Abstract

The capability to perform multicolor, wide field-of-view (FOV) fluorescence microscopy imaging is important in screening and pathology applications. We developed a microscopic slide-imaging system that can achieve multicolor, wide FOV, fluorescence imaging based on the Talbot effect. In this system, a light-spot grid generated by the Talbot effect illuminates the sample. By tilting the excitation beam, the Talbot-focused spot scans across the sample. The images are reconstructed by collecting the fluorescence emissions that correspond to each focused spot with a relay optics arrangement. The prototype system achieved an FOV of 12 × 10 mm2 at an acquisition time as fast as 23 s for one fluorescence channel. The resolution is fundamentally limited by spot size, with a demonstrated full-width at half-maximum spot diameter of 1.2 μm. The prototype was used to nimage green fluorescent beads, double-stained human breast cancer SK-BR-3 cells, Giardia lamblia cysts, and the Cryptosporidium parvum oocysts. This imaging method is scalable and simple for implementation of high-speed wide FOV fluorescence microscopy.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.-D. Hu and T. K. Kerppola, “Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis,” Nat. Biotechnol.21(5), 539–545 (2003).
    [CrossRef] [PubMed]
  2. H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem.48(5), 653–662 (2000).
    [CrossRef] [PubMed]
  3. G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
    [CrossRef] [PubMed]
  4. B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
    [CrossRef] [PubMed]
  5. Hamamastu NanoZoomer 2.0-HT Catalog”, retrieved http://jp.hamamatsu.com/resources/products/sys/pdf/eng/e_ndp20.pdf .
  6. A. Orth and K. Crozier, “Microscopy with microlens arrays: high throughput, high resolution and light-field imaging,” Opt. Express20(12), 13522–13531 (2012).
    [CrossRef] [PubMed]
  7. A. Orth and K. Crozier, “Gigapixel fluorescence microscopy with a water immersion microlens array,” Opt. Express21(2), 2361–2368 (2013).
    [CrossRef] [PubMed]
  8. J. Wu, X. Cui, G. Zheng, Y. M. Wang, L. M. Lee, and C. Yang, “Wide field-of-view microscope based on holographic focus grid illumination,” Opt. Lett.35(13), 2188–2190 (2010).
    [CrossRef] [PubMed]
  9. J. G. Wu, G. A. Zheng, Z. Li, and C. H. Yang, “Focal plane tuning in wide-field-of-view microscope with Talbot pattern illumination,” Opt. Lett.36(12), 2179–2181 (2011).
    [CrossRef] [PubMed]
  10. A. Olszak and M. Descour, “Microscopy in multiples,” SPIE oemagazine, May 2005, 16–18 (2005), doi: .
    [CrossRef]
  11. B. Hulsken, D. Vossen, and S. Stallinga, “High NA diffractive array illuminators and application in a multi-spot scanning microscope,” J. European Opt. Soc.-Rapid Pub.7, 12026 (2012).
    [CrossRef]
  12. C. Han, S. Pang, D. V. Bower, P. Yiu, and C. Yang, “Wide field-of-view on-chip Talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator,” Anal. Chem.85(4), 2356–2360 (2013).
    [CrossRef] [PubMed]
  13. S. Pang, C. Han, M. Kato, P. W. Sternberg, and C. H. Yang, “Wide and scalable field-of-view Talbot-grid-based fluorescence microscopy,” Opt. Lett.37(23), 5018–5020 (2012).
    [CrossRef] [PubMed]
  14. A. W. Lohmann and J. A. Thomas, “Making an array illuminator based on the Talbot effect,” Appl. Opt.29(29), 4337–4340 (1990).
    [CrossRef] [PubMed]
  15. S. Pang, C. Han, L. M. Lee, and C. H. Yang, “Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope,” Lab Chip11(21), 3698–3702 (2011).
    [CrossRef] [PubMed]
  16. J. Pawley, Handbook of Biological Confocal Microscopy (Springer, 2006).
  17. W. J. Smith and I. Genesee, Optics Software, Modern Lens Design: A Resource Manual (McGraw-Hill, 1992).
  18. A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun.2(9), 413–415 (1971).
    [CrossRef]
  19. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys.2(4), 258–261 (2006).
    [CrossRef]
  20. H. D. Luján, M. R. Mowatt, and T. E. Nash, “Mechanisms of Giardia lamblia differentiation into cysts,” Microbiol. Mol. Biol. Rev.61(3), 294–304 (1997).
    [PubMed]
  21. W. D. Montgomery, “Self-imaging objects of infinite aperture,” J. Opt. Soc. Am.57(6), 772–778 (1967).
    [CrossRef]

