Abstract

Using acousto-optical deflectors at high deflection speeds via acoustical frequency chirping induces astigmatism, deforming the laser beam in an unfavorable way. Within the paper, we present a method to prevent this effect for an ultrashort pulsed laser beam via acoustical frequency jumps synchronized to the pulse-to-pulse pause. We also demonstrate and give a method to calculate beam shaping capability of acousto-optical deflectors via arbitrary spatial frequency developments during ultrashort laser pulse transit through the deflector. Cylinder-lens-free deflection at >2000 rad/s and beam shaping capability is demonstrated experimentally. In our experiments the switching time between two beam shapes is 1 µs.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Kirkby, K. M. N. Srinivas Nadella, and R. A. Silver, “A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy,” Opt. Express 18, 13720 (2010).
  2. V. Iyer, T. M. Hoogland, and P. Saggau, “Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy,” J. Neurophysiol.95(1), 535–545 (2005).
    [CrossRef] [PubMed]
  3. D. Vučinić, T. J. Sejnowski, and B. Lu, “A compact multiphoton 3D imaging system for recording fast neuronal activity,” PLoS ONE 2, e699 (2007).
  4. G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci.11(6), 713–720 (2008).
    [CrossRef] [PubMed]
  5. S. Bruening, G. Hennig, S. Eifel, and A. Gillner, “Ultrafast scan techniques for 3D-μm structuring of metal surfaces with high repetitive ps-laser pulses,” Phys. Procedia12, 105–115 (2011).
    [CrossRef]
  6. I. Chang, “I. Acoustooptic devices and applications,” IEEE Trans. Sonics Ultrason.23(1), 2–21 (1976).
    [CrossRef]
  7. A. Kaplan, N. Friedman, and N. Davidson, “Acousto-optic lens with very fast focus scanning,” Opt. Lett.26(14), 1078–1080 (2001).
    [CrossRef] [PubMed]
  8. N. Friedman, A. Kaplan, and N. Davidson, “Acousto-optic scanning system with very fast nonlinear scans,” Opt. Lett.25(24), 1762–1764 (2000).
    [CrossRef] [PubMed]
  9. K. Du, “Thin layer ablation with lasers of different beam profiles: energy efficiency and over filling factor,” Proc. SPIE7202, 72020Q (2009).
    [CrossRef]
  10. A. Laskin and V. Laskin, “πShaper – Refractive beam shaping optics for advanced laser technologies,” J. Phys.: Conf. Ser. 276, 12171 (2011).
  11. K. Nemoto, T. Fujii, N. Goto, T. Nayuki, and Y. K. Kanai, “Transformation of a laser beam intensity profile by a deformable mirror,” Opt. Lett.21(3), 168–170 (1996).
    [CrossRef] [PubMed]
  12. N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett.30(12), 1479–1481 (2005).
    [CrossRef] [PubMed]
  13. F. M. Dickey and S. C. Holswade, Laser Beam Shaping: Theory and Techniques (Marcel Dekker, 2000).
  14. A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, “Dynamic pulsed-beam shaping using a TAG lens in the near UV,” Appl. Phys., A Mater. Sci. Process.93(1), 231–234 (2008).
    [CrossRef]
  15. Y. Naciri, A. Perennou, V. Quintard, and J. Le Bihan, “Acousto-optic deflector-based optical packet synchronization,” Microw. Opt. Technol. Lett.26(6), 394–396 (2000).
    [CrossRef]
  16. M. Duocastella and C. B. Arnold, “Enhanced depth of field laser processing using an ultra-high-speed axial scanner,” Appl. Phys. Lett. 102, 61113 (2013).
  17. A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, “High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens,” Opt. Lett.33(18), 2146–2148 (2008).
    [CrossRef] [PubMed]

2013 (1)

M. Duocastella and C. B. Arnold, “Enhanced depth of field laser processing using an ultra-high-speed axial scanner,” Appl. Phys. Lett. 102, 61113 (2013).

2011 (2)

A. Laskin and V. Laskin, “πShaper – Refractive beam shaping optics for advanced laser technologies,” J. Phys.: Conf. Ser. 276, 12171 (2011).

S. Bruening, G. Hennig, S. Eifel, and A. Gillner, “Ultrafast scan techniques for 3D-μm structuring of metal surfaces with high repetitive ps-laser pulses,” Phys. Procedia12, 105–115 (2011).
[CrossRef]

2010 (1)

P. A. Kirkby, K. M. N. Srinivas Nadella, and R. A. Silver, “A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy,” Opt. Express 18, 13720 (2010).

