Abstract

The realization of an all-solid microstructured optical fiber based on chalcogenide glasses was achieved. The fiber presents As2S3 inclusions selected as low refractive index material (n = 2.4) embedded in a As38Se62 glass matrix (n = 2.8). The single mode regime of the fiber was demonstrated both theoretically by multipole method calculations and experimentally by near field measurements. Optical transmission measurements of the microstructured fiber and single index fibers made of the initial glasses reveal an excess of losses as high as 6-7 dB/m. This excess is not due to the guide geometry but can be explained by the presence of defects in the glass interface regions.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Syst. Tech. J.52, 265–269 (1973).
  2. P. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J.53, 1021–1039 (1974).
  3. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996).
    [CrossRef] [PubMed]
  4. F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros, and S. Leon-Saval, Foundations of Photonic Crystal Fibres (Second Edition) (Imperial College, 2012).
  5. X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fiber,” Opt. Express11(18), 2225–2230 (2003).
    [CrossRef] [PubMed]
  6. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol.27(11), 1617–1630 (2009).
    [CrossRef]
  7. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. S. J. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express13(1), 309–314 (2005).
    [CrossRef] [PubMed]
  8. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. S. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett.29(20), 2369–2371 (2004).
    [CrossRef] [PubMed]
  9. J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express18(25), 26647–26654 (2010).
    [CrossRef] [PubMed]
  10. M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010).
    [CrossRef] [PubMed]
  11. J. A. Savage and S. Nielsen, “Chalcogenide glasses transmitting in the infrared between 1 and 20 μm — a state of the art review,” Infrared Phys.5(4), 195–204 (1965).
    [CrossRef]
  12. X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids326–327, 519–523 (2003).
    [CrossRef]
  13. G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater.45(13), 1439–1460 (2009).
    [CrossRef]
  14. L. Calvez, H. L. Ma, J. Lucas, and X. H. Zhang, “Glasses and glass-ceramics based on GeSe2-Sb2Se3 and halides for far infrared transmission,” J. Non-Cryst. Solids354(12-13), 1123–1127 (2008).
    [CrossRef]
  15. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett.36(24), 1998–2000 (2000).
    [CrossRef]
  16. L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express14(3), 1280–1285 (2006).
    [CrossRef] [PubMed]
  17. J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull.41(7), 1303–1309 (2006).
    [CrossRef]
  18. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).
  19. Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett.21(24), 1804–1806 (2009).
    [CrossRef]
  20. M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express17(24), 21608–21614 (2009).
    [CrossRef] [PubMed]
  21. N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids356(35-36), 1829–1836 (2010).
    [CrossRef]
  22. Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J. C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express18(9), 9107–9112 (2010).
    [CrossRef] [PubMed]
  23. G. Renversez, F. Bordas, and B. T. Kuhlmey, “Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size,” Opt. Lett.30(11), 1264–1266 (2005).
    [CrossRef] [PubMed]
  24. L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn.116(1358), 1024–1027 (2008).
    [CrossRef]

2010 (4)

2009 (4)

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett.21(24), 1804–1806 (2009).
[CrossRef]

M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express17(24), 21608–21614 (2009).
[CrossRef] [PubMed]

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater.45(13), 1439–1460 (2009).
[CrossRef]

B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol.27(11), 1617–1630 (2009).
[CrossRef]

2008 (2)

L. Calvez, H. L. Ma, J. Lucas, and X. H. Zhang, “Glasses and glass-ceramics based on GeSe2-Sb2Se3 and halides for far infrared transmission,” J. Non-Cryst. Solids354(12-13), 1123–1127 (2008).
[CrossRef]

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn.116(1358), 1024–1027 (2008).
[CrossRef]

2006 (3)

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull.41(7), 1303–1309 (2006).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

2005 (2)

2004 (1)

2003 (2)

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fiber,” Opt. Express11(18), 2225–2230 (2003).
[CrossRef] [PubMed]

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids326–327, 519–523 (2003).
[CrossRef]

2000 (1)

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett.36(24), 1998–2000 (2000).
[CrossRef]

1996 (1)

1974 (1)

P. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J.53, 1021–1039 (1974).

1973 (1)

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Syst. Tech. J.52, 265–269 (1973).

1965 (1)

J. A. Savage and S. Nielsen, “Chalcogenide glasses transmitting in the infrared between 1 and 20 μm — a state of the art review,” Infrared Phys.5(4), 195–204 (1965).
[CrossRef]

Adam, J. L.

Adam, J.-L.

