Abstract

Strong photoluminescence (PL) emission from a resonant Fibonacci quantum well (FQW) is demonstrated. The maximum PL intensity in the FQW is significantly stronger than that in a periodic QW under the Bragg or anti-Bragg conditions. Moreover, the peaks of the squared electric field in the FQW are located very near each of the QWs. The optimal PL spectrum in the FQW has an asymmetrical form rather than the symmetrical one in the periodic case. The maximum PL intensity and the corresponding thickness filling factor in the FQW become greater with increasing generation order.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Márquez-Islas, B. Flores-Desirena, and F. Pérez-Rodríguez, “Quantized longitudinal exciton-polaritons in periodic metal–semiconductor nanostructures,” Photon. Nanostructures10(1), 69–82 (2012).
    [CrossRef]
  2. G. H. Lodden and R. J. Holmes, “Long-range, photon-mediated exciton hybridization in an all-organic, one-dimensional photonic crystal,” Phys. Rev. Lett.109(9), 096401 (2012).
    [CrossRef] [PubMed]
  3. D. Goldberg, L. I. Deych, A. A. Lisyansky, Z. Shi, V. M. Menon, V. Tokranov, M. Yakimov, and S. Oktyabrsky, “Exciton-lattice polaritons in multiple-quantumwell- based photonic crystals,” Nat. Photonics3(11), 662–666 (2009).
    [CrossRef]
  4. L. C. Andreani, G. Panzarini, A. V. Kavokin, and M. R. Vladimirova, “Effect of inhomogeneous broadening on optical properties of excitons in quantum wells,” Phys. Rev. B57(8), 4670–4680 (1998).
    [CrossRef]
  5. M. Hübner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Optical lattices achieved by excitons in periodic quantum well structures,” Phys. Rev. Lett.83(14), 2841–2844 (1999).
    [CrossRef]
  6. A. Askitopoulos, L. Mouchliadis, I. Iorsh, G. Christmann, J. J. Baumberg, M. A. Kaliteevski, Z. Hatzopoulos, and P. G. Savvidis, “Bragg polaritons: strong coupling and amplification in an unfolded microcavity,” Phys. Rev. Lett.106(7), 076401 (2011).
    [CrossRef] [PubMed]
  7. H. M. Gibbs, G. Khitrova, and S. W. Koch, “Exciton–polariton light–semiconductor coupling effects,” Nat. Photonics5(5), 273–282 (2011).
    [CrossRef]
  8. E. L. Ivchenko, A. I. Nesvizhskii, and S. Jorda, “Bragg reflection of light from quantum-well structures,” Phys. Solid State36, 1156–1161 (1994).
  9. T. Ikawa and K. Cho, “Fate of the superradiant mode in a resonant Bragg reflector,” Phys. Rev. B66(8), 085338 (2002).
    [CrossRef]
  10. V. V. Chaldyshev, A. S. Bolshakov, E. E. Zavarin, A. V. Sakharov, W. V. Lundin, A. F. Tsatsulnikov, M. A. Yagovkina, T. Kim, and Y. Park, “Optical lattices of InGaN quantum well excitons,” Appl. Phys. Lett.99(25), 251103 (2011).
    [CrossRef]
  11. L. Pilozzi, A. D’Andrea, and K. Cho, “Spatial dispersion effects on the optical properties of a resonant Bragg reflector,” Phys. Rev. B69(20), 205311 (2004).
    [CrossRef]
  12. S. M. Sadeghi, W. Li, X. Li, and W.-P. Huang, “Photonic electromagnetically induced transparency and collapse of superradiant modes in Bragg multiple quantum wells,” Phys. Rev. B74(16), 161304 (2006).
    [CrossRef]
  13. L. I. Deych, M. V. Erementchouk, A. A. Lisyansky, E. L. Ivchenko, and M. M. Voronov, “Exciton luminescence in one-dimensional resonant photonic crystals: a phenomenological approach,” Phys. Rev. B76(7), 075350 (2007).
    [CrossRef]
  14. J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, A. N. Poddubny, E. L. Ivchenko, M. Wegener, and H. M. Gibbs, “Excitonic polaritons in Fibonacci quasicrystals,” Opt. Express16(20), 15382–15387 (2008).
    [CrossRef] [PubMed]
  15. M. Hübner, J. Kuhl, T. Stroucken, A. Knorr, S. W. Koch, R. Hey, and K. Ploog, “Collective effects of excitons in multiple-quantum-well Bragg and anti-Bragg structures,” Phys. Rev. Lett.76(22), 4199–4202 (1996).
    [CrossRef] [PubMed]
  16. J. P. Prineas, C. Ell, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Exciton-polariton eigenmodes in light-coupled In0.04Ga0.96As/GaAs semiconductor multiple-quantum-well periodic structures,” Phys. Rev. B61(20), 13863–13872 (2000).
    [CrossRef]
  17. Y. Merle d’Aubigne, A. Wasiela, H. Mariette, and T. Dietl, “Polariton effects in multiple-quantum-well structures of CdTe/Cd1-xZnxTe,” Phys. Rev. B Condens. Matter54(19), 14003–14011 (1996).
  18. D. Levine and P. J. Steinhardt, “Quasicrystals: a new class of ordered structures,” Phys. Rev. Lett.53(26), 2477–2480 (1984).
    [CrossRef]
  19. W. J. Hsueh, C. T. Chen, and C. H. Chen, “Omnidirectional band gap in Fibonacci photonic crystals with metamaterials using a band-edge formalism,” Phys. Rev. A78(1), 013836 (2008).
    [CrossRef]
  20. E. L. Albuquerque and M. G. Cottam, “Theory of elementary excitations in quasiperiodic structures,” Phys. Rep.376(4-5), 225–337 (2003).
    [CrossRef]
  21. M. Ghulinyan, C. J. Oton, L. D. Negro, L. Pavesi, R. Sapienza, M. Colocci, and D. S. Wiersma, “Light-pulse propagation in Fibonacci quasicrystals,” Phys. Rev. B71(9), 094204 (2005).
    [CrossRef]
  22. W. J. Hsueh, C. H. Chang, Y. H. Cheng, and S. J. Wun, “Effective Bragg conditions in a one-dimensional quasicrystal,” Opt. Express20(24), 26618–26623 (2012).
    [CrossRef] [PubMed]
  23. A. N. Poddubny, L. Pilozzi, M. M. Voronov, and E. L. Ivchenko, “Resonant Fibonacci quantum well structures in one dimension,” Phys. Rev. B77(11), 113306 (2008).
    [CrossRef]

