Abstract

Optical aberrations induced in thin-disk laser elements with an undoped layer, performing as an anti-ASE cap, are analyzed. A numerical model, used for calculations of the optical path difference (OPD) induced by temperature distribution inside the laser element and by deformation of surfaces, was confirmed experimentally. Results of numerical modeling manifest that adding an undoped layer on the thin-disk has detrimental effect on the reflected laser beam brightness and scaling. It is also shown that brightness of a thin-disk laser may be enhanced by the use of the Gaussian pump beam profile.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007).
    [CrossRef]
  2. J. Mende, E. Schmid, J. Speiser, G. Spindler, and A. Giesen, “Thin-disk laser – power scaling to the kW regime in fundamental mode operation,” Proc. SPIE7193, V-1–V-12 (2009).
    [CrossRef]
  3. D. Kouznetsov, J. F. Bisson, and K. Ueda, “Scaling laws of disk lasers,” Opt. Mater.31(5), 754–759 (2009).
    [CrossRef]
  4. A. J. Kemp, G. J. Valentine, and D. Burns, “Progress towards high-power, high-brightness neodymium-based thin-disk lasers,” Prog. Quantum Electron.28(6), 305–344 (2004).
    [CrossRef]
  5. D. Kouznetsov and J. F. Bisson, “Role of undoped cap in the scaling of thin-disk lasers,” J. Opt. Soc. Am. B25(3), 338–345 (2008).
    [CrossRef]
  6. M. M. Tilleman, “Analysis of thermal effects in laser materials, 2: disk and slab geometry,” Opt. Mater.33(3), 363–374 (2011).
    [CrossRef]
  7. S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron.34(5), 900–909 (1998).
    [CrossRef]
  8. M. M. Tilleman, “Analysis of temperature and thermo-optical properties in optical materials. 1: Cylindrical geometry,” Opt. Mater.33(1), 48–57 (2010).
    [CrossRef]
  9. R. Paschotta, “Power scalability as a precise concept for the evaluation of laser architectures,” presented at CLEO/Europe and IQEC 2007 Conference, (Optical Society of America, 2007). http://www.arxiv.org/abs/0711.3987
    [CrossRef]

2011 (1)

M. M. Tilleman, “Analysis of thermal effects in laser materials, 2: disk and slab geometry,” Opt. Mater.33(3), 363–374 (2011).
[CrossRef]

2010 (1)

M. M. Tilleman, “Analysis of temperature and thermo-optical properties in optical materials. 1: Cylindrical geometry,” Opt. Mater.33(1), 48–57 (2010).
[CrossRef]

2009 (2)

J. Mende, E. Schmid, J. Speiser, G. Spindler, and A. Giesen, “Thin-disk laser – power scaling to the kW regime in fundamental mode operation,” Proc. SPIE7193, V-1–V-12 (2009).
[CrossRef]

D. Kouznetsov, J. F. Bisson, and K. Ueda, “Scaling laws of disk lasers,” Opt. Mater.31(5), 754–759 (2009).
[CrossRef]

2008 (1)

2007 (1)

X. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007).
[CrossRef]

2004 (1)

A. J. Kemp, G. J. Valentine, and D. Burns, “Progress towards high-power, high-brightness neodymium-based thin-disk lasers,” Prog. Quantum Electron.28(6), 305–344 (2004).
[CrossRef]

1998 (1)

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron.34(5), 900–909 (1998).
[CrossRef]

Bisson, J. F.

D. Kouznetsov, J. F. Bisson, and K. Ueda, “Scaling laws of disk lasers,” Opt. Mater.31(5), 754–759 (2009).
[CrossRef]

D. Kouznetsov and J. F. Bisson, “Role of undoped cap in the scaling of thin-disk lasers,” J. Opt. Soc. Am. B25(3), 338–345 (2008).
[CrossRef]

Bonner, C. L.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron.34(5), 900–909 (1998).
[CrossRef]

Burns, D.

A. J. Kemp, G. J. Valentine, and D. Burns, “Progress towards high-power, high-brightness neodymium-based thin-disk lasers,” Prog. Quantum Electron.28(6), 305–344 (2004).
[CrossRef]

Ferrand, B.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron.34(5), 900–909 (1998).
[CrossRef]

Giesen, A.

J. Mende, E. Schmid, J. Speiser, G. Spindler, and A. Giesen, “Thin-disk laser – power scaling to the kW regime in fundamental mode operation,” Proc. SPIE7193, V-1–V-12 (2009).
[CrossRef]

Giesen, X. A.

X. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007).
[CrossRef]

Guy, S.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron.34(5), 900–909 (1998).
[CrossRef]

Hanna, D. C.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron.34(5), 900–909 (1998).
[CrossRef]

Kemp, A. J.

A. J. Kemp, G. J. Valentine, and D. Burns, “Progress towards high-power, high-brightness neodymium-based thin-disk lasers,” Prog. Quantum Electron.28(6), 305–344 (2004).
[CrossRef]

Kouznetsov, D.

D. Kouznetsov, J. F. Bisson, and K. Ueda, “Scaling laws of disk lasers,” Opt. Mater.31(5), 754–759 (2009).
[CrossRef]

D. Kouznetsov and J. F. Bisson, “Role of undoped cap in the scaling of thin-disk lasers,” J. Opt. Soc. Am. B25(3), 338–345 (2008).
[CrossRef]

Mende, J.

