Abstract

We report a thorough analysis of the spectral properties of an ytterbium-doped fibre amplifier, seeded by a Nd:YAG laser, whose linewidth has been narrowed down to 1 Hz by locking the laser to an ultrastable reference cavity. We measured the phase noise contribution from the amplifier, showing that it does not depend on the amplification gain, nor on the seed laser linewidth. Moreover, the amplifier-induced phase noise does not affect the final linewidth, as verified by heterodyne linewidth measurement within the 0.2 Hz resolution bandwidth of our acquisition set-up. Preservation of spectral purity below Hz-level is promising for more demanding applications, from nonlinear optics to frequency/time-standard transfer over fibre links.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Tünnermann, J. H. Pöld, J. Neumann, D. Kracht, B. Willke, and P. Weßels, “Beam quality and noise properties of coherently combined ytterbium doped single frequency fiber amplifiers,” Opt. Express19, 19600–19606 (2011).
    [CrossRef] [PubMed]
  2. I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express20, 9178–9186 (2012).
    [CrossRef] [PubMed]
  3. I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy,” Mol. Phys.110, 2103–2109 (2012).
    [CrossRef]
  4. K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place,” Science336, 441–444 (2012).
    [CrossRef] [PubMed]
  5. C. Clivati, G. Bolognini, D. Calonico, S. Faralli, F. Levi, A. Mura, and N. Poli, “Distributed Raman optical amplification in phase coherent transfer of optical frequencies,” arXiv: 1211.3910 [physics.optics] (2012).
  6. H. A. Haus and J. Mullen, “Quantum Noise in Linear Amplifiers,” Phys. Rev.128, 2407–2413 (1962).
    [CrossRef]
  7. H. Heffner, “The Fundamental Noise Limit of Linear Amplifiers,” Proc. IRE12, 1604–1608 (1962).
    [CrossRef]
  8. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron.13, 546–551 (2007).
    [CrossRef]
  9. G. J. Cowle, P. R. Morkel, R. I. Loming, and D. N. Payne, “Spectral broadening due to fibre amplifier phase noise,” Electron. Lett.26, 424–425 (1990).
    [CrossRef]
  10. H. Okamura and K. Iwatsuki, “Spectral linewidth broadening in Er-doped-fibre amplifiers measured with less than 1.4 kHz linewidth light source,” Electron. Lett.26, 1965–1967 (1990).
    [CrossRef]
  11. E. Desurvire, “Analysis of noise figure spectral distribution in erbium doped fiber amplifiers pumped near 980 and 1480 nm,” Appl. Opt.29, 3118–3125 (1990).
    [CrossRef] [PubMed]
  12. L. Moller, “Novel aspects of spectral broadening due to fiber amplifier phase noise,” IEEE J. Quantum Electron.34, 1554–1558 (1998).
    [CrossRef]
  13. E. Rochat and R. Dandliker, “New investigations on the effect of fiber amplifier phase noise,” IEEE J. Sel. Top. Quantum Electron.7, 49–54 (2001).
    [CrossRef]
  14. R. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33, 1049–1056 (1997).
    [CrossRef]
  15. L. Zhang, S. Cui, C. Liu, J. Zhou, and Y. Feng, “170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier,” Opt. Express21, 5456–5462 (2013).
    [CrossRef] [PubMed]
  16. P. Cancio, P. Zeppini, P. De Natale, S. Taccheo, and P. Laporta, “Noise characteristics of a high-power ytterbium-doped fibre amplifier at 1083 nm,” Appl. Phys. B70, 763–768 (2000).
    [CrossRef]
  17. S. Höfer, A. Liem, J. Limpert, H. Zellemer, and A. Tünnermann, “Single-frequency master-oscillator fiber power amplifier system emitting 20 W of power,” Opt. Lett.26, 1326–1328 (2001).
    [CrossRef]
  18. M. Tröbs, P. Weßels, and C. Fallnich, “Phase-noise properties of an ytterbium-doped fiber amplifier for the Laser Interferometer Space Antenna,” Opt. Lett.30, 789–791 (2005).
    [CrossRef] [PubMed]
  19. M. Tröbs, P. Weßels, and C. Fallnich, “Power- and frequency-noise characteristics of an Yb-doped fiber amplifier and actuators for stabilization,” Opt. Express13, 2224–2235 (2005).
    [CrossRef] [PubMed]
  20. L. Conti, M. De Rosa, and F. Marin, “High-spectral-purity laser system for the AURIGA detector optical readout,” J. Opt. Soc. Am. B20, 462–468 (2003).
    [CrossRef]
  21. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. W. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B31, 97–105 (1983).
    [CrossRef]
  22. G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt.49, 4801–4807 (2010).
    [CrossRef] [PubMed]
  23. D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A26, 12–18 (1982).
    [CrossRef]