2013

A. Orth and K. Crozier, “Gigapixel fluorescence microscopy with a water immersion microlens array,” Opt. Express21(2), 2361–2368 (2013).
[CrossRef] [PubMed]

C. Han, S. Pang, D. V. Bower, P. Yiu, and C. Yang, “Wide field-of-view on-chip Talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator,” Anal. Chem.85(4), 2356–2360 (2013).
[CrossRef] [PubMed]

2012

2011

J. G. Wu, G. A. Zheng, Z. Li, and C. H. Yang, “Focal plane tuning in wide-field-of-view microscope with Talbot pattern illumination,” Opt. Lett.36(12), 2179–2181 (2011).
[CrossRef] [PubMed]

S. Pang, C. Han, L. M. Lee, and C. H. Yang, “Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope,” Lab Chip11(21), 3698–3702 (2011).
[CrossRef] [PubMed]

2010

J. Wu, X. Cui, G. Zheng, Y. M. Wang, L. M. Lee, and C. Yang, “Wide field-of-view microscope based on holographic focus grid illumination,” Opt. Lett.35(13), 2188–2190 (2010).
[CrossRef] [PubMed]

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

2006

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys.2(4), 258–261 (2006).
[CrossRef]

2005

A. Olszak and M. Descour, “Microscopy in multiples,” SPIE oemagazine, May 2005, 16–18 (2005), doi: .
[CrossRef]

2003

C.-D. Hu and T. K. Kerppola, “Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis,” Nat. Biotechnol.21(5), 539–545 (2003).
[CrossRef] [PubMed]

2000

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem.48(5), 653–662 (2000).
[CrossRef] [PubMed]

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

1997

H. D. Luján, M. R. Mowatt, and T. E. Nash, “Mechanisms of Giardia lamblia differentiation into cysts,” Microbiol. Mol. Biol. Rev.61(3), 294–304 (1997).
[PubMed]

1990

1971

A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun.2(9), 413–415 (1971).
[CrossRef]

1967

Bernstein, M.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Bower, D. V.

C. Han, S. Pang, D. V. Bower, P. Yiu, and C. Yang, “Wide field-of-view on-chip Talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator,” Anal. Chem.85(4), 2356–2360 (2013).
[CrossRef] [PubMed]

Bulkescher, J.

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Bunk, O.

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys.2(4), 258–261 (2006).
[CrossRef]

Cetin, C.

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Chapuis, C.

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Conrad, C.

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Crozier, K.

Cui, X.

David, C.

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys.2(4), 258–261 (2006).
[CrossRef]

Descour, M.

A. Olszak and M. Descour, “Microscopy in multiples,” SPIE oemagazine, May 2005, 16–18 (2005), doi: .
[CrossRef]

Durbin, R.

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Eils, R.

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Ellenberg, J.

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Erfle, H.

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Feng, G.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Gerlich, D. W.

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Han, C.

C. Han, S. Pang, D. V. Bower, P. Yiu, and C. Yang, “Wide field-of-view on-chip Talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator,” Anal. Chem.85(4), 2356–2360 (2013).
[CrossRef] [PubMed]

S. Pang, C. Han, M. Kato, P. W. Sternberg, and C. H. Yang, “Wide and scalable field-of-view Talbot-grid-based fluorescence microscopy,” Opt. Lett.37(23), 5018–5020 (2012).
[CrossRef] [PubMed]

S. Pang, C. Han, L. M. Lee, and C. H. Yang, “Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope,” Lab Chip11(21), 3698–3702 (2011).
[CrossRef] [PubMed]

Hattori, S.