2009 (1)

K. Du, “Thin layer ablation with lasers of different beam profiles: energy efficiency and over filling factor,” Proc. SPIE7202, 72020Q (2009).
[CrossRef]

2008 (3)

A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, “High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens,” Opt. Lett.33(18), 2146–2148 (2008).
[CrossRef] [PubMed]

A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, “Dynamic pulsed-beam shaping using a TAG lens in the near UV,” Appl. Phys., A Mater. Sci. Process.93(1), 231–234 (2008).
[CrossRef]

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci.11(6), 713–720 (2008).
[CrossRef] [PubMed]

2007 (1)

D. Vučinić, T. J. Sejnowski, and B. Lu, “A compact multiphoton 3D imaging system for recording fast neuronal activity,” PLoS ONE 2, e699 (2007).

2005 (2)

V. Iyer, T. M. Hoogland, and P. Saggau, “Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy,” J. Neurophysiol.95(1), 535–545 (2005).
[CrossRef] [PubMed]

N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett.30(12), 1479–1481 (2005).
[CrossRef] [PubMed]

2001 (1)

2000 (2)

N. Friedman, A. Kaplan, and N. Davidson, “Acousto-optic scanning system with very fast nonlinear scans,” Opt. Lett.25(24), 1762–1764 (2000).
[CrossRef] [PubMed]

Y. Naciri, A. Perennou, V. Quintard, and J. Le Bihan, “Acousto-optic deflector-based optical packet synchronization,” Microw. Opt. Technol. Lett.26(6), 394–396 (2000).
[CrossRef]

1996 (1)

1976 (1)

I. Chang, “I. Acoustooptic devices and applications,” IEEE Trans. Sonics Ultrason.23(1), 2–21 (1976).
[CrossRef]

Arnold, C. B.

M. Duocastella and C. B. Arnold, “Enhanced depth of field laser processing using an ultra-high-speed axial scanner,” Appl. Phys. Lett. 102, 61113 (2013).

A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, “High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens,” Opt. Lett.33(18), 2146–2148 (2008).
[CrossRef] [PubMed]

A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, “Dynamic pulsed-beam shaping using a TAG lens in the near UV,” Appl. Phys., A Mater. Sci. Process.93(1), 231–234 (2008).
[CrossRef]

Audouard, E.

Bruening, S.

S. Bruening, G. Hennig, S. Eifel, and A. Gillner, “Ultrafast scan techniques for 3D-μm structuring of metal surfaces with high repetitive ps-laser pulses,” Phys. Procedia12, 105–115 (2011).
[CrossRef]

Chang, I.

I. Chang, “I. Acoustooptic devices and applications,” IEEE Trans. Sonics Ultrason.23(1), 2–21 (1976).
[CrossRef]

Davidson, N.

Du, K.

K. Du, “Thin layer ablation with lasers of different beam profiles: energy efficiency and over filling factor,” Proc. SPIE7202, 72020Q (2009).
[CrossRef]

Duemani Reddy, G.

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci.11(6), 713–720 (2008).
[CrossRef] [PubMed]

Duocastella, M.

M. Duocastella and C. B. Arnold, “Enhanced depth of field laser processing using an ultra-high-speed axial scanner,” Appl. Phys. Lett. 102, 61113 (2013).

Eifel, S.

S. Bruening, G. Hennig, S. Eifel, and A. Gillner, “Ultrafast scan techniques for 3D-μm structuring of metal surfaces with high repetitive ps-laser pulses,” Phys. Procedia12, 105–115 (2011).
[CrossRef]

Fink, R.

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci.11(6), 713–720 (2008).
[CrossRef] [PubMed]

Friedman, N.

Fujii, T.

Gillner, A.

S. Bruening, G. Hennig, S. Eifel, and A. Gillner, “Ultrafast scan techniques for 3D-μm structuring of metal surfaces with high repetitive ps-laser pulses,” Phys. Procedia12, 105–115 (2011).
[CrossRef]

Goto, N.

Hennig, G.

S. Bruening, G. Hennig, S. Eifel, and A. Gillner, “Ultrafast scan techniques for 3D-μm structuring of metal surfaces with high repetitive ps-laser pulses,” Phys. Procedia12, 105–115 (2011).
[CrossRef]

Hoogland, T. M.

V. Iyer, T. M. Hoogland, and P. Saggau, “Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy,” J. Neurophysiol.95(1), 535–545 (2005).
[CrossRef] [PubMed]

Huignard, J.-P.

Huot, N.

Iyer, V.

V. Iyer, T. M. Hoogland, and P. Saggau, “Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy,” J. Neurophysiol.95(1), 535–545 (2005).
[CrossRef] [PubMed]

Kanai, Y. K.

Kaplan, A.

Kelleher, K.

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci.11(6), 713–720 (2008).
[CrossRef] [PubMed]

Kirkby, P. A.