2013 (1)

2012 (4)

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express20, 9178–9186 (2012).
[CrossRef] [PubMed]

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy,” Mol. Phys.110, 2103–2109 (2012).
[CrossRef]

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place,” Science336, 441–444 (2012).
[CrossRef] [PubMed]

C. Clivati, G. Bolognini, D. Calonico, S. Faralli, F. Levi, A. Mura, and N. Poli, “Distributed Raman optical amplification in phase coherent transfer of optical frequencies,” arXiv: 1211.3910 [physics.optics] (2012).

2011 (1)

2010 (1)

2007 (1)

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron.13, 546–551 (2007).
[CrossRef]

2005 (2)

2003 (1)

2001 (2)

S. Höfer, A. Liem, J. Limpert, H. Zellemer, and A. Tünnermann, “Single-frequency master-oscillator fiber power amplifier system emitting 20 W of power,” Opt. Lett.26, 1326–1328 (2001).
[CrossRef]

E. Rochat and R. Dandliker, “New investigations on the effect of fiber amplifier phase noise,” IEEE J. Sel. Top. Quantum Electron.7, 49–54 (2001).
[CrossRef]

2000 (1)

P. Cancio, P. Zeppini, P. De Natale, S. Taccheo, and P. Laporta, “Noise characteristics of a high-power ytterbium-doped fibre amplifier at 1083 nm,” Appl. Phys. B70, 763–768 (2000).
[CrossRef]

1998 (1)

L. Moller, “Novel aspects of spectral broadening due to fiber amplifier phase noise,” IEEE J. Quantum Electron.34, 1554–1558 (1998).
[CrossRef]

1997 (1)

R. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33, 1049–1056 (1997).
[CrossRef]

1990 (3)

G. J. Cowle, P. R. Morkel, R. I. Loming, and D. N. Payne, “Spectral broadening due to fibre amplifier phase noise,” Electron. Lett.26, 424–425 (1990).
[CrossRef]

H. Okamura and K. Iwatsuki, “Spectral linewidth broadening in Er-doped-fibre amplifiers measured with less than 1.4 kHz linewidth light source,” Electron. Lett.26, 1965–1967 (1990).
[CrossRef]

E. Desurvire, “Analysis of noise figure spectral distribution in erbium doped fiber amplifiers pumped near 980 and 1480 nm,” Appl. Opt.29, 3118–3125 (1990).
[CrossRef] [PubMed]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. W. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B31, 97–105 (1983).
[CrossRef]

1982 (1)

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A26, 12–18 (1982).
[CrossRef]

1962 (2)

H. A. Haus and J. Mullen, “Quantum Noise in Linear Amplifiers,” Phys. Rev.128, 2407–2413 (1962).
[CrossRef]

H. Heffner, “The Fundamental Noise Limit of Linear Amplifiers,” Proc. IRE12, 1604–1608 (1962).
[CrossRef]

Alnis, J.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place,” Science336, 441–444 (2012).
[CrossRef] [PubMed]

Bolognini, G.

C. Clivati, G. Bolognini, D. Calonico, S. Faralli, F. Levi, A. Mura, and N. Poli, “Distributed Raman optical amplification in phase coherent transfer of optical frequencies,” arXiv: 1211.3910 [physics.optics] (2012).

Calonico, D.

C. Clivati, G. Bolognini, D. Calonico, S. Faralli, F. Levi, A. Mura, and N. Poli, “Distributed Raman optical amplification in phase coherent transfer of optical frequencies,” arXiv: 1211.3910 [physics.optics] (2012).

Cancio, P.

P. Cancio, P. Zeppini, P. De Natale, S. Taccheo, and P. Laporta, “Noise characteristics of a high-power ytterbium-doped fibre amplifier at 1083 nm,” Appl. Phys. B70, 763–768 (2000).
[CrossRef]

Clivati, C.

C. Clivati, G. Bolognini, D. Calonico, S. Faralli, F. Levi, A. Mura, and N. Poli, “Distributed Raman optical amplification in phase coherent transfer of optical frequencies,” arXiv: 1211.3910 [physics.optics] (2012).

Conti, L.

Cowle, G. J.

G. J. Cowle, P. R. Morkel, R. I. Loming, and D. N. Payne, “Spectral broadening due to fibre amplifier phase noise,” Electron. Lett.26, 424–425 (1990).
[CrossRef]

Cui, S.

Dandliker, R.

E. Rochat and R. Dandliker, “New investigations on the effect of fiber amplifier phase noise,” IEEE J. Sel. Top. Quantum Electron.7, 49–54 (2001).
[CrossRef]

De Natale, P.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express20, 9178–9186 (2012).
[CrossRef] [PubMed]

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy,” Mol. Phys.110, 2103–2109 (2012).
[CrossRef]

P. Cancio, P. Zeppini, P. De Natale, S. Taccheo, and P. Laporta, “Noise characteristics of a high-power ytterbium-doped fibre amplifier at 1083 nm,” Appl. Phys. B70, 763–768 (2000).
[CrossRef]

De Rosa, M.

De Tommasi, E.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express20, 9178–9186 (2012).
[CrossRef] [PubMed]

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy,” Mol. Phys.110, 2103–2109 (2012).
[CrossRef]

Desurvire, E.

Di Domenico, G.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. W. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B31, 97–105 (1983).
[CrossRef]

Droste, S.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place,” Science336, 441–444 (2012).
[CrossRef] [PubMed]

Elliott, D. S.

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A26, 12–18 (1982).
[CrossRef]

Fallnich, C.

Faralli, S.

C. Clivati, G. Bolognini, D. Calonico, S. Faralli, F. Levi, A. Mura, and N. Poli, “Distributed Raman optical amplification in phase coherent transfer of optical frequencies,” arXiv: 1211.3910 [physics.optics] (2012).

Feng, Y.

Ford, G. W.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. W. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B31, 97–105 (1983).
[CrossRef]

Grosche, G.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place,” Science336, 441–444 (2012).
[CrossRef] [PubMed]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. W. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B31, 97–105 (1983).
[CrossRef]

Hanna, D. C.

R. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33, 1049–1056 (1997).
[CrossRef]

Hänsch, T. W.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place,” Science336, 441–444 (2012).
[CrossRef] [PubMed]

Haus, H. A.

H. A. Haus and J. Mullen, “Quantum Noise in Linear Amplifiers,” Phys. Rev.128, 2407–2413 (1962).
[CrossRef]

Heffner, H.

H. Heffner, “The Fundamental Noise Limit of Linear Amplifiers,” Proc. IRE12, 1604–1608 (1962).
[CrossRef]

Hickey, L. M. B.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron.13, 546–551 (2007).
[CrossRef]

Höfer, S.

Holzwarth, R.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place,” Science336, 441–444 (2012).
[CrossRef] [PubMed]

Horley, R.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron.13, 546–551 (2007).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. W. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B31, 97–105 (1983).
[CrossRef]

Iwatsuki, K.

H. Okamura and K. Iwatsuki, “Spectral linewidth broadening in Er-doped-fibre amplifiers measured with less than 1.4 kHz linewidth light source,” Electron. Lett.26, 1965–1967 (1990).
[CrossRef]

Jeong, Y.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron.13, 546–551 (2007).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. W. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B31, 97–105 (1983).
[CrossRef]

Kracht, D.

Laporta, P.

P. Cancio, P. Zeppini, P. De Natale, S. Taccheo, and P. Laporta, “Noise characteristics of a high-power ytterbium-doped fibre amplifier at 1083 nm,” Appl. Phys. B70, 763–768 (2000).
[CrossRef]

Legero, T.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place,” Science336, 441–444 (2012).
[CrossRef] [PubMed]

Levi, F.

C. Clivati, G. Bolognini, D. Calonico, S. Faralli, F. Levi, A. Mura, and N. Poli, “Distributed Raman optical amplification in phase coherent transfer of optical frequencies,” arXiv: 1211.3910 [physics.optics] (2012).

Liem, A.

Limpert, J.

Liu, C.

Loming, R. I.

G. J. Cowle, P. R. Morkel, R. I. Loming, and D. N. Payne, “Spectral broadening due to fibre amplifier phase noise,” Electron. Lett.26, 424–425 (1990).
[CrossRef]

Maddaloni, P.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express20, 9178–9186 (2012).
[CrossRef] [PubMed]

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy,” Mol. Phys.110, 2103–2109 (2012).
[CrossRef]

Marin, F.

Moller, L.

L. Moller, “Novel aspects of spectral broadening due to fiber amplifier phase noise,” IEEE J. Quantum Electron.34, 1554–1558 (1998).
[CrossRef]

Morkel, P. R.

G. J. Cowle, P. R. Morkel, R. I. Loming, and D. N. Payne, “Spectral broadening due to fibre amplifier phase noise,” Electron. Lett.26, 424–425 (1990).
[CrossRef]

Mosca, S.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express20, 9178–9186 (2012).
[CrossRef] [PubMed]

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy,” Mol. Phys.110, 2103–2109 (2012).
[CrossRef]

Mullen, J.

H. A. Haus and J. Mullen, “Quantum Noise in Linear Amplifiers,” Phys. Rev.128, 2407–2413 (1962).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. W. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B31, 97–105 (1983).
[CrossRef]

Mura, A.

C. Clivati, G. Bolognini, D. Calonico, S. Faralli, F. Levi, A. Mura, and N. Poli, “Distributed Raman optical amplification in phase coherent transfer of optical frequencies,” arXiv: 1211.3910 [physics.optics] (2012).

Neumann, J.

Nilsson, J.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron.13, 546–551 (2007).
[CrossRef]

R. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33, 1049–1056 (1997).
[CrossRef]

Okamura, H.

H. Okamura and K. Iwatsuki, “Spectral linewidth broadening in Er-doped-fibre amplifiers measured with less than 1.4 kHz linewidth light source,” Electron. Lett.26, 1965–1967 (1990).
[CrossRef]

Paschotta, R. R.

R. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33, 1049–1056 (1997).
[CrossRef]

Payne, D. N.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron.13, 546–551 (2007).
[CrossRef]

G. J. Cowle, P. R. Morkel, R. I. Loming, and D. N. Payne, “Spectral broadening due to fibre amplifier phase noise,” Electron. Lett.26, 424–425 (1990).
[CrossRef]

Pöld, J. H.

Poli, N.

C. Clivati, G. Bolognini, D. Calonico, S. Faralli, F. Levi, A. Mura, and N. Poli, “Distributed Raman optical amplification in phase coherent transfer of optical frequencies,” arXiv: 1211.3910 [physics.optics] (2012).

Predehl, K.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place,” Science336, 441–444 (2012).
[CrossRef] [PubMed]

Raupach, S. M. F.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place,” Science336, 441–444 (2012).
[CrossRef] [PubMed]

Ricciardi, I.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy,” Mol. Phys.110, 2103–2109 (2012).
[CrossRef]

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express20, 9178–9186 (2012).
[CrossRef] [PubMed]

Rocco, A.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express20, 9178–9186 (2012).
[CrossRef] [PubMed]

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy,” Mol. Phys.110, 2103–2109 (2012).
[CrossRef]

Rochat, E.

E. Rochat and R. Dandliker, “New investigations on the effect of fiber amplifier phase noise,” IEEE J. Sel. Top. Quantum Electron.7, 49–54 (2001).
[CrossRef]

Roy, R.

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A26, 12–18 (1982).
[CrossRef]

Sahu, J. K.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron.13, 546–551 (2007).
[CrossRef]

Schilt, S.

Schnatz, H.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place,” Science336, 441–444 (2012).
[CrossRef] [PubMed]

Smith, S. J.

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A26, 12–18 (1982).
[CrossRef]

Taccheo, S.

P. Cancio, P. Zeppini, P. De Natale, S. Taccheo, and P. Laporta, “Noise characteristics of a high-power ytterbium-doped fibre amplifier at 1083 nm,” Appl. Phys. B70, 763–768 (2000).
[CrossRef]

Terra, O.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place,” Science336, 441–444 (2012).
[CrossRef] [PubMed]

Thomann, P.

Tröbs, M.

Tropper, A. C.

R. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33, 1049–1056 (1997).
[CrossRef]

Tünnermann, A.

Tünnermann, H.

Turner, P. W.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron.13, 546–551 (2007).
[CrossRef]

Udem, T.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place,” Science336, 441–444 (2012).
[CrossRef] [PubMed]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. W. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B31, 97–105 (1983).
[CrossRef]

Weßels, P.

Willke, B.

Zellemer, H.

Zeppini, P.