2012

R. Márquez-Islas, B. Flores-Desirena, and F. Pérez-Rodríguez, “Quantized longitudinal exciton-polaritons in periodic metal–semiconductor nanostructures,” Photon. Nanostructures10(1), 69–82 (2012).
[CrossRef]

G. H. Lodden and R. J. Holmes, “Long-range, photon-mediated exciton hybridization in an all-organic, one-dimensional photonic crystal,” Phys. Rev. Lett.109(9), 096401 (2012).
[CrossRef] [PubMed]

W. J. Hsueh, C. H. Chang, Y. H. Cheng, and S. J. Wun, “Effective Bragg conditions in a one-dimensional quasicrystal,” Opt. Express20(24), 26618–26623 (2012).
[CrossRef] [PubMed]

2011

A. Askitopoulos, L. Mouchliadis, I. Iorsh, G. Christmann, J. J. Baumberg, M. A. Kaliteevski, Z. Hatzopoulos, and P. G. Savvidis, “Bragg polaritons: strong coupling and amplification in an unfolded microcavity,” Phys. Rev. Lett.106(7), 076401 (2011).
[CrossRef] [PubMed]

H. M. Gibbs, G. Khitrova, and S. W. Koch, “Exciton–polariton light–semiconductor coupling effects,” Nat. Photonics5(5), 273–282 (2011).
[CrossRef]

V. V. Chaldyshev, A. S. Bolshakov, E. E. Zavarin, A. V. Sakharov, W. V. Lundin, A. F. Tsatsulnikov, M. A. Yagovkina, T. Kim, and Y. Park, “Optical lattices of InGaN quantum well excitons,” Appl. Phys. Lett.99(25), 251103 (2011).
[CrossRef]

2009

D. Goldberg, L. I. Deych, A. A. Lisyansky, Z. Shi, V. M. Menon, V. Tokranov, M. Yakimov, and S. Oktyabrsky, “Exciton-lattice polaritons in multiple-quantumwell- based photonic crystals,” Nat. Photonics3(11), 662–666 (2009).
[CrossRef]

2008

W. J. Hsueh, C. T. Chen, and C. H. Chen, “Omnidirectional band gap in Fibonacci photonic crystals with metamaterials using a band-edge formalism,” Phys. Rev. A78(1), 013836 (2008).
[CrossRef]

A. N. Poddubny, L. Pilozzi, M. M. Voronov, and E. L. Ivchenko, “Resonant Fibonacci quantum well structures in one dimension,” Phys. Rev. B77(11), 113306 (2008).
[CrossRef]

J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, A. N. Poddubny, E. L. Ivchenko, M. Wegener, and H. M. Gibbs, “Excitonic polaritons in Fibonacci quasicrystals,” Opt. Express16(20), 15382–15387 (2008).
[CrossRef] [PubMed]

2007

L. I. Deych, M. V. Erementchouk, A. A. Lisyansky, E. L. Ivchenko, and M. M. Voronov, “Exciton luminescence in one-dimensional resonant photonic crystals: a phenomenological approach,” Phys. Rev. B76(7), 075350 (2007).
[CrossRef]

2006

S. M. Sadeghi, W. Li, X. Li, and W.-P. Huang, “Photonic electromagnetically induced transparency and collapse of superradiant modes in Bragg multiple quantum wells,” Phys. Rev. B74(16), 161304 (2006).
[CrossRef]

2005

M. Ghulinyan, C. J. Oton, L. D. Negro, L. Pavesi, R. Sapienza, M. Colocci, and D. S. Wiersma, “Light-pulse propagation in Fibonacci quasicrystals,” Phys. Rev. B71(9), 094204 (2005).
[CrossRef]

2004

L. Pilozzi, A. D’Andrea, and K. Cho, “Spatial dispersion effects on the optical properties of a resonant Bragg reflector,” Phys. Rev. B69(20), 205311 (2004).
[CrossRef]

2003

E. L. Albuquerque and M. G. Cottam, “Theory of elementary excitations in quasiperiodic structures,” Phys. Rep.376(4-5), 225–337 (2003).
[CrossRef]

2002

T. Ikawa and K. Cho, “Fate of the superradiant mode in a resonant Bragg reflector,” Phys. Rev. B66(8), 085338 (2002).
[CrossRef]

2000

J. P. Prineas, C. Ell, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Exciton-polariton eigenmodes in light-coupled In0.04Ga0.96As/GaAs semiconductor multiple-quantum-well periodic structures,” Phys. Rev. B61(20), 13863–13872 (2000).
[CrossRef]

1999

M. Hübner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Optical lattices achieved by excitons in periodic quantum well structures,” Phys. Rev. Lett.83(14), 2841–2844 (1999).
[CrossRef]

1998

L. C. Andreani, G. Panzarini, A. V. Kavokin, and M. R. Vladimirova, “Effect of inhomogeneous broadening on optical properties of excitons in quantum wells,” Phys. Rev. B57(8), 4670–4680 (1998).
[CrossRef]

1996

Y. Merle d’Aubigne, A. Wasiela, H. Mariette, and T. Dietl, “Polariton effects in multiple-quantum-well structures of CdTe/Cd1-xZnxTe,” Phys. Rev. B Condens. Matter54(19), 14003–14011 (1996).

M. Hübner, J. Kuhl, T. Stroucken, A. Knorr, S. W. Koch, R. Hey, and K. Ploog, “Collective effects of excitons in multiple-quantum-well Bragg and anti-Bragg structures,” Phys. Rev. Lett.76(22), 4199–4202 (1996).
[CrossRef] [PubMed]

1994

E. L. Ivchenko, A. I. Nesvizhskii, and S. Jorda, “Bragg reflection of light from quantum-well structures,” Phys. Solid State36, 1156–1161 (1994).

1984

D. Levine and P. J. Steinhardt, “Quasicrystals: a new class of ordered structures,” Phys. Rev. Lett.53(26), 2477–2480 (1984).
[CrossRef]

Albuquerque, E. L.