P. A. Kirkby, K. M. N. Srinivas Nadella, and R. A. Silver, “A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy,” Opt. Express 18, 13720 (2010).

Larat, C.

Laskin, A.

A. Laskin and V. Laskin, “πShaper – Refractive beam shaping optics for advanced laser technologies,” J. Phys.: Conf. Ser. 276, 12171 (2011).

Laskin, V.

A. Laskin and V. Laskin, “πShaper – Refractive beam shaping optics for advanced laser technologies,” J. Phys.: Conf. Ser. 276, 12171 (2011).

Le Bihan, J.

Y. Naciri, A. Perennou, V. Quintard, and J. Le Bihan, “Acousto-optic deflector-based optical packet synchronization,” Microw. Opt. Technol. Lett.26(6), 394–396 (2000).
[CrossRef]

Loiseaux, B.

Lu, B.

D. Vučinić, T. J. Sejnowski, and B. Lu, “A compact multiphoton 3D imaging system for recording fast neuronal activity,” PLoS ONE 2, e699 (2007).

McLeod, E.

A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, “Dynamic pulsed-beam shaping using a TAG lens in the near UV,” Appl. Phys., A Mater. Sci. Process.93(1), 231–234 (2008).
[CrossRef]

A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, “High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens,” Opt. Lett.33(18), 2146–2148 (2008).
[CrossRef] [PubMed]

Mermillod-Blondin, A.

A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, “High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens,” Opt. Lett.33(18), 2146–2148 (2008).
[CrossRef] [PubMed]

A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, “Dynamic pulsed-beam shaping using a TAG lens in the near UV,” Appl. Phys., A Mater. Sci. Process.93(1), 231–234 (2008).
[CrossRef]

Naciri, Y.

Y. Naciri, A. Perennou, V. Quintard, and J. Le Bihan, “Acousto-optic deflector-based optical packet synchronization,” Microw. Opt. Technol. Lett.26(6), 394–396 (2000).
[CrossRef]

Nayuki, T.

Nemoto, K.

Perennou, A.

Y. Naciri, A. Perennou, V. Quintard, and J. Le Bihan, “Acousto-optic deflector-based optical packet synchronization,” Microw. Opt. Technol. Lett.26(6), 394–396 (2000).
[CrossRef]

Quintard, V.

Y. Naciri, A. Perennou, V. Quintard, and J. Le Bihan, “Acousto-optic deflector-based optical packet synchronization,” Microw. Opt. Technol. Lett.26(6), 394–396 (2000).
[CrossRef]

Saggau, P.

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci.11(6), 713–720 (2008).
[CrossRef] [PubMed]

V. Iyer, T. M. Hoogland, and P. Saggau, “Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy,” J. Neurophysiol.95(1), 535–545 (2005).
[CrossRef] [PubMed]

Sanner, N.

Sejnowski, T. J.

D. Vučinić, T. J. Sejnowski, and B. Lu, “A compact multiphoton 3D imaging system for recording fast neuronal activity,” PLoS ONE 2, e699 (2007).

Silver, R. A.

P. A. Kirkby, K. M. N. Srinivas Nadella, and R. A. Silver, “A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy,” Opt. Express 18, 13720 (2010).

Srinivas Nadella, K. M. N.

P. A. Kirkby, K. M. N. Srinivas Nadella, and R. A. Silver, “A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy,” Opt. Express 18, 13720 (2010).

Vucinic, D.

D. Vučinić, T. J. Sejnowski, and B. Lu, “A compact multiphoton 3D imaging system for recording fast neuronal activity,” PLoS ONE 2, e699 (2007).

A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy (1)

P. A. Kirkby, K. M. N. Srinivas Nadella, and R. A. Silver, “A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy,” Opt. Express 18, 13720 (2010).

A compact multiphoton 3D imaging system for recording fast neuronal activity (1)

D. Vučinić, T. J. Sejnowski, and B. Lu, “A compact multiphoton 3D imaging system for recording fast neuronal activity,” PLoS ONE 2, e699 (2007).

Appl. Phys., A Mater. Sci. Process. (1)

A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, “Dynamic pulsed-beam shaping using a TAG lens in the near UV,” Appl. Phys., A Mater. Sci. Process.93(1), 231–234 (2008).
[CrossRef]

Enhanced depth of field laser processing using an ultra-high-speed axial scanner (1)

M. Duocastella and C. B. Arnold, “Enhanced depth of field laser processing using an ultra-high-speed axial scanner,” Appl. Phys. Lett. 102, 61113 (2013).