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem.48(5), 653–662 (2000).
[CrossRef] [PubMed]

Held, M.

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Hériché, J. K.

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Hirose, S.

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem.48(5), 653–662 (2000).
[CrossRef] [PubMed]

Hu, C.-D.

C.-D. Hu and T. K. Kerppola, “Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis,” Nat. Biotechnol.21(5), 539–545 (2003).
[CrossRef] [PubMed]

Huber, W.

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Hulsken, B.

B. Hulsken, D. Vossen, and S. Stallinga, “High NA diffractive array illuminators and application in a multi-spot scanning microscope,” J. European Opt. Soc.-Rapid Pub.7, 12026 (2012).
[CrossRef]

Hyman, A. A.

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Kabbe, R.

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Kato, M.

Keller-Peck, C.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Kerppola, T. K.

C.-D. Hu and T. K. Kerppola, “Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis,” Nat. Biotechnol.21(5), 539–545 (2003).
[CrossRef] [PubMed]

Lee, L. M.

S. Pang, C. Han, L. M. Lee, and C. H. Yang, “Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope,” Lab Chip11(21), 3698–3702 (2011).
[CrossRef] [PubMed]

J. Wu, X. Cui, G. Zheng, Y. M. Wang, L. M. Lee, and C. Yang, “Wide field-of-view microscope based on holographic focus grid illumination,” Opt. Lett.35(13), 2188–2190 (2010).
[CrossRef] [PubMed]

Li, Z.

Lichtman, J. W.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Liebel, U.

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Lohmann, A. W.

A. W. Lohmann and J. A. Thomas, “Making an array illuminator based on the Talbot effect,” Appl. Opt.29(29), 4337–4340 (1990).
[CrossRef] [PubMed]

A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun.2(9), 413–415 (1971).
[CrossRef]

Luján, H. D.

H. D. Luján, M. R. Mowatt, and T. E. Nash, “Mechanisms of Giardia lamblia differentiation into cysts,” Microbiol. Mol. Biol. Rev.61(3), 294–304 (1997).
[PubMed]

Mellor, R. H.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Montgomery, W. D.

Mowatt, M. R.

H. D. Luján, M. R. Mowatt, and T. E. Nash, “Mechanisms of Giardia lamblia differentiation into cysts,” Microbiol. Mol. Biol. Rev.61(3), 294–304 (1997).
[PubMed]

Nash, T. E.

H. D. Luján, M. R. Mowatt, and T. E. Nash, “Mechanisms of Giardia lamblia differentiation into cysts,” Microbiol. Mol. Biol. Rev.61(3), 294–304 (1997).
[PubMed]

Nerbonne, J. M.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Neumann, B.

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Nguyen, Q. T.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Nishimura, H.

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem.48(5), 653–662 (2000).
[CrossRef] [PubMed]

Okumura, K.

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem.48(5), 653–662 (2000).
[CrossRef] [PubMed]

Olszak, A.

A. Olszak and M. Descour, “Microscopy in multiples,” SPIE oemagazine, May 2005, 16–18 (2005), doi: .
[CrossRef]

Orth, A.

Pang, S.

C. Han, S. Pang, D. V. Bower, P. Yiu, and C. Yang, “Wide field-of-view on-chip Talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator,” Anal. Chem.85(4), 2356–2360 (2013).
[CrossRef] [PubMed]

S. Pang, C. Han, M. Kato, P. W. Sternberg, and C. H. Yang, “Wide and scalable field-of-view Talbot-grid-based fluorescence microscopy,” Opt. Lett.37(23), 5018–5020 (2012).
[CrossRef] [PubMed]

S. Pang, C. Han, L. M. Lee, and C. H. Yang, “Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope,” Lab Chip11(21), 3698–3702 (2011).
[CrossRef] [PubMed]

Pau, G.