E. L. Albuquerque and M. G. Cottam, “Theory of elementary excitations in quasiperiodic structures,” Phys. Rep.376(4-5), 225–337 (2003).
[CrossRef]

Andreani, L. C.

L. C. Andreani, G. Panzarini, A. V. Kavokin, and M. R. Vladimirova, “Effect of inhomogeneous broadening on optical properties of excitons in quantum wells,” Phys. Rev. B57(8), 4670–4680 (1998).
[CrossRef]

Askitopoulos, A.

A. Askitopoulos, L. Mouchliadis, I. Iorsh, G. Christmann, J. J. Baumberg, M. A. Kaliteevski, Z. Hatzopoulos, and P. G. Savvidis, “Bragg polaritons: strong coupling and amplification in an unfolded microcavity,” Phys. Rev. Lett.106(7), 076401 (2011).
[CrossRef] [PubMed]

Baumberg, J. J.

A. Askitopoulos, L. Mouchliadis, I. Iorsh, G. Christmann, J. J. Baumberg, M. A. Kaliteevski, Z. Hatzopoulos, and P. G. Savvidis, “Bragg polaritons: strong coupling and amplification in an unfolded microcavity,” Phys. Rev. Lett.106(7), 076401 (2011).
[CrossRef] [PubMed]

Bolshakov, A. S.

V. V. Chaldyshev, A. S. Bolshakov, E. E. Zavarin, A. V. Sakharov, W. V. Lundin, A. F. Tsatsulnikov, M. A. Yagovkina, T. Kim, and Y. Park, “Optical lattices of InGaN quantum well excitons,” Appl. Phys. Lett.99(25), 251103 (2011).
[CrossRef]

Brick, P.

M. Hübner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Optical lattices achieved by excitons in periodic quantum well structures,” Phys. Rev. Lett.83(14), 2841–2844 (1999).
[CrossRef]

Chaldyshev, V. V.

V. V. Chaldyshev, A. S. Bolshakov, E. E. Zavarin, A. V. Sakharov, W. V. Lundin, A. F. Tsatsulnikov, M. A. Yagovkina, T. Kim, and Y. Park, “Optical lattices of InGaN quantum well excitons,” Appl. Phys. Lett.99(25), 251103 (2011).
[CrossRef]

Chang, C. H.

Chen, C. H.

W. J. Hsueh, C. T. Chen, and C. H. Chen, “Omnidirectional band gap in Fibonacci photonic crystals with metamaterials using a band-edge formalism,” Phys. Rev. A78(1), 013836 (2008).
[CrossRef]

Chen, C. T.

W. J. Hsueh, C. T. Chen, and C. H. Chen, “Omnidirectional band gap in Fibonacci photonic crystals with metamaterials using a band-edge formalism,” Phys. Rev. A78(1), 013836 (2008).
[CrossRef]

Cheng, Y. H.

Cho, K.

L. Pilozzi, A. D’Andrea, and K. Cho, “Spatial dispersion effects on the optical properties of a resonant Bragg reflector,” Phys. Rev. B69(20), 205311 (2004).
[CrossRef]

T. Ikawa and K. Cho, “Fate of the superradiant mode in a resonant Bragg reflector,” Phys. Rev. B66(8), 085338 (2002).
[CrossRef]

Christmann, G.

A. Askitopoulos, L. Mouchliadis, I. Iorsh, G. Christmann, J. J. Baumberg, M. A. Kaliteevski, Z. Hatzopoulos, and P. G. Savvidis, “Bragg polaritons: strong coupling and amplification in an unfolded microcavity,” Phys. Rev. Lett.106(7), 076401 (2011).
[CrossRef] [PubMed]

Colocci, M.

M. Ghulinyan, C. J. Oton, L. D. Negro, L. Pavesi, R. Sapienza, M. Colocci, and D. S. Wiersma, “Light-pulse propagation in Fibonacci quasicrystals,” Phys. Rev. B71(9), 094204 (2005).
[CrossRef]

Cottam, M. G.

E. L. Albuquerque and M. G. Cottam, “Theory of elementary excitations in quasiperiodic structures,” Phys. Rep.376(4-5), 225–337 (2003).
[CrossRef]

D’Andrea, A.

L. Pilozzi, A. D’Andrea, and K. Cho, “Spatial dispersion effects on the optical properties of a resonant Bragg reflector,” Phys. Rev. B69(20), 205311 (2004).
[CrossRef]

Deych, L. I.

D. Goldberg, L. I. Deych, A. A. Lisyansky, Z. Shi, V. M. Menon, V. Tokranov, M. Yakimov, and S. Oktyabrsky, “Exciton-lattice polaritons in multiple-quantumwell- based photonic crystals,” Nat. Photonics3(11), 662–666 (2009).
[CrossRef]

L. I. Deych, M. V. Erementchouk, A. A. Lisyansky, E. L. Ivchenko, and M. M. Voronov, “Exciton luminescence in one-dimensional resonant photonic crystals: a phenomenological approach,” Phys. Rev. B76(7), 075350 (2007).
[CrossRef]

Dietl, T.

Y. Merle d’Aubigne, A. Wasiela, H. Mariette, and T. Dietl, “Polariton effects in multiple-quantum-well structures of CdTe/Cd1-xZnxTe,” Phys. Rev. B Condens. Matter54(19), 14003–14011 (1996).

Ell, C.

J. P. Prineas, C. Ell, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Exciton-polariton eigenmodes in light-coupled In0.04Ga0.96As/GaAs semiconductor multiple-quantum-well periodic structures,” Phys. Rev. B61(20), 13863–13872 (2000).
[CrossRef]

M. Hübner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Optical lattices achieved by excitons in periodic quantum well structures,” Phys. Rev. Lett.83(14), 2841–2844 (1999).
[CrossRef]

Erementchouk, M. V.

L. I. Deych, M. V. Erementchouk, A. A. Lisyansky, E. L. Ivchenko, and M. M. Voronov, “Exciton luminescence in one-dimensional resonant photonic crystals: a phenomenological approach,” Phys. Rev. B76(7), 075350 (2007).
[CrossRef]

Flores-Desirena, B.