IEEE Trans. Sonics Ultrason. (1)

I. Chang, “I. Acoustooptic devices and applications,” IEEE Trans. Sonics Ultrason.23(1), 2–21 (1976).
[CrossRef]

J. Neurophysiol. (1)

V. Iyer, T. M. Hoogland, and P. Saggau, “Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy,” J. Neurophysiol.95(1), 535–545 (2005).
[CrossRef] [PubMed]

Microw. Opt. Technol. Lett. (1)

Y. Naciri, A. Perennou, V. Quintard, and J. Le Bihan, “Acousto-optic deflector-based optical packet synchronization,” Microw. Opt. Technol. Lett.26(6), 394–396 (2000).
[CrossRef]

Nat. Neurosci. (1)

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci.11(6), 713–720 (2008).
[CrossRef] [PubMed]

Opt. Lett. (5)

Phys. Procedia (1)

S. Bruening, G. Hennig, S. Eifel, and A. Gillner, “Ultrafast scan techniques for 3D-μm structuring of metal surfaces with high repetitive ps-laser pulses,” Phys. Procedia12, 105–115 (2011).
[CrossRef]

Proc. SPIE (1)

K. Du, “Thin layer ablation with lasers of different beam profiles: energy efficiency and over filling factor,” Proc. SPIE7202, 72020Q (2009).
[CrossRef]

Other (2)

A. Laskin and V. Laskin, “πShaper – Refractive beam shaping optics for advanced laser technologies,” J. Phys.: Conf. Ser. 276, 12171 (2011).

F. M. Dickey and S. C. Holswade, Laser Beam Shaping: Theory and Techniques (Marcel Dekker, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Method of cylinder-lens-free acousto-optical deflection via frequency jumps synchronized to the ultrashort laser pulse repetition rate.

Fig. 2
Fig. 2

Schematic of our experimental setup.

Fig. 3
Fig. 3

Captured beam profiles after cylinder-lens-free acousto-optical deflection (wavelength 355 nm, repetition rate 1 MHz, raw beam 1/e2 diameter 2.7 mm, pulse energy 200 nJ, pulse duration 300 fs). (a): Center position without deflection; (b): Alternating deflection into y-direction (θy = +/− 0.9 mrad; fy = {110 MHz, 140 MHz}) @ 1800 rad/s; (c) Equivalent to (b) but with insufficient synchronization and fy = {120 MHz, 130 MHz}; (d): Alternating deflection into xy-direction (θy = θx = +/− 0.9 mrad; fx = fy = {110 MHz, 140 MHz}) @ 2540 rad/s; (e): Equivalent to (d) but two additional deflection positions.

Fig. 4
Fig. 4

Reflected light microscopic photograph of single pulse ablated microstructures produced on the surface of a PMMA sample. The laser beam was deflected in y-direction via galvanometer scanner (2 m/s) and in x-direction via cylinder-lens-free acousto-optical deflection (+/− 25.8 m/s). F-Theta objective focal distance 32 mm, raw beam 1/e2 diameter before focusing optic 10 mm, wavelength 355 nm, repetition rate 1 MHz, pulse energy 80 nJ, pulse duration 300 fs.

Fig. 5
Fig. 5

Schematic of beam shaping via synchronized frequency jumps and related optical path difference OPD(y) for a) cylinder-lens-free beam deflection, b) jump from low to high acoustical frequency and c) jump from high to low acoustical frequency.

Fig. 6
Fig. 6

Demonstration of basic beam shaping capability of the setup shown in Fig. 2. The applied acoustical frequencies fy1/fx1/fy2/fx2 in MHz are: (a) 125/125/125/125 (no shaping), (b) 124/124/126/126 (Divergence / Top-Hat), (c) 127/127/123/123 (Convergence), (d) 118/118/132/132 (Split into four beams), (e) 132/132/118/118 (Self-interference), (f) 125/130/125/120 (Astigmatism x), (g) 124/126/126/124 (Astigmatism x variant), (h) 120/130/130/120 (Split into two beams), (i) 133/125/117/125 (Self-interference y), (j) 132/134/118/116 (Self-interference variant).

Tables (2)

Tables Icon

Table 1 Specifications of fs laser and acousto-optical deflector.

Tables Icon

Table 2 Estimation of wavefront controlling capability of AOD beam shaper.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d θ y dy = λ V d f y dy = λ V 2 d f y dt
D= Δ θ y Δy = λ V 2 Δ f y Δt
θ y 0 + θ y (y)= λ V ( f y0 + f y (y) )
θ y (y)= λ V f y (y) θ x (x)= λ V f x (x)
OPD(x,y)=xtan( θ x (x))+ytan( θ y (y)) λ V ( x f x (x)+y f y (y) )
OPD(x,y)= λ V n=1 ( x n f xn + y n f yn )

Metrics