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Pepperkok, R.

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Peters, J. M.

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Pfeiffer, F.

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys.2(4), 258–261 (2006).
[CrossRef]

Poser, I.

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Rogers, P.

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Sanes, J. R.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Satagopam, V.

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Schmitz, M. H. A.

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Schneider, R.

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Shirai, T.

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem.48(5), 653–662 (2000).
[CrossRef] [PubMed]

Sieckmann, F.

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Silva, D. E.

A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun.2(9), 413–415 (1971).
[CrossRef]

Stallinga, S.

B. Hulsken, D. Vossen, and S. Stallinga, “High NA diffractive array illuminators and application in a multi-spot scanning microscope,” J. European Opt. Soc.-Rapid Pub.7, 12026 (2012).
[CrossRef]

Sternberg, P. W.

Thomas, J. A.

Tsurui, H.

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem.48(5), 653–662 (2000).
[CrossRef] [PubMed]

Vossen, D.

B. Hulsken, D. Vossen, and S. Stallinga, “High NA diffractive array illuminators and application in a multi-spot scanning microscope,” J. European Opt. Soc.-Rapid Pub.7, 12026 (2012).
[CrossRef]

Wallace, M.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Walter, T.

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Wang, Y. M.

Weitkamp, T.

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys.2(4), 258–261 (2006).
[CrossRef]

Wu, J.

Wu, J. G.

Wünsche, A.

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Yang, C.

C. Han, S. Pang, D. V. Bower, P. Yiu, and C. Yang, “Wide field-of-view on-chip Talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator,” Anal. Chem.85(4), 2356–2360 (2013).
[CrossRef] [PubMed]

J. Wu, X. Cui, G. Zheng, Y. M. Wang, L. M. Lee, and C. Yang, “Wide field-of-view microscope based on holographic focus grid illumination,” Opt. Lett.35(13), 2188–2190 (2010).
[CrossRef] [PubMed]

Yang, C. H.

Yiu, P.

C. Han, S. Pang, D. V. Bower, P. Yiu, and C. Yang, “Wide field-of-view on-chip Talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator,” Anal. Chem.85(4), 2356–2360 (2013).
[CrossRef] [PubMed]

Zheng, G.

Zheng, G. A.

Anal. Chem.

C. Han, S. Pang, D. V. Bower, P. Yiu, and C. Yang, “Wide field-of-view on-chip Talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator,” Anal. Chem.85(4), 2356–2360 (2013).
[CrossRef] [PubMed]

Appl. Opt.

J. European Opt. Soc.-Rapid Pub.

B. Hulsken, D. Vossen, and S. Stallinga, “High NA diffractive array illuminators and application in a multi-spot scanning microscope,” J. European Opt. Soc.-Rapid Pub.7, 12026 (2012).
[CrossRef]

J. Histochem. Cytochem.

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem.48(5), 653–662 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

Lab Chip

S. Pang, C. Han, L. M. Lee, and C. H. Yang, “Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope,” Lab Chip11(21), 3698–3702 (2011).
[CrossRef] [PubMed]

Microbiol. Mol. Biol. Rev.

H. D. Luján, M. R. Mowatt, and T. E. Nash, “Mechanisms of Giardia lamblia differentiation into cysts,” Microbiol. Mol. Biol. Rev.61(3), 294–304 (1997).
[PubMed]

Nat. Biotechnol.

C.-D. Hu and T. K. Kerppola, “Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis,” Nat. Biotechnol.21(5), 539–545 (2003).
[CrossRef] [PubMed]

Nat. Phys.