R. Márquez-Islas, B. Flores-Desirena, and F. Pérez-Rodríguez, “Quantized longitudinal exciton-polaritons in periodic metal–semiconductor nanostructures,” Photon. Nanostructures10(1), 69–82 (2012).
[CrossRef]

Ghulinyan, M.

M. Ghulinyan, C. J. Oton, L. D. Negro, L. Pavesi, R. Sapienza, M. Colocci, and D. S. Wiersma, “Light-pulse propagation in Fibonacci quasicrystals,” Phys. Rev. B71(9), 094204 (2005).
[CrossRef]

Gibbs, H. M.

H. M. Gibbs, G. Khitrova, and S. W. Koch, “Exciton–polariton light–semiconductor coupling effects,” Nat. Photonics5(5), 273–282 (2011).
[CrossRef]

J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, A. N. Poddubny, E. L. Ivchenko, M. Wegener, and H. M. Gibbs, “Excitonic polaritons in Fibonacci quasicrystals,” Opt. Express16(20), 15382–15387 (2008).
[CrossRef] [PubMed]

J. P. Prineas, C. Ell, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Exciton-polariton eigenmodes in light-coupled In0.04Ga0.96As/GaAs semiconductor multiple-quantum-well periodic structures,” Phys. Rev. B61(20), 13863–13872 (2000).
[CrossRef]

M. Hübner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Optical lattices achieved by excitons in periodic quantum well structures,” Phys. Rev. Lett.83(14), 2841–2844 (1999).
[CrossRef]

Goldberg, D.

D. Goldberg, L. I. Deych, A. A. Lisyansky, Z. Shi, V. M. Menon, V. Tokranov, M. Yakimov, and S. Oktyabrsky, “Exciton-lattice polaritons in multiple-quantumwell- based photonic crystals,” Nat. Photonics3(11), 662–666 (2009).
[CrossRef]

Hatzopoulos, Z.

A. Askitopoulos, L. Mouchliadis, I. Iorsh, G. Christmann, J. J. Baumberg, M. A. Kaliteevski, Z. Hatzopoulos, and P. G. Savvidis, “Bragg polaritons: strong coupling and amplification in an unfolded microcavity,” Phys. Rev. Lett.106(7), 076401 (2011).
[CrossRef] [PubMed]

Hendrickson, J.

Hey, R.

M. Hübner, J. Kuhl, T. Stroucken, A. Knorr, S. W. Koch, R. Hey, and K. Ploog, “Collective effects of excitons in multiple-quantum-well Bragg and anti-Bragg structures,” Phys. Rev. Lett.76(22), 4199–4202 (1996).
[CrossRef] [PubMed]

Holmes, R. J.

G. H. Lodden and R. J. Holmes, “Long-range, photon-mediated exciton hybridization in an all-organic, one-dimensional photonic crystal,” Phys. Rev. Lett.109(9), 096401 (2012).
[CrossRef] [PubMed]

Hsueh, W. J.

W. J. Hsueh, C. H. Chang, Y. H. Cheng, and S. J. Wun, “Effective Bragg conditions in a one-dimensional quasicrystal,” Opt. Express20(24), 26618–26623 (2012).
[CrossRef] [PubMed]

W. J. Hsueh, C. T. Chen, and C. H. Chen, “Omnidirectional band gap in Fibonacci photonic crystals with metamaterials using a band-edge formalism,” Phys. Rev. A78(1), 013836 (2008).
[CrossRef]

Huang, W.-P.

S. M. Sadeghi, W. Li, X. Li, and W.-P. Huang, “Photonic electromagnetically induced transparency and collapse of superradiant modes in Bragg multiple quantum wells,” Phys. Rev. B74(16), 161304 (2006).
[CrossRef]

Hübner, M.

M. Hübner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Optical lattices achieved by excitons in periodic quantum well structures,” Phys. Rev. Lett.83(14), 2841–2844 (1999).
[CrossRef]

M. Hübner, J. Kuhl, T. Stroucken, A. Knorr, S. W. Koch, R. Hey, and K. Ploog, “Collective effects of excitons in multiple-quantum-well Bragg and anti-Bragg structures,” Phys. Rev. Lett.76(22), 4199–4202 (1996).
[CrossRef] [PubMed]

Ikawa, T.

T. Ikawa and K. Cho, “Fate of the superradiant mode in a resonant Bragg reflector,” Phys. Rev. B66(8), 085338 (2002).
[CrossRef]

Iorsh, I.

A. Askitopoulos, L. Mouchliadis, I. Iorsh, G. Christmann, J. J. Baumberg, M. A. Kaliteevski, Z. Hatzopoulos, and P. G. Savvidis, “Bragg polaritons: strong coupling and amplification in an unfolded microcavity,” Phys. Rev. Lett.106(7), 076401 (2011).
[CrossRef] [PubMed]

Ivchenko, E. L.

J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, A. N. Poddubny, E. L. Ivchenko, M. Wegener, and H. M. Gibbs, “Excitonic polaritons in Fibonacci quasicrystals,” Opt. Express16(20), 15382–15387 (2008).
[CrossRef] [PubMed]

A. N. Poddubny, L. Pilozzi, M. M. Voronov, and E. L. Ivchenko, “Resonant Fibonacci quantum well structures in one dimension,” Phys. Rev. B77(11), 113306 (2008).
[CrossRef]

L. I. Deych, M. V. Erementchouk, A. A. Lisyansky, E. L. Ivchenko, and M. M. Voronov, “Exciton luminescence in one-dimensional resonant photonic crystals: a phenomenological approach,” Phys. Rev. B76(7), 075350 (2007).
[CrossRef]

E. L. Ivchenko, A. I. Nesvizhskii, and S. Jorda, “Bragg reflection of light from quantum-well structures,” Phys. Solid State36, 1156–1161 (1994).

Jorda, S.

E. L. Ivchenko, A. I. Nesvizhskii, and S. Jorda, “Bragg reflection of light from quantum-well structures,” Phys. Solid State36, 1156–1161 (1994).

Kaliteevski, M. A.

A. Askitopoulos, L. Mouchliadis, I. Iorsh, G. Christmann, J. J. Baumberg, M. A. Kaliteevski, Z. Hatzopoulos, and P. G. Savvidis, “Bragg polaritons: strong coupling and amplification in an unfolded microcavity,” Phys. Rev. Lett.106(7), 076401 (2011).
[CrossRef] [PubMed]

Kavokin, A. V.

L. C. Andreani, G. Panzarini, A. V. Kavokin, and M. R. Vladimirova, “Effect of inhomogeneous broadening on optical properties of excitons in quantum wells,” Phys. Rev. B57(8), 4670–4680 (1998).
[CrossRef]

Khitrova, G.

H. M. Gibbs, G. Khitrova, and S. W. Koch, “Exciton–polariton light–semiconductor coupling effects,” Nat. Photonics5(5), 273–282 (2011).
[CrossRef]

J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, A. N. Poddubny, E. L. Ivchenko, M. Wegener, and H. M. Gibbs, “Excitonic polaritons in Fibonacci quasicrystals,” Opt. Express16(20), 15382–15387 (2008).
[CrossRef] [PubMed]

J. P. Prineas, C. Ell, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Exciton-polariton eigenmodes in light-coupled In0.04Ga0.96As/GaAs semiconductor multiple-quantum-well periodic structures,” Phys. Rev. B61(20), 13863–13872 (2000).
[CrossRef]

M. Hübner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Optical lattices achieved by excitons in periodic quantum well structures,” Phys. Rev. Lett.83(14), 2841–2844 (1999).
[CrossRef]

Kim, T.

V. V. Chaldyshev, A. S. Bolshakov, E. E. Zavarin, A. V. Sakharov, W. V. Lundin, A. F. Tsatsulnikov, M. A. Yagovkina, T. Kim, and Y. Park, “Optical lattices of InGaN quantum well excitons,” Appl. Phys. Lett.99(25), 251103 (2011).
[CrossRef]

Knorr, A.

M. Hübner, J. Kuhl, T. Stroucken, A. Knorr, S. W. Koch, R. Hey, and K. Ploog, “Collective effects of excitons in multiple-quantum-well Bragg and anti-Bragg structures,” Phys. Rev. Lett.76(22), 4199–4202 (1996).
[CrossRef] [PubMed]

Koch, S. W.

H. M. Gibbs, G. Khitrova, and S. W. Koch, “Exciton–polariton light–semiconductor coupling effects,” Nat. Photonics5(5), 273–282 (2011).
[CrossRef]

J. P. Prineas, C. Ell, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Exciton-polariton eigenmodes in light-coupled In0.04Ga0.96As/GaAs semiconductor multiple-quantum-well periodic structures,” Phys. Rev. B61(20), 13863–13872 (2000).
[CrossRef]

M. Hübner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Optical lattices achieved by excitons in periodic quantum well structures,” Phys. Rev. Lett.83(14), 2841–2844 (1999).
[CrossRef]

M. Hübner, J. Kuhl, T. Stroucken, A. Knorr, S. W. Koch, R. Hey, and K. Ploog, “Collective effects of excitons in multiple-quantum-well Bragg and anti-Bragg structures,” Phys. Rev. Lett.76(22), 4199–4202 (1996).
[CrossRef] [PubMed]

Kuhl, J.

M. Hübner, J. Kuhl, T. Stroucken, A. Knorr, S. W. Koch, R. Hey, and K. Ploog, “Collective effects of excitons in multiple-quantum-well Bragg and anti-Bragg structures,” Phys. Rev. Lett.76(22), 4199–4202 (1996).
[CrossRef] [PubMed]

Lee, E. S.

J. P. Prineas, C. Ell, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Exciton-polariton eigenmodes in light-coupled In0.04Ga0.96As/GaAs semiconductor multiple-quantum-well periodic structures,” Phys. Rev. B61(20), 13863–13872 (2000).
[CrossRef]

M. Hübner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Optical lattices achieved by excitons in periodic quantum well structures,” Phys. Rev. Lett.83(14), 2841–2844 (1999).
[CrossRef]

Levine, D.

D. Levine and P. J. Steinhardt, “Quasicrystals: a new class of ordered structures,” Phys. Rev. Lett.53(26), 2477–2480 (1984).
[CrossRef]

Li, W.

S. M. Sadeghi, W. Li, X. Li, and W.-P. Huang, “Photonic electromagnetically induced transparency and collapse of superradiant modes in Bragg multiple quantum wells,” Phys. Rev. B74(16), 161304 (2006).
[CrossRef]

Li, X.

S. M. Sadeghi, W. Li, X. Li, and W.-P. Huang, “Photonic electromagnetically induced transparency and collapse of superradiant modes in Bragg multiple quantum wells,” Phys. Rev. B74(16), 161304 (2006).
[CrossRef]

Lisyansky, A. A.

D. Goldberg, L. I. Deych, A. A. Lisyansky, Z. Shi, V. M. Menon, V. Tokranov, M. Yakimov, and S. Oktyabrsky, “Exciton-lattice polaritons in multiple-quantumwell- based photonic crystals,” Nat. Photonics3(11), 662–666 (2009).
[CrossRef]

L. I. Deych, M. V. Erementchouk, A. A. Lisyansky, E. L. Ivchenko, and M. M. Voronov, “Exciton luminescence in one-dimensional resonant photonic crystals: a phenomenological approach,” Phys. Rev. B76(7), 075350 (2007).
[CrossRef]

Lodden, G. H.

G. H. Lodden and R. J. Holmes, “Long-range, photon-mediated exciton hybridization in an all-organic, one-dimensional photonic crystal,” Phys. Rev. Lett.109(9), 096401 (2012).
[CrossRef] [PubMed]

Lundin, W. V.

V. V. Chaldyshev, A. S. Bolshakov, E. E. Zavarin, A. V. Sakharov, W. V. Lundin, A. F. Tsatsulnikov, M. A. Yagovkina, T. Kim, and Y. Park, “Optical lattices of InGaN quantum well excitons,” Appl. Phys. Lett.99(25), 251103 (2011).
[CrossRef]

Mariette, H.

Y. Merle d’Aubigne, A. Wasiela, H. Mariette, and T. Dietl, “Polariton effects in multiple-quantum-well structures of CdTe/Cd1-xZnxTe,” Phys. Rev. B Condens. Matter54(19), 14003–14011 (1996).

Márquez-Islas, R.

R. Márquez-Islas, B. Flores-Desirena, and F. Pérez-Rodríguez, “Quantized longitudinal exciton-polaritons in periodic metal–semiconductor nanostructures,” Photon. Nanostructures10(1), 69–82 (2012).
[CrossRef]

Menon, V. M.