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn.116(1358), 1024–1027 (2008).
[CrossRef]

Aggarwal, I. D.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

Argyros, A.

Astle, H. W.

P. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J.53, 1021–1039 (1974).

Atkin, D. M.

Bellec, Y.

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids326–327, 519–523 (2003).
[CrossRef]

Benson, T. M.

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett.21(24), 1804–1806 (2009).
[CrossRef]

Bird, D. M.

Birks, T. A.

Bordas, F.

Bosc, D.

J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull.41(7), 1303–1309 (2006).
[CrossRef]

Brilland, L.

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J. C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express18(9), 9107–9112 (2010).
[CrossRef] [PubMed]

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express18(25), 26647–26654 (2010).
[CrossRef] [PubMed]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn.116(1358), 1024–1027 (2008).
[CrossRef]

J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull.41(7), 1303–1309 (2006).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

Broderick, N. G. R.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett.36(24), 1998–2000 (2000).
[CrossRef]

Calvez, L.

Canat, G.

Chartier, T.

Chaudhari, C.

Churbanov, M. F.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater.45(13), 1439–1460 (2009).
[CrossRef]

Cordeiro, C. M. B.

Coulombier, Q.

Da, N.

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids356(35-36), 1829–1836 (2010).
[CrossRef]

Desevedavy, F.

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn.116(1358), 1024–1027 (2008).
[CrossRef]

Dianov, E. M.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater.45(13), 1439–1460 (2009).
[CrossRef]

Duhant, M.

Eggleton, B. J.

El Amraoui, M.

El-Amraoui, M.

Fatome, J.

Feng, X.

Finazzi, V.

Florea, C. M.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

Fortier, C.

Furniss, D.

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett.21(24), 1804–1806 (2009).
[CrossRef]

Gadret, G.

George, A. K.

Granzow, N.

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids356(35-36), 1829–1836 (2010).
[CrossRef]

Guimond, Y.

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids326–327, 519–523 (2003).
[CrossRef]

Hedley, T. D.

Hewak, D.

Hewak, D. W.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett.36(24), 1998–2000 (2000).
[CrossRef]

Houizot, P.

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J. C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express18(9), 9107–9112 (2010).
[CrossRef] [PubMed]

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn.116(1358), 1024–1027 (2008).
[CrossRef]

Jouan, T.

J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull.41(7), 1303–1309 (2006).
[CrossRef]

Jules, J. C.

Kaiser, P.

P. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J.53, 1021–1039 (1974).

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Syst. Tech. J.52, 265–269 (1973).

Kibler, B.

Kito, C.

Knight, J. C.

Kuhlmey, B. T.

Kung, F.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

Le Person, J.

J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull.41(7), 1303–1309 (2006).
[CrossRef]

Leon-Saval, S. G.

Li, Q. Q.

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett.21(24), 1804–1806 (2009).
[CrossRef]

Lian, Z. G.

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett.21(24), 1804–1806 (2009).
[CrossRef]

Liao, M.

Luan, F.

Lucas, J.

L. Calvez, H. L. Ma, J. Lucas, and X. H. Zhang, “Glasses and glass-ceramics based on GeSe2-Sb2Se3 and halides for far infrared transmission,” J. Non-Cryst. Solids354(12-13), 1123–1127 (2008).
[CrossRef]

Ma, H. L.

L. Calvez, H. L. Ma, J. Lucas, and X. H. Zhang, “Glasses and glass-ceramics based on GeSe2-Sb2Se3 and halides for far infrared transmission,” J. Non-Cryst. Solids354(12-13), 1123–1127 (2008).
[CrossRef]

Marcatili, E. A. J.

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Syst. Tech. J.52, 265–269 (1973).

Matsumoto, M.

Mechin, D.

Méchin, D.

Messaddeq, Y.

Miller, S. E.

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Syst. Tech. J.52, 265–269 (1973).

Misumi, T.

Monro, T. M.

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fiber,” Opt. Express11(18), 2225–2230 (2003).
[CrossRef] [PubMed]

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett.36(24), 1998–2000 (2000).
[CrossRef]

Monteville, A.

N’guyen, T. N.

Nguyen, T.

Nguyen, T. N.

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn.116(1358), 1024–1027 (2008).
[CrossRef]

Nguyen, V. Q.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

Nielsen, S.

J. A. Savage and S. Nielsen, “Chalcogenide glasses transmitting in the infrared between 1 and 20 μm — a state of the art review,” Infrared Phys.5(4), 195–204 (1965).
[CrossRef]

Ohishi, Y.