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys.2(4), 258–261 (2006).
[CrossRef]

Nature

B. Neumann, T. Walter, J. K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, C. Cetin, F. Sieckmann, G. Pau, R. Kabbe, A. Wünsche, V. Satagopam, M. H. A. Schmitz, C. Chapuis, D. W. Gerlich, R. Schneider, R. Eils, W. Huber, J. M. Peters, A. A. Hyman, R. Durbin, R. Pepperkok, and J. Ellenberg, “Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes,” Nature464(7289), 721–727 (2010).
[CrossRef] [PubMed]

Neuron

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Opt. Commun.

A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun.2(9), 413–415 (1971).
[CrossRef]

Opt. Express

Opt. Lett.

SPIE oemagazine

A. Olszak and M. Descour, “Microscopy in multiples,” SPIE oemagazine, May 2005, 16–18 (2005), doi: .
[CrossRef]

Other

Hamamastu NanoZoomer 2.0-HT Catalog”, retrieved http://jp.hamamatsu.com/resources/products/sys/pdf/eng/e_ndp20.pdf .

J. Pawley, Handbook of Biological Confocal Microscopy (Springer, 2006).

W. J. Smith and I. Genesee, Optics Software, Modern Lens Design: A Resource Manual (McGraw-Hill, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Comparison between scanning with an original focused grid and with a Talbot-focused grid. (a) By tilting the incident beam angle, the original focused spots generated by the microlens grid as well as the Talbot-focused spots can be shifted for scanning. (b) Simulated focused spot intensity profiles at the tilt angle of one-half pitch shift are 15 µm in this case. The angle needed for an one-half pitch shift for original focused spot is 0.2 radian, and the focused spot was affected by off-axis aberrations (b1 and b2). The angle needed for one-half pitch shift for the Talbot-focused spot is 0.0041 radian, and the focused spot maintains good quality (b3 and b4).

Fig. 2
Fig. 2

The system setup for the Talbot microscope. (a) The optical setup for generating an angular shift incident beam to the microlens grid. L1 (f = 25.4 mm) and L2 (f = 125 mm) expand the beam to fit the MEMS mirror diameter. After the beam passes through the PBS and the λ/4 WP (one-quarter wave plate), the beam was further expanded by L3 (f = 50 mm) and L4 (f = 400 mm). (b) The system setup for the sample and detection: The sample was placed at one Talbot distance away from the focused grid generated by the microlens grid, and two SLR camera lenses formed a 1:1 relay system to collect the fluorescence signal. The optical filters were inserted between the relay lenses. (c) A small area of Talbot-focused spot grid imaged by the CMOS camera without the bandpass filter.

Fig. 3
Fig. 3

Resolution of the system. (a) The point spread function of the Talbot-focused spot was measured by scanning a 200-nm fluorescence bead. (b) The z profile of the Talbot-focused spot, (c) the x profile of the Talbot-focused spot, and (d) the y profile. The insets in (c) and (d) are the images of the 200-nm fluorescence bead.

Fig. 4
Fig. 4

The image of the fluorescence microsphere. (a) The full field-of-view (FOV) image of 8-µm microspheres. (b and c) The enlarged views of two 0.55 mm × 0.55 mm microspheres. (d) A further enlarged view to show two microspheres next to each other.

Fig. 5
Fig. 5

Fluorescent images of human breast cancer SK-BR-3 cells. The cell membrane marker Her2 was stained with Alexafluor 488 (green), and the cell nucleus was stained with PI (red). (a) The full FOV image. (b1) The enlarged view of the region indicated in (a). (b2) The green channel. (b3) The red channel.

Fig. 6
Fig. 6

The fluorescent image of a mixture of Giardia lamblia cysts labeled with Alexa Fluor® 488 and Cryptosporidum parvum oocysts labeled with Qdot® 625. (a) The green channel shows the Giardia lamblia cysts. (b) The red channel shows the Cryptosporidum parvum oocysts. (c) The superimposed image taken by the system. (d) The 20 × fluorescence microscope image of the same area.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Z T =2 d 2 /λ.
Δ=2tan(θ) d 2 /λ.
I(z)= I 0 / [ 1+ (z/ z r ) 2 ] ,
2 z r = 2π ω 0 2 λ

Metrics