D. Goldberg, L. I. Deych, A. A. Lisyansky, Z. Shi, V. M. Menon, V. Tokranov, M. Yakimov, and S. Oktyabrsky, “Exciton-lattice polaritons in multiple-quantumwell- based photonic crystals,” Nat. Photonics3(11), 662–666 (2009).
[CrossRef]

Merle d’Aubigne, Y.

Y. Merle d’Aubigne, A. Wasiela, H. Mariette, and T. Dietl, “Polariton effects in multiple-quantum-well structures of CdTe/Cd1-xZnxTe,” Phys. Rev. B Condens. Matter54(19), 14003–14011 (1996).

Mouchliadis, L.

A. Askitopoulos, L. Mouchliadis, I. Iorsh, G. Christmann, J. J. Baumberg, M. A. Kaliteevski, Z. Hatzopoulos, and P. G. Savvidis, “Bragg polaritons: strong coupling and amplification in an unfolded microcavity,” Phys. Rev. Lett.106(7), 076401 (2011).
[CrossRef] [PubMed]

Negro, L. D.

M. Ghulinyan, C. J. Oton, L. D. Negro, L. Pavesi, R. Sapienza, M. Colocci, and D. S. Wiersma, “Light-pulse propagation in Fibonacci quasicrystals,” Phys. Rev. B71(9), 094204 (2005).
[CrossRef]

Nesvizhskii, A. I.

E. L. Ivchenko, A. I. Nesvizhskii, and S. Jorda, “Bragg reflection of light from quantum-well structures,” Phys. Solid State36, 1156–1161 (1994).

Oktyabrsky, S.

D. Goldberg, L. I. Deych, A. A. Lisyansky, Z. Shi, V. M. Menon, V. Tokranov, M. Yakimov, and S. Oktyabrsky, “Exciton-lattice polaritons in multiple-quantumwell- based photonic crystals,” Nat. Photonics3(11), 662–666 (2009).
[CrossRef]

Oton, C. J.

M. Ghulinyan, C. J. Oton, L. D. Negro, L. Pavesi, R. Sapienza, M. Colocci, and D. S. Wiersma, “Light-pulse propagation in Fibonacci quasicrystals,” Phys. Rev. B71(9), 094204 (2005).
[CrossRef]

Panzarini, G.

L. C. Andreani, G. Panzarini, A. V. Kavokin, and M. R. Vladimirova, “Effect of inhomogeneous broadening on optical properties of excitons in quantum wells,” Phys. Rev. B57(8), 4670–4680 (1998).
[CrossRef]

Park, Y.

V. V. Chaldyshev, A. S. Bolshakov, E. E. Zavarin, A. V. Sakharov, W. V. Lundin, A. F. Tsatsulnikov, M. A. Yagovkina, T. Kim, and Y. Park, “Optical lattices of InGaN quantum well excitons,” Appl. Phys. Lett.99(25), 251103 (2011).
[CrossRef]

Pavesi, L.

M. Ghulinyan, C. J. Oton, L. D. Negro, L. Pavesi, R. Sapienza, M. Colocci, and D. S. Wiersma, “Light-pulse propagation in Fibonacci quasicrystals,” Phys. Rev. B71(9), 094204 (2005).
[CrossRef]

Pérez-Rodríguez, F.

R. Márquez-Islas, B. Flores-Desirena, and F. Pérez-Rodríguez, “Quantized longitudinal exciton-polaritons in periodic metal–semiconductor nanostructures,” Photon. Nanostructures10(1), 69–82 (2012).
[CrossRef]

Pilozzi, L.

A. N. Poddubny, L. Pilozzi, M. M. Voronov, and E. L. Ivchenko, “Resonant Fibonacci quantum well structures in one dimension,” Phys. Rev. B77(11), 113306 (2008).
[CrossRef]

L. Pilozzi, A. D’Andrea, and K. Cho, “Spatial dispersion effects on the optical properties of a resonant Bragg reflector,” Phys. Rev. B69(20), 205311 (2004).
[CrossRef]

Ploog, K.

M. Hübner, J. Kuhl, T. Stroucken, A. Knorr, S. W. Koch, R. Hey, and K. Ploog, “Collective effects of excitons in multiple-quantum-well Bragg and anti-Bragg structures,” Phys. Rev. Lett.76(22), 4199–4202 (1996).
[CrossRef] [PubMed]

Poddubny, A. N.

J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, A. N. Poddubny, E. L. Ivchenko, M. Wegener, and H. M. Gibbs, “Excitonic polaritons in Fibonacci quasicrystals,” Opt. Express16(20), 15382–15387 (2008).
[CrossRef] [PubMed]

A. N. Poddubny, L. Pilozzi, M. M. Voronov, and E. L. Ivchenko, “Resonant Fibonacci quantum well structures in one dimension,” Phys. Rev. B77(11), 113306 (2008).
[CrossRef]

Prineas, J. P.

J. P. Prineas, C. Ell, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Exciton-polariton eigenmodes in light-coupled In0.04Ga0.96As/GaAs semiconductor multiple-quantum-well periodic structures,” Phys. Rev. B61(20), 13863–13872 (2000).
[CrossRef]

M. Hübner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Optical lattices achieved by excitons in periodic quantum well structures,” Phys. Rev. Lett.83(14), 2841–2844 (1999).
[CrossRef]

Richards, B. C.

Sadeghi, S. M.

S. M. Sadeghi, W. Li, X. Li, and W.-P. Huang, “Photonic electromagnetically induced transparency and collapse of superradiant modes in Bragg multiple quantum wells,” Phys. Rev. B74(16), 161304 (2006).
[CrossRef]

Sakharov, A. V.

V. V. Chaldyshev, A. S. Bolshakov, E. E. Zavarin, A. V. Sakharov, W. V. Lundin, A. F. Tsatsulnikov, M. A. Yagovkina, T. Kim, and Y. Park, “Optical lattices of InGaN quantum well excitons,” Appl. Phys. Lett.99(25), 251103 (2011).
[CrossRef]

Sapienza, R.

