ c k SPP . The outgoing SPPs propagate at wavevector k SPP will dissipate energy either by Ohmic absorption at Γ abs k SPP or radiative scattering at m Γ rad k SPP ,m through multiple channels. Each radiative decay channel yields SPP mediated Raman emission at a well-defined angle.

Fig. 2
Fig. 2

(a) Parallel and (b) orthogonal reflectivity mappings of 6-mercaptopurine coated Ag nanohole array. The dash lines identify different (nx,ny) SPP modes. Inset: the SEM image of the array. The (c) parallel and (d) orthogonal (1,0) reflectivity spectra extracted from the mappings. The dash lines are the best fits by using coupled mode theory. (e) The plots of deduced (1,0) radiative and total decay rates of SPPs as a function of resonant wavelength in logarithmic scale. The dash line is the linear fit showing a λ-6.95 dependence.

Fig. 3
Fig. 3

The angle-dependent (a) Raman scattering and (b) p-polarized reflectivity mappings plotted in the same scale. The dash lines indicate the (1,0) and (−2,0) SPPs. (c) The Raman spectra of the array taken from different detection angles. The spectra are vertical shifted for visualization. The dash lines indicate the Raman peaks at 537, 550, and 558 nm. The angular plots of Raman intensities at (d) 537 nm, (e) 550 nm, and (f) 558 nm (squares) after subtracting the fluorescence background. The angular plots of intensities obtained from a flat film at the same wavelengths are also shown (circles). The corresponding p-polarized reflectivity as a function of incident angle (solid lines). The dash lines are the best-fits.

Fig. 4
Fig. 4

(a) The plot of integrated powers of background and SPP mediated emissions (squares and circles) against wavelength. (b) The power ratio between SPP mediated and direct emissions. (c) The (1,0) SPP total to radiative decay rate ratio. (d) The calculated coupling efficiency as a function of wavelength.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P SPP k SPP ,n P d = Γ c k SPP Γ r Γ rad k SPP ,n Γ tot k SPP .
1 4 | 2 r p + Γ rad 1 e i ϕ 1 i(ω ω res )+ Γ tot /2 | 2   and   1 4 ( Γ rad 1 ) 2 (ω ω res ) 2 + ( Γ tot /2 ) 2 ,

Metrics