J. Mende, E. Schmid, J. Speiser, G. Spindler, and A. Giesen, “Thin-disk laser – power scaling to the kW regime in fundamental mode operation,” Proc. SPIE7193, V-1–V-12 (2009).
[CrossRef]

Schmid, E.

J. Mende, E. Schmid, J. Speiser, G. Spindler, and A. Giesen, “Thin-disk laser – power scaling to the kW regime in fundamental mode operation,” Proc. SPIE7193, V-1–V-12 (2009).
[CrossRef]

Shepherd, D. P.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron.34(5), 900–909 (1998).
[CrossRef]

Speiser, J.

J. Mende, E. Schmid, J. Speiser, G. Spindler, and A. Giesen, “Thin-disk laser – power scaling to the kW regime in fundamental mode operation,” Proc. SPIE7193, V-1–V-12 (2009).
[CrossRef]

X. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007).
[CrossRef]

Spindler, G.

J. Mende, E. Schmid, J. Speiser, G. Spindler, and A. Giesen, “Thin-disk laser – power scaling to the kW regime in fundamental mode operation,” Proc. SPIE7193, V-1–V-12 (2009).
[CrossRef]

Tilleman, M. M.

M. M. Tilleman, “Analysis of thermal effects in laser materials, 2: disk and slab geometry,” Opt. Mater.33(3), 363–374 (2011).
[CrossRef]

M. M. Tilleman, “Analysis of temperature and thermo-optical properties in optical materials. 1: Cylindrical geometry,” Opt. Mater.33(1), 48–57 (2010).
[CrossRef]

Tropper, A. C.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron.34(5), 900–909 (1998).
[CrossRef]

Ueda, K.

D. Kouznetsov, J. F. Bisson, and K. Ueda, “Scaling laws of disk lasers,” Opt. Mater.31(5), 754–759 (2009).
[CrossRef]

Valentine, G. J.

A. J. Kemp, G. J. Valentine, and D. Burns, “Progress towards high-power, high-brightness neodymium-based thin-disk lasers,” Prog. Quantum Electron.28(6), 305–344 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron.34(5), 900–909 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

X. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Mater. (3)

M. M. Tilleman, “Analysis of thermal effects in laser materials, 2: disk and slab geometry,” Opt. Mater.33(3), 363–374 (2011).
[CrossRef]

M. M. Tilleman, “Analysis of temperature and thermo-optical properties in optical materials. 1: Cylindrical geometry,” Opt. Mater.33(1), 48–57 (2010).
[CrossRef]

D. Kouznetsov, J. F. Bisson, and K. Ueda, “Scaling laws of disk lasers,” Opt. Mater.31(5), 754–759 (2009).
[CrossRef]

Proc. SPIE (1)

J. Mende, E. Schmid, J. Speiser, G. Spindler, and A. Giesen, “Thin-disk laser – power scaling to the kW regime in fundamental mode operation,” Proc. SPIE7193, V-1–V-12 (2009).
[CrossRef]

Prog. Quantum Electron. (1)

A. J. Kemp, G. J. Valentine, and D. Burns, “Progress towards high-power, high-brightness neodymium-based thin-disk lasers,” Prog. Quantum Electron.28(6), 305–344 (2004).
[CrossRef]

Other (1)

R. Paschotta, “Power scalability as a precise concept for the evaluation of laser architectures,” presented at CLEO/Europe and IQEC 2007 Conference, (Optical Society of America, 2007). http://www.arxiv.org/abs/0711.3987
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Calculated temperature distribution and deformations of surfaces (magnified 2000 times) of a thin-disk with a thick undoped layer (a and b) and an uncapped disk (c and d) with unconstrained deformations (a and c) and deformations suppressed by indium solder (b and d). Heat source distribution (pumping conditions) is the same for all cases.

Fig. 2
Fig. 2

Model geometry used in numerical calculations: a) freely deformable; b) constrained by indium layer.

Fig. 3
Fig. 3

Typical M2 parameter dependence on the heat source density (pump power) of the reflected Gaussian beam from a thin-disk. Samples correspond to different geometries, heat source distributions or probing beam sizes.

Fig. 4
Fig. 4

Principal optical scheme of experiment.

Fig. 5
Fig. 5

Calculated temperature distribution and deformations of surfaces (magnified 500 times) of the sample under maximum pump conditions (23 W heat power out of 35 W absorbed power).

Fig. 6
Fig. 6

Comparison of experimental and calculated data: a) measured OPD under maximum pump conditions and calculated OPD in linear and non-linear approximations; b) OPD span (minimum to maximum OPD value difference) dependence on the dissipated heat power.

Fig. 7
Fig. 7

Dependence of Qmax parameter on the heat source size for 2 mm laser beam size: a) and c) freely deformable geometry; b) and d) geometry with indium solder; a) and b) hat-top heat source; c) and d) Gaussian heat source.

Fig. 8
Fig. 8

Dependence of Qmax parameter on the heat source size for the 4 mm laser beam size: a) and c) freely deformable geometry; b) and d) geometry with indium solder; a) and b) hat-top heat source; c) and d) Gaussian heat source.

Fig. 9
Fig. 9

Dependence of M2 parameter on the heat source and the laser beam size (fill factor 1): a) and c) freely deformable geometry; b) and d) geometry with indium solder; a) and b) hat-top heat source; c) and d) Gaussian heat source.

Tables (1)

Tables Icon

Table 1 Parameters used in the numerical model

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

OPD(r)=2[ nΔ z HR (r)+( n1 )Δ z AR (r)+ dn dT 0 D ΔT(r,z)dz ],

Metrics