P. Cancio, P. Zeppini, P. De Natale, S. Taccheo, and P. Laporta, “Noise characteristics of a high-power ytterbium-doped fibre amplifier at 1083 nm,” Appl. Phys. B70, 763–768 (2000).
[CrossRef]

Zhang, L.

Zhou, J.

Zondy, J.-J.

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express20, 9178–9186 (2012).
[CrossRef] [PubMed]

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy,” Mol. Phys.110, 2103–2109 (2012).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (2)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. W. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B31, 97–105 (1983).
[CrossRef]

P. Cancio, P. Zeppini, P. De Natale, S. Taccheo, and P. Laporta, “Noise characteristics of a high-power ytterbium-doped fibre amplifier at 1083 nm,” Appl. Phys. B70, 763–768 (2000).
[CrossRef]

Electron. Lett. (2)

G. J. Cowle, P. R. Morkel, R. I. Loming, and D. N. Payne, “Spectral broadening due to fibre amplifier phase noise,” Electron. Lett.26, 424–425 (1990).
[CrossRef]

H. Okamura and K. Iwatsuki, “Spectral linewidth broadening in Er-doped-fibre amplifiers measured with less than 1.4 kHz linewidth light source,” Electron. Lett.26, 1965–1967 (1990).
[CrossRef]

IEEE J. Quantum Electron. (2)

L. Moller, “Novel aspects of spectral broadening due to fiber amplifier phase noise,” IEEE J. Quantum Electron.34, 1554–1558 (1998).
[CrossRef]

R. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33, 1049–1056 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

E. Rochat and R. Dandliker, “New investigations on the effect of fiber amplifier phase noise,” IEEE J. Sel. Top. Quantum Electron.7, 49–54 (2001).
[CrossRef]

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron.13, 546–551 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Mol. Phys. (1)

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, and P. De Natale, “A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy,” Mol. Phys.110, 2103–2109 (2012).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. (1)

H. A. Haus and J. Mullen, “Quantum Noise in Linear Amplifiers,” Phys. Rev.128, 2407–2413 (1962).
[CrossRef]

Phys. Rev. A (1)

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A26, 12–18 (1982).
[CrossRef]

Proc. IRE (1)

H. Heffner, “The Fundamental Noise Limit of Linear Amplifiers,” Proc. IRE12, 1604–1608 (1962).
[CrossRef]

Science (1)

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place,” Science336, 441–444 (2012).
[CrossRef] [PubMed]

Other (1)

C. Clivati, G. Bolognini, D. Calonico, S. Faralli, F. Levi, A. Mura, and N. Poli, “Distributed Raman optical amplification in phase coherent transfer of optical frequencies,” arXiv: 1211.3910 [physics.optics] (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental setup. AOM: acousto-optic modulator; BS: beam splitter; EOM: electro-optic modulator; FFT: fast Fourier transform analyzer; HW: half-wave plate; PBS: polarizing beam splitter; PD: photodiode; PZT: piezoelectric actuator; QW: quarter-wave plate; SA: spectrum analyzer; ULE: Ultra Low Expansion reference cavity; YDFA: Yb-doped fibre amplifier.

Fig. 2
Fig. 2

Power spectral densities around the 110 MHz beat frequency: (a) with amplifier off, (b) with 1 W, (c) 5 W, and (d) 10 W of amplifier output power (RBW=3 kHz, VBW=300 Hz). The traces are offset for the sake of visualization. Inset: enlarged view of the beat frequency of trace (d), with RBW=100 Hz (500 kHz/div; 10 dB/div).

Fig. 3
Fig. 3

MZI output phase spectra under different experimental configurations: (a) both the cooler and the amplifier switched off; (b) cooler on, amplifier off; (c) and (d) both the cooler and the amplifier on, with the lowest and highest available gain, respectively.

Fig. 4
Fig. 4

Laser frequency noise spectra: (a) free-running; (b) locked to the ULE cavity (in-loop); (c) detection limit.

Fig. 5
Fig. 5

(a) MZI output phase spectra with 10 W of amplifier output power, with 1 kHz and 1 Hz of seed laser linewidth. The dashed line represents the separation line βϕ(f) = 8ln(2)/π2f (see text). (b) Power spectral density around the beat-note at 4 kHz for 1-Hz laser linewidth and maximum amplification. The two sidebands at 55 Hz from the carrier nicely match the peak above the βϕ-line. (c) enlarged view of the beat frequency in a log scale,RBW=0.2 Hz.

Metrics