M. Ghulinyan, C. J. Oton, L. D. Negro, L. Pavesi, R. Sapienza, M. Colocci, and D. S. Wiersma, “Light-pulse propagation in Fibonacci quasicrystals,” Phys. Rev. B71(9), 094204 (2005).
[CrossRef]

Savvidis, P. G.

A. Askitopoulos, L. Mouchliadis, I. Iorsh, G. Christmann, J. J. Baumberg, M. A. Kaliteevski, Z. Hatzopoulos, and P. G. Savvidis, “Bragg polaritons: strong coupling and amplification in an unfolded microcavity,” Phys. Rev. Lett.106(7), 076401 (2011).
[CrossRef] [PubMed]

Shi, Z.

D. Goldberg, L. I. Deych, A. A. Lisyansky, Z. Shi, V. M. Menon, V. Tokranov, M. Yakimov, and S. Oktyabrsky, “Exciton-lattice polaritons in multiple-quantumwell- based photonic crystals,” Nat. Photonics3(11), 662–666 (2009).
[CrossRef]

Steinhardt, P. J.

D. Levine and P. J. Steinhardt, “Quasicrystals: a new class of ordered structures,” Phys. Rev. Lett.53(26), 2477–2480 (1984).
[CrossRef]

Stroucken, T.

M. Hübner, J. Kuhl, T. Stroucken, A. Knorr, S. W. Koch, R. Hey, and K. Ploog, “Collective effects of excitons in multiple-quantum-well Bragg and anti-Bragg structures,” Phys. Rev. Lett.76(22), 4199–4202 (1996).
[CrossRef] [PubMed]

Sweet, J.

Tokranov, V.

D. Goldberg, L. I. Deych, A. A. Lisyansky, Z. Shi, V. M. Menon, V. Tokranov, M. Yakimov, and S. Oktyabrsky, “Exciton-lattice polaritons in multiple-quantumwell- based photonic crystals,” Nat. Photonics3(11), 662–666 (2009).
[CrossRef]

Tsatsulnikov, A. F.

V. V. Chaldyshev, A. S. Bolshakov, E. E. Zavarin, A. V. Sakharov, W. V. Lundin, A. F. Tsatsulnikov, M. A. Yagovkina, T. Kim, and Y. Park, “Optical lattices of InGaN quantum well excitons,” Appl. Phys. Lett.99(25), 251103 (2011).
[CrossRef]

Vladimirova, M. R.

L. C. Andreani, G. Panzarini, A. V. Kavokin, and M. R. Vladimirova, “Effect of inhomogeneous broadening on optical properties of excitons in quantum wells,” Phys. Rev. B57(8), 4670–4680 (1998).
[CrossRef]

Voronov, M. M.

A. N. Poddubny, L. Pilozzi, M. M. Voronov, and E. L. Ivchenko, “Resonant Fibonacci quantum well structures in one dimension,” Phys. Rev. B77(11), 113306 (2008).
[CrossRef]

L. I. Deych, M. V. Erementchouk, A. A. Lisyansky, E. L. Ivchenko, and M. M. Voronov, “Exciton luminescence in one-dimensional resonant photonic crystals: a phenomenological approach,” Phys. Rev. B76(7), 075350 (2007).
[CrossRef]

Wasiela, A.

Y. Merle d’Aubigne, A. Wasiela, H. Mariette, and T. Dietl, “Polariton effects in multiple-quantum-well structures of CdTe/Cd1-xZnxTe,” Phys. Rev. B Condens. Matter54(19), 14003–14011 (1996).

Wegener, M.

Wiersma, D. S.

M. Ghulinyan, C. J. Oton, L. D. Negro, L. Pavesi, R. Sapienza, M. Colocci, and D. S. Wiersma, “Light-pulse propagation in Fibonacci quasicrystals,” Phys. Rev. B71(9), 094204 (2005).
[CrossRef]

Wun, S. J.

Yagovkina, M. A.

V. V. Chaldyshev, A. S. Bolshakov, E. E. Zavarin, A. V. Sakharov, W. V. Lundin, A. F. Tsatsulnikov, M. A. Yagovkina, T. Kim, and Y. Park, “Optical lattices of InGaN quantum well excitons,” Appl. Phys. Lett.99(25), 251103 (2011).
[CrossRef]

Yakimov, M.

D. Goldberg, L. I. Deych, A. A. Lisyansky, Z. Shi, V. M. Menon, V. Tokranov, M. Yakimov, and S. Oktyabrsky, “Exciton-lattice polaritons in multiple-quantumwell- based photonic crystals,” Nat. Photonics3(11), 662–666 (2009).
[CrossRef]

Zavarin, E. E.

V. V. Chaldyshev, A. S. Bolshakov, E. E. Zavarin, A. V. Sakharov, W. V. Lundin, A. F. Tsatsulnikov, M. A. Yagovkina, T. Kim, and Y. Park, “Optical lattices of InGaN quantum well excitons,” Appl. Phys. Lett.99(25), 251103 (2011).
[CrossRef]

Appl. Phys. Lett.

V. V. Chaldyshev, A. S. Bolshakov, E. E. Zavarin, A. V. Sakharov, W. V. Lundin, A. F. Tsatsulnikov, M. A. Yagovkina, T. Kim, and Y. Park, “Optical lattices of InGaN quantum well excitons,” Appl. Phys. Lett.99(25), 251103 (2011).
[CrossRef]

Nat. Photonics

D. Goldberg, L. I. Deych, A. A. Lisyansky, Z. Shi, V. M. Menon, V. Tokranov, M. Yakimov, and S. Oktyabrsky, “Exciton-lattice polaritons in multiple-quantumwell- based photonic crystals,” Nat. Photonics3(11), 662–666 (2009).
[CrossRef]

H. M. Gibbs, G. Khitrova, and S. W. Koch, “Exciton–polariton light–semiconductor coupling effects,” Nat. Photonics5(5), 273–282 (2011).
[CrossRef]

Opt. Express

Photon. Nanostructures

R. Márquez-Islas, B. Flores-Desirena, and F. Pérez-Rodríguez, “Quantized longitudinal exciton-polaritons in periodic metal–semiconductor nanostructures,” Photon. Nanostructures10(1), 69–82 (2012).
[CrossRef]

Phys. Rep.

E. L. Albuquerque and M. G. Cottam, “Theory of elementary excitations in quasiperiodic structures,” Phys. Rep.376(4-5), 225–337 (2003).
[CrossRef]

Phys. Rev. A

W. J. Hsueh, C. T. Chen, and C. H. Chen, “Omnidirectional band gap in Fibonacci photonic crystals with metamaterials using a band-edge formalism,” Phys. Rev. A78(1), 013836 (2008).
[CrossRef]

Phys. Rev. B

T. Ikawa and K. Cho, “Fate of the superradiant mode in a resonant Bragg reflector,” Phys. Rev. B66(8), 085338 (2002).
[CrossRef]

J. P. Prineas, C. Ell, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Exciton-polariton eigenmodes in light-coupled In0.04Ga0.96As/GaAs semiconductor multiple-quantum-well periodic structures,” Phys. Rev. B61(20), 13863–13872 (2000).
[CrossRef]

L. Pilozzi, A. D’Andrea, and K. Cho, “Spatial dispersion effects on the optical properties of a resonant Bragg reflector,” Phys. Rev. B69(20), 205311 (2004).
[CrossRef]

S. M. Sadeghi, W. Li, X. Li, and W.-P. Huang, “Photonic electromagnetically induced transparency and collapse of superradiant modes in Bragg multiple quantum wells,” Phys. Rev. B74(16), 161304 (2006).
[CrossRef]

L. I. Deych, M. V. Erementchouk, A. A. Lisyansky, E. L. Ivchenko, and M. M. Voronov, “Exciton luminescence in one-dimensional resonant photonic crystals: a phenomenological approach,” Phys. Rev. B76(7), 075350 (2007).
[CrossRef]

L. C. Andreani, G. Panzarini, A. V. Kavokin, and M. R. Vladimirova, “Effect of inhomogeneous broadening on optical properties of excitons in quantum wells,” Phys. Rev. B57(8), 4670–4680 (1998).
[CrossRef]

M. Ghulinyan, C. J. Oton, L. D. Negro, L. Pavesi, R. Sapienza, M. Colocci, and D. S. Wiersma, “Light-pulse propagation in Fibonacci quasicrystals,” Phys. Rev. B71(9), 094204 (2005).
[CrossRef]

A. N. Poddubny, L. Pilozzi, M. M. Voronov, and E. L. Ivchenko, “Resonant Fibonacci quantum well structures in one dimension,” Phys. Rev. B77(11), 113306 (2008).
[CrossRef]

Phys. Rev. B Condens. Matter

Y. Merle d’Aubigne, A. Wasiela, H. Mariette, and T. Dietl, “Polariton effects in multiple-quantum-well structures of CdTe/Cd1-xZnxTe,” Phys. Rev. B Condens. Matter54(19), 14003–14011 (1996).

Phys. Rev. Lett.

D. Levine and P. J. Steinhardt, “Quasicrystals: a new class of ordered structures,” Phys. Rev. Lett.53(26), 2477–2480 (1984).
[CrossRef]

M. Hübner, J. Kuhl, T. Stroucken, A. Knorr, S. W. Koch, R. Hey, and K. Ploog, “Collective effects of excitons in multiple-quantum-well Bragg and anti-Bragg structures,” Phys. Rev. Lett.76(22), 4199–4202 (1996).
[CrossRef] [PubMed]

M. Hübner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Optical lattices achieved by excitons in periodic quantum well structures,” Phys. Rev. Lett.83(14), 2841–2844 (1999).
[CrossRef]

A. Askitopoulos, L. Mouchliadis, I. Iorsh, G. Christmann, J. J. Baumberg, M. A. Kaliteevski, Z. Hatzopoulos, and P. G. Savvidis, “Bragg polaritons: strong coupling and amplification in an unfolded microcavity,” Phys. Rev. Lett.106(7), 076401 (2011).
[CrossRef] [PubMed]

G. H. Lodden and R. J. Holmes, “Long-range, photon-mediated exciton hybridization in an all-organic, one-dimensional photonic crystal,” Phys. Rev. Lett.109(9), 096401 (2012).
[CrossRef] [PubMed]

Phys. Solid State

E. L. Ivchenko, A. I. Nesvizhskii, and S. Jorda, “Bragg reflection of light from quantum-well structures,” Phys. Solid State36, 1156–1161 (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

PL spectra in the FQWs for generation orders v = 8,9,10 and in the PQWs for the corresponding numbers of QWs, including N = 34,54,88. The exciton parameters of the systems are as follows: ħω0 = 1.523 eV, ħΓ0 = 25 μeV, ħΓ = 180 μeV, and nb = 3.59. The normalized frequency Ω is defined by Ω = (ω-ω0)D/(2πc).

Fig. 2
Fig. 2

(a) PL and (b) absorption spectra in the FQW with v = 10 and the PQW with u = 44. The interval thicknesses of the structures vary with the thickness filling factors F = 0.25, 0.35, 0.45, and 0.5. The other parameters are consistent with those mentioned in the caption in Fig. 1.

Fig. 3
Fig. 3

The maxima of the PL intensity, defined as PLmax, in the FQWs and PQWs versus the thickness filling factor F. The solid and dashed lines represent the numerical results of the FQWs for the generation orders v = 6 to 10 and the PQWs where the numbers of QWs are N = 12 to 88, respectively.

Fig. 4
Fig. 4

The squared electric field in (a) the FQW with v = 8 and F = 0.4, (b) the PQW with u = 17 and F = 0.4, and (c) the PQW with u = 17 and F = 0.25. The insets (d), (e), and (f) are a partial close-up of (a), (b), and (c), respectively. The simulation is made for a plane wave normal incidence from the left side, the vacuum region, and at ω(PLmax). The blue lines stand for the QW locations. The green line divides the vacuum region from the structure. The squared electric field equals |E[ω(PLmax)]|2 for z>0 multiplied by the background refractive index for the sake of clarity. The horizontal lines II, IR and IT indicate the incident, reflected and transmitted waves, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

[ d 2 d z 2 + q 2 (ω) ]E(z)= 4π ω 2 c 2 χ exc (ω) Φ 1s (z)[ d z Φ 1s ( z )E( z )+Σ ],
I(ω)=4Ξ | t | 2 | qS φ 1 | 2 j=1 N | | M R p=N j+1 M p ( s j1 s j2 ) | 2 ,

Metrics