Orain, H.

Pain, T.

Pearce, G. J.

Petropoulos, P.

Plotnichenko, V. G.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater.45(13), 1439–1460 (2009).
[CrossRef]

Polacchini, C. F.

Pureza, P.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

Qin, G.

Renard, W.

Renversez, G.

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express18(25), 26647–26654 (2010).
[CrossRef] [PubMed]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J. C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express18(9), 9107–9112 (2010).
[CrossRef] [PubMed]

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn.116(1358), 1024–1027 (2008).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

G. Renversez, F. Bordas, and B. T. Kuhlmey, “Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size,” Opt. Lett.30(11), 1264–1266 (2005).
[CrossRef] [PubMed]

Richardson, D. J.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett.36(24), 1998–2000 (2000).
[CrossRef]

Russell, P. S. J.

Russell, P. St. J.

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids356(35-36), 1829–1836 (2010).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996).
[CrossRef] [PubMed]

Sanghera, J. S.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

Sangleboeuf, J. C.

Savage, J. A.

J. A. Savage and S. Nielsen, “Chalcogenide glasses transmitting in the infrared between 1 and 20 μm — a state of the art review,” Infrared Phys.5(4), 195–204 (1965).
[CrossRef]

Schmidt, M. A.

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids356(35-36), 1829–1836 (2010).
[CrossRef]

Seddon, A. B.

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett.21(24), 1804–1806 (2009).
[CrossRef]

Shaw, L. B.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

Shiryaev, V. S.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater.45(13), 1439–1460 (2009).
[CrossRef]

Skripatchev, I.

Smektala, F.

Snopatin, G. E.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater.45(13), 1439–1460 (2009).
[CrossRef]

Suzuki, T.

Szpulak, M.

Toupin, P.

Traynor, N.

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn.116(1358), 1024–1027 (2008).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

Troles, J.

Trolès, J.

West, Y. D.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett.36(24), 1998–2000 (2000).
[CrossRef]

Wondraczek, L.

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids356(35-36), 1829–1836 (2010).
[CrossRef]

Wu, D. K. C.

Yan, X.

Zhang, X. H.

L. Calvez, H. L. Ma, J. Lucas, and X. H. Zhang, “Glasses and glass-ceramics based on GeSe2-Sb2Se3 and halides for far infrared transmission,” J. Non-Cryst. Solids354(12-13), 1123–1127 (2008).
[CrossRef]

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids326–327, 519–523 (2003).
[CrossRef]

Bell Syst. Tech. J. (2)

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Syst. Tech. J.52, 265–269 (1973).

P. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell Syst. Tech. J.53, 1021–1039 (1974).

Electron. Lett. (1)

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett.36(24), 1998–2000 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett.21(24), 1804–1806 (2009).
[CrossRef]

Infrared Phys. (1)

J. A. Savage and S. Nielsen, “Chalcogenide glasses transmitting in the infrared between 1 and 20 μm — a state of the art review,” Infrared Phys.5(4), 195–204 (1965).
[CrossRef]

Inorg. Mater. (1)

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater.45(13), 1439–1460 (2009).
[CrossRef]

J. Ceram. Soc. Jpn. (1)

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn.116(1358), 1024–1027 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (3)

L. Calvez, H. L. Ma, J. Lucas, and X. H. Zhang, “Glasses and glass-ceramics based on GeSe2-Sb2Se3 and halides for far infrared transmission,” J. Non-Cryst. Solids354(12-13), 1123–1127 (2008).
[CrossRef]

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids326–327, 519–523 (2003).
[CrossRef]

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids356(35-36), 1829–1836 (2010).
[CrossRef]

J. Optoelectron. Adv. Mater. (1)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater.8, 2148–2155 (2006).

Mater. Res. Bull. (1)

J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull.41(7), 1303–1309 (2006).
[CrossRef]

Opt. Express (7)

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fiber,” Opt. Express11(18), 2225–2230 (2003).
[CrossRef] [PubMed]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. S. J. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express13(1), 309–314 (2005).
[CrossRef] [PubMed]

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express18(25), 26647–26654 (2010).
[CrossRef] [PubMed]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J. C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express18(9), 9107–9112 (2010).
[CrossRef] [PubMed]

M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express17(24), 21608–21614 (2009).
[CrossRef] [PubMed]

Opt. Lett. (3)

Other (1)

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, A. Argyros, and S. Leon-Saval, Foundations of Photonic Crystal Fibres (Second Edition) (Imperial College, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics