Abstract

Breaking the reciprocity of light propagation in a nanoscale photonic integrated circuit (PIC) is a topic of intense research, fostered by the promises of this technology in areas ranging from experimental research in classical and quantum optics to high-rate telecommunications and data interconnects. In particular, silicon PICs fabricated in processes compatible with the existing complementary metal-oxide-semiconductor (CMOS) infrastructure have attracted remarkable attention. However, a practical solution for integrating optical isolators and circulators within the current CMOS technology remains elusive. Here, we introduce a new non-reciprocal photonic circuit operating with standard single-mode waveguides or optical fibers. Our design exploits a time-dependent index modulation obtained with conventional phase modulators such as the one widely available in silicon photonics platforms. Because it is based on fully balanced interferometers and does not involve resonant structures, our scheme is also intrinsically broadband. Using realistic parameters we calculate an extinction ratio superior to 20dB and insertion loss below 3dB.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on “Nonreciprocal Light Propagation in a Silicon Photonic Circuit”,” Science335(6064), 38, author reply 38 (2012).
    [CrossRef] [PubMed]
  2. L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An All-Silicon Passive Optical Diode,” Science335(6067), 447–450 (2012).
    [CrossRef] [PubMed]
  3. J. Ballato and E. Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” Appl. Opt.34(30), 6848–6854 (1995).
    [CrossRef] [PubMed]
  4. A. E. Turner, R. L. Gunshor, and S. Datta, “New class of materials for optical isolators,” Appl. Opt.22(20), 3152–3154 (1983).
    [CrossRef] [PubMed]
  5. L. Sun, S. Jiang, J. D. Zuegel, and J. R. Marciante, “All-fiber optical isolator based on Faraday rotation in highly terbium-doped fiber,” Opt. Lett.35(5), 706–708 (2010).
    [CrossRef] [PubMed]
  6. R. L. Espinola, T. Izuhara, M.-C. Tsai, R. M. Osgood, and H. Dötsch, “Magneto-optical nonreciprocal phase shift in garnet/silicon-on-insulator waveguides,” Opt. Lett.29(9), 941–943 (2004).
    [CrossRef] [PubMed]
  7. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5(12), 758–762 (2011).
    [CrossRef]
  8. H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically Driven Nonreciprocity Induced by Interband Photonic Transition on a Silicon Chip,” Phys. Rev. Lett.109(3), 033901 (2012).
    [CrossRef] [PubMed]
  9. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3(2), 91–94 (2009).
    [CrossRef]
  10. K. Fang, Z. Yu, and S. Fan, “Photonic Aharonov-Bohm Effect Based on Dynamic Modulation,” Phys. Rev. Lett.108(15), 153901 (2012).
    [CrossRef] [PubMed]
  11. I. K. Hwang, S. H. Yun, and B. Y. Kim, “All-fiber-optic nonreciprocal modulator,” Opt. Lett.22(8), 507–509 (1997).
    [CrossRef] [PubMed]
  12. C. R. Doerr, N. Dupuis, and L. Zhang, “Optical isolator using two tandem phase modulators,” Opt. Lett.36(21), 4293–4295 (2011).
    [CrossRef] [PubMed]
  13. L. Xu and H. K. Tsang, “Nonreciprocal Optical Modulation for Colorless Integrated Optical Transceivers in Passive Optical Networks,” Opt. Commun. Netw.2(3), 131–136 (2010).
    [CrossRef]
  14. S. Bhandare, S. K. Ibrahim, D. Sandel, Z. Hongbin, F. Wust, and R. Noe, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Top. Quantum Electron.11(2), 417–421 (2005).
    [CrossRef]
  15. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15(25), 17106–17113 (2007).
    [CrossRef] [PubMed]
  16. V. Liu, D. A. B. Miller, and S. Fan, “Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect,” Opt. Express20(27), 28388–28397 (2012).
    [CrossRef] [PubMed]
  17. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
    [CrossRef]
  18. J. Buckwalter and A. Hajimiri, “An Active Analog Delay and the Delay Reference Loop,” Proceedings of the IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 17–20 (2004).
    [CrossRef]
  19. R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett.15(10), 1366–1368 (2003).
    [CrossRef]
  20. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express14(9), 3853–3863 (2006).
    [CrossRef] [PubMed]
  21. Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A Compact and Low-Loss MMI Coupler Fabricated With CMOS Technology,” IEEE Photon J.4(6), 2272–2277 (2012).
    [CrossRef]
  22. R. Halir, I. Molina-Fernandez, A. Ortega-Monux, J. G. Wanguemert-Perez, X. Dan-Xia, P. Cheben, and S. Janz, “A Design Procedure for High-Performance, Rib-Waveguide-Based Multimode Interference Couplers in Silicon-on-Insulator,” Lightwave Technology, Journalism26, 2928–2936 (2008).
  23. P. Dong, W. Qian, S. Liao, H. Liang, C.-C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, and M. Asghari, “Low loss shallow-ridge silicon waveguides,” Opt. Express18(14), 14474–14479 (2010).
    [CrossRef] [PubMed]
  24. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
    [CrossRef]
  25. K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express20(27), 27999–28008 (2012).
    [CrossRef] [PubMed]
  26. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
    [CrossRef]
  27. S.-H. Jeong and K. Morito, “Optical 90 ° hybrid with broad operating bandwidth of 94 nm,” Opt. Lett.34(22), 3505–3507 (2009).
    [CrossRef] [PubMed]
  28. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express14(10), 4357–4362 (2006).
    [CrossRef] [PubMed]

2012 (7)

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on “Nonreciprocal Light Propagation in a Silicon Photonic Circuit”,” Science335(6064), 38, author reply 38 (2012).
[CrossRef] [PubMed]

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An All-Silicon Passive Optical Diode,” Science335(6067), 447–450 (2012).
[CrossRef] [PubMed]

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically Driven Nonreciprocity Induced by Interband Photonic Transition on a Silicon Chip,” Phys. Rev. Lett.109(3), 033901 (2012).
[CrossRef] [PubMed]

K. Fang, Z. Yu, and S. Fan, “Photonic Aharonov-Bohm Effect Based on Dynamic Modulation,” Phys. Rev. Lett.108(15), 153901 (2012).
[CrossRef] [PubMed]

V. Liu, D. A. B. Miller, and S. Fan, “Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect,” Opt. Express20(27), 28388–28397 (2012).
[CrossRef] [PubMed]

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A Compact and Low-Loss MMI Coupler Fabricated With CMOS Technology,” IEEE Photon J.4(6), 2272–2277 (2012).
[CrossRef]

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express20(27), 27999–28008 (2012).
[CrossRef] [PubMed]

2011 (2)

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5(12), 758–762 (2011).
[CrossRef]

C. R. Doerr, N. Dupuis, and L. Zhang, “Optical isolator using two tandem phase modulators,” Opt. Lett.36(21), 4293–4295 (2011).
[CrossRef] [PubMed]

2010 (3)

2009 (2)

S.-H. Jeong and K. Morito, “Optical 90 ° hybrid with broad operating bandwidth of 94 nm,” Opt. Lett.34(22), 3505–3507 (2009).
[CrossRef] [PubMed]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3(2), 91–94 (2009).
[CrossRef]

2008 (1)

R. Halir, I. Molina-Fernandez, A. Ortega-Monux, J. G. Wanguemert-Perez, X. Dan-Xia, P. Cheben, and S. Janz, “A Design Procedure for High-Performance, Rib-Waveguide-Based Multimode Interference Couplers in Silicon-on-Insulator,” Lightwave Technology, Journalism26, 2928–2936 (2008).

2007 (1)

2006 (3)

2005 (1)

S. Bhandare, S. K. Ibrahim, D. Sandel, Z. Hongbin, F. Wust, and R. Noe, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Top. Quantum Electron.11(2), 417–421 (2005).
[CrossRef]

2004 (1)

2003 (1)

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett.15(10), 1366–1368 (2003).
[CrossRef]

1997 (1)

1995 (2)

J. Ballato and E. Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” Appl. Opt.34(30), 6848–6854 (1995).
[CrossRef] [PubMed]

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

1983 (1)

Asghari, M.

Baets, R.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on “Nonreciprocal Light Propagation in a Silicon Photonic Circuit”,” Science335(6064), 38, author reply 38 (2012).
[CrossRef] [PubMed]

Ballato, J.

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Bergman, K.

Bhandare, S.

S. Bhandare, S. K. Ibrahim, D. Sandel, Z. Hongbin, F. Wust, and R. Noe, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Top. Quantum Electron.11(2), 417–421 (2005).
[CrossRef]

Bi, L.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5(12), 758–762 (2011).
[CrossRef]

Brinkmeyer, E.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on “Nonreciprocal Light Propagation in a Silicon Photonic Circuit”,” Science335(6064), 38, author reply 38 (2012).
[CrossRef] [PubMed]

Chan, J.

Cheben, P.

R. Halir, I. Molina-Fernandez, A. Ortega-Monux, J. G. Wanguemert-Perez, X. Dan-Xia, P. Cheben, and S. Janz, “A Design Procedure for High-Performance, Rib-Waveguide-Based Multimode Interference Couplers in Silicon-on-Insulator,” Lightwave Technology, Journalism26, 2928–2936 (2008).

Chen, L.

Dan-Xia, X.

R. Halir, I. Molina-Fernandez, A. Ortega-Monux, J. G. Wanguemert-Perez, X. Dan-Xia, P. Cheben, and S. Janz, “A Design Procedure for High-Performance, Rib-Waveguide-Based Multimode Interference Couplers in Silicon-on-Insulator,” Lightwave Technology, Journalism26, 2928–2936 (2008).

Datta, S.

Dionne, G. F.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5(12), 758–762 (2011).
[CrossRef]

Doerr, C. R.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on “Nonreciprocal Light Propagation in a Silicon Photonic Circuit”,” Science335(6064), 38, author reply 38 (2012).
[CrossRef] [PubMed]

C. R. Doerr, N. Dupuis, and L. Zhang, “Optical isolator using two tandem phase modulators,” Opt. Lett.36(21), 4293–4295 (2011).
[CrossRef] [PubMed]

Dong, P.

Dötsch, H.

Dulkeith, E.

Dupuis, N.

Eich, M.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on “Nonreciprocal Light Propagation in a Silicon Photonic Circuit”,” Science335(6064), 38, author reply 38 (2012).
[CrossRef] [PubMed]

Espinola, R. L.

R. L. Espinola, T. Izuhara, M.-C. Tsai, R. M. Osgood, and H. Dötsch, “Magneto-optical nonreciprocal phase shift in garnet/silicon-on-insulator waveguides,” Opt. Lett.29(9), 941–943 (2004).
[CrossRef] [PubMed]

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett.15(10), 1366–1368 (2003).
[CrossRef]

Fan, L.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An All-Silicon Passive Optical Diode,” Science335(6067), 447–450 (2012).
[CrossRef] [PubMed]

Fan, S.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on “Nonreciprocal Light Propagation in a Silicon Photonic Circuit”,” Science335(6064), 38, author reply 38 (2012).
[CrossRef] [PubMed]

V. Liu, D. A. B. Miller, and S. Fan, “Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect,” Opt. Express20(27), 28388–28397 (2012).
[CrossRef] [PubMed]

K. Fang, Z. Yu, and S. Fan, “Photonic Aharonov-Bohm Effect Based on Dynamic Modulation,” Phys. Rev. Lett.108(15), 153901 (2012).
[CrossRef] [PubMed]

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically Driven Nonreciprocity Induced by Interband Photonic Transition on a Silicon Chip,” Phys. Rev. Lett.109(3), 033901 (2012).
[CrossRef] [PubMed]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3(2), 91–94 (2009).
[CrossRef]

Fang, K.

K. Fang, Z. Yu, and S. Fan, “Photonic Aharonov-Bohm Effect Based on Dynamic Modulation,” Phys. Rev. Lett.108(15), 153901 (2012).
[CrossRef] [PubMed]

Feng, D.

Feng, N.-N.

Fong, J.

Foster, M. A.

Freude, W.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on “Nonreciprocal Light Propagation in a Silicon Photonic Circuit”,” Science335(6064), 38, author reply 38 (2012).
[CrossRef] [PubMed]

Gaeta, A. L.

Gan, F.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A Compact and Low-Loss MMI Coupler Fabricated With CMOS Technology,” IEEE Photon J.4(6), 2272–2277 (2012).
[CrossRef]

Green, W. M.

Green, W. M. J.

Gunshor, R. L.

Halir, R.

R. Halir, I. Molina-Fernandez, A. Ortega-Monux, J. G. Wanguemert-Perez, X. Dan-Xia, P. Cheben, and S. Janz, “A Design Procedure for High-Performance, Rib-Waveguide-Based Multimode Interference Couplers in Silicon-on-Insulator,” Lightwave Technology, Journalism26, 2928–2936 (2008).

Hongbin, Z.

S. Bhandare, S. K. Ibrahim, D. Sandel, Z. Hongbin, F. Wust, and R. Noe, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Top. Quantum Electron.11(2), 417–421 (2005).
[CrossRef]

Hu, J.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5(12), 758–762 (2011).
[CrossRef]

Hwang, I. K.

Ibrahim, S. K.

S. Bhandare, S. K. Ibrahim, D. Sandel, Z. Hongbin, F. Wust, and R. Noe, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Top. Quantum Electron.11(2), 417–421 (2005).
[CrossRef]

Izuhara, T.

Jalas, D.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on “Nonreciprocal Light Propagation in a Silicon Photonic Circuit”,” Science335(6064), 38, author reply 38 (2012).
[CrossRef] [PubMed]

Janz, S.

R. Halir, I. Molina-Fernandez, A. Ortega-Monux, J. G. Wanguemert-Perez, X. Dan-Xia, P. Cheben, and S. Janz, “A Design Procedure for High-Performance, Rib-Waveguide-Based Multimode Interference Couplers in Silicon-on-Insulator,” Lightwave Technology, Journalism26, 2928–2936 (2008).

Jeong, S.-H.

Jiang, P.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5(12), 758–762 (2011).
[CrossRef]

Jiang, S.

Joannopoulos, J. D.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on “Nonreciprocal Light Propagation in a Silicon Photonic Circuit”,” Science335(6064), 38, author reply 38 (2012).
[CrossRef] [PubMed]

Kim, B. Y.

Kim, D. H.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5(12), 758–762 (2011).
[CrossRef]

Kimerling, L. C.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5(12), 758–762 (2011).
[CrossRef]

Krause, M.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on “Nonreciprocal Light Propagation in a Silicon Photonic Circuit”,” Science335(6064), 38, author reply 38 (2012).
[CrossRef] [PubMed]

Krishnamoorthy, A. V.

Kung, C.-C.

Li, L.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A Compact and Low-Loss MMI Coupler Fabricated With CMOS Technology,” IEEE Photon J.4(6), 2272–2277 (2012).
[CrossRef]

Liang, H.

Liao, S.

Lipson, M.

Lira, H.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically Driven Nonreciprocity Induced by Interband Photonic Transition on a Silicon Chip,” Phys. Rev. Lett.109(3), 033901 (2012).
[CrossRef] [PubMed]

Liu, V.

Manolatou, C.

Marciante, J. R.

Melloni, A.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on “Nonreciprocal Light Propagation in a Silicon Photonic Circuit”,” Science335(6064), 38, author reply 38 (2012).
[CrossRef] [PubMed]

Miller, D. A. B.

Molina-Fernandez, I.

R. Halir, I. Molina-Fernandez, A. Ortega-Monux, J. G. Wanguemert-Perez, X. Dan-Xia, P. Cheben, and S. Janz, “A Design Procedure for High-Performance, Rib-Waveguide-Based Multimode Interference Couplers in Silicon-on-Insulator,” Lightwave Technology, Journalism26, 2928–2936 (2008).

Morito, K.

Niu, B.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An All-Silicon Passive Optical Diode,” Science335(6067), 447–450 (2012).
[CrossRef] [PubMed]

Noe, R.

S. Bhandare, S. K. Ibrahim, D. Sandel, Z. Hongbin, F. Wust, and R. Noe, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Top. Quantum Electron.11(2), 417–421 (2005).
[CrossRef]

Ortega-Monux, A.

R. Halir, I. Molina-Fernandez, A. Ortega-Monux, J. G. Wanguemert-Perez, X. Dan-Xia, P. Cheben, and S. Janz, “A Design Procedure for High-Performance, Rib-Waveguide-Based Multimode Interference Couplers in Silicon-on-Insulator,” Lightwave Technology, Journalism26, 2928–2936 (2008).

Osgood, R. M.

R. L. Espinola, T. Izuhara, M.-C. Tsai, R. M. Osgood, and H. Dötsch, “Magneto-optical nonreciprocal phase shift in garnet/silicon-on-insulator waveguides,” Opt. Lett.29(9), 941–943 (2004).
[CrossRef] [PubMed]

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett.15(10), 1366–1368 (2003).
[CrossRef]

Padmaraju, K.

Pang, A.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A Compact and Low-Loss MMI Coupler Fabricated With CMOS Technology,” IEEE Photon J.4(6), 2272–2277 (2012).
[CrossRef]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

Petrov, A.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on “Nonreciprocal Light Propagation in a Silicon Photonic Circuit”,” Science335(6064), 38, author reply 38 (2012).
[CrossRef] [PubMed]

Popovic, M.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on “Nonreciprocal Light Propagation in a Silicon Photonic Circuit”,” Science335(6064), 38, author reply 38 (2012).
[CrossRef] [PubMed]

Qi, M.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An All-Silicon Passive Optical Diode,” Science335(6067), 447–450 (2012).
[CrossRef] [PubMed]

Qian, W.

Qiu, C.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A Compact and Low-Loss MMI Coupler Fabricated With CMOS Technology,” IEEE Photon J.4(6), 2272–2277 (2012).
[CrossRef]

Renner, H.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on “Nonreciprocal Light Propagation in a Silicon Photonic Circuit”,” Science335(6064), 38, author reply 38 (2012).
[CrossRef] [PubMed]

Rooks, M. J.

Ross, C. A.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5(12), 758–762 (2011).
[CrossRef]

Sandel, D.

S. Bhandare, S. K. Ibrahim, D. Sandel, Z. Hongbin, F. Wust, and R. Noe, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Top. Quantum Electron.11(2), 417–421 (2005).
[CrossRef]

Schares, L.

Schmidt, B. S.

Sekaric, L.

Shafiiha, R.

Sharping, J. E.

Shen, H.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An All-Silicon Passive Optical Diode,” Science335(6067), 447–450 (2012).
[CrossRef] [PubMed]

Sheng, Z.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A Compact and Low-Loss MMI Coupler Fabricated With CMOS Technology,” IEEE Photon J.4(6), 2272–2277 (2012).
[CrossRef]

Snitzer, E.

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Sun, L.

Tsai, M. C.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett.15(10), 1366–1368 (2003).
[CrossRef]

Tsai, M.-C.

Tsang, H. K.

L. Xu and H. K. Tsang, “Nonreciprocal Optical Modulation for Colorless Integrated Optical Transceivers in Passive Optical Networks,” Opt. Commun. Netw.2(3), 131–136 (2010).
[CrossRef]

Turner, A. C.

Turner, A. E.

Vanwolleghem, M.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on “Nonreciprocal Light Propagation in a Silicon Photonic Circuit”,” Science335(6064), 38, author reply 38 (2012).
[CrossRef] [PubMed]

Varghese, L. T.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An All-Silicon Passive Optical Diode,” Science335(6067), 447–450 (2012).
[CrossRef] [PubMed]

Vlasov, Y. A.

Wang, J.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An All-Silicon Passive Optical Diode,” Science335(6067), 447–450 (2012).
[CrossRef] [PubMed]

Wang, X.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A Compact and Low-Loss MMI Coupler Fabricated With CMOS Technology,” IEEE Photon J.4(6), 2272–2277 (2012).
[CrossRef]

Wang, Z.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A Compact and Low-Loss MMI Coupler Fabricated With CMOS Technology,” IEEE Photon J.4(6), 2272–2277 (2012).
[CrossRef]

Wanguemert-Perez, J. G.

R. Halir, I. Molina-Fernandez, A. Ortega-Monux, J. G. Wanguemert-Perez, X. Dan-Xia, P. Cheben, and S. Janz, “A Design Procedure for High-Performance, Rib-Waveguide-Based Multimode Interference Couplers in Silicon-on-Insulator,” Lightwave Technology, Journalism26, 2928–2936 (2008).

Weiner, A. M.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An All-Silicon Passive Optical Diode,” Science335(6067), 447–450 (2012).
[CrossRef] [PubMed]

Wu, A.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A Compact and Low-Loss MMI Coupler Fabricated With CMOS Technology,” IEEE Photon J.4(6), 2272–2277 (2012).
[CrossRef]

Wust, F.

S. Bhandare, S. K. Ibrahim, D. Sandel, Z. Hongbin, F. Wust, and R. Noe, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Top. Quantum Electron.11(2), 417–421 (2005).
[CrossRef]

Xia, F.

Xu, L.

L. Xu and H. K. Tsang, “Nonreciprocal Optical Modulation for Colorless Integrated Optical Transceivers in Passive Optical Networks,” Opt. Commun. Netw.2(3), 131–136 (2010).
[CrossRef]

Xuan, Y.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An All-Silicon Passive Optical Diode,” Science335(6067), 447–450 (2012).
[CrossRef] [PubMed]

Yardley, J. T.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett.15(10), 1366–1368 (2003).
[CrossRef]

Yu, Z.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on “Nonreciprocal Light Propagation in a Silicon Photonic Circuit”,” Science335(6064), 38, author reply 38 (2012).
[CrossRef] [PubMed]

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically Driven Nonreciprocity Induced by Interband Photonic Transition on a Silicon Chip,” Phys. Rev. Lett.109(3), 033901 (2012).
[CrossRef] [PubMed]

K. Fang, Z. Yu, and S. Fan, “Photonic Aharonov-Bohm Effect Based on Dynamic Modulation,” Phys. Rev. Lett.108(15), 153901 (2012).
[CrossRef] [PubMed]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3(2), 91–94 (2009).
[CrossRef]

Yun, S. H.

Zhang, L.

Zou, S.

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A Compact and Low-Loss MMI Coupler Fabricated With CMOS Technology,” IEEE Photon J.4(6), 2272–2277 (2012).
[CrossRef]

Zuegel, J. D.

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Bhandare, S. K. Ibrahim, D. Sandel, Z. Hongbin, F. Wust, and R. Noe, “Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material,” IEEE J. Sel. Top. Quantum Electron.11(2), 417–421 (2005).
[CrossRef]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

IEEE Photon J. (1)

Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “A Compact and Low-Loss MMI Coupler Fabricated With CMOS Technology,” IEEE Photon J.4(6), 2272–2277 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett.15(10), 1366–1368 (2003).
[CrossRef]

J. Lightwave Technol. (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

Lightwave Technology, Journalism (1)

R. Halir, I. Molina-Fernandez, A. Ortega-Monux, J. G. Wanguemert-Perez, X. Dan-Xia, P. Cheben, and S. Janz, “A Design Procedure for High-Performance, Rib-Waveguide-Based Multimode Interference Couplers in Silicon-on-Insulator,” Lightwave Technology, Journalism26, 2928–2936 (2008).

Nat. Photonics (2)

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3(2), 91–94 (2009).
[CrossRef]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5(12), 758–762 (2011).
[CrossRef]

Opt. Commun. Netw. (1)

L. Xu and H. K. Tsang, “Nonreciprocal Optical Modulation for Colorless Integrated Optical Transceivers in Passive Optical Networks,” Opt. Commun. Netw.2(3), 131–136 (2010).
[CrossRef]

Opt. Express (6)

Opt. Lett. (5)

Phys. Rev. Lett. (2)

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically Driven Nonreciprocity Induced by Interband Photonic Transition on a Silicon Chip,” Phys. Rev. Lett.109(3), 033901 (2012).
[CrossRef] [PubMed]

K. Fang, Z. Yu, and S. Fan, “Photonic Aharonov-Bohm Effect Based on Dynamic Modulation,” Phys. Rev. Lett.108(15), 153901 (2012).
[CrossRef] [PubMed]

Science (2)

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on “Nonreciprocal Light Propagation in a Silicon Photonic Circuit”,” Science335(6064), 38, author reply 38 (2012).
[CrossRef] [PubMed]

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An All-Silicon Passive Optical Diode,” Science335(6067), 447–450 (2012).
[CrossRef] [PubMed]

Other (1)

J. Buckwalter and A. Hajimiri, “An Active Analog Delay and the Delay Reference Loop,” Proceedings of the IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 17–20 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the proposed design. MMI: multimode interferometer. The waveguide length of the optical delay is Lopt = T/4 c/ng. (b) Conceptualization of the device as a non-reciprocal modulator. (c) Computed behavior for a cosine (left panels) and a bandwidth-limited square wave (right panels) as modulator drive signals. The waveforms are shown in the upper panels. In the lower panels, we plot the transmission coefficients from port 1 to 2 (solid black line), 2 to 1 (solid red line), 1 to 0 (dashed grey line) and 2 to 3 (dashed blue line). We note that the device is symmetric under the simultaneous permutation 1↔3 and 0↔2. For the simulations we used the following parameters: MMI loss = 0.1dB [21, 22]; waveguide loss = 0.3dB/cm [23]; total waveguide length = 8 mm; dynamic loss = 2dB / π phase shift (see section 5.2).

Fig. 2
Fig. 2

(a) Schematics of the cascaded configuration used to achieve isolation without modulation of the transmitted light. (b-c) Computed amplitude (b) and phase (c) transmission coefficients (amplitude is plotted in dB; phase variation is given in radian relative to an arbitrary reference). The left and right panels correspond to cosine and smoothed square-wave RF driving waveforms as shown in Fig. 1(c). Black lines are for propagation from port 2’ to 3 and red line from port 3 to 2’. Solid lines are obtained for perfectly balanced devices, while for dashed lines an arm imbalance of π/10 rad (optical phase) is introduced in each device.

Fig. 3
Fig. 3

(a) Insertion loss (IL, black curves) and extinction ratio (ER, red curves) as a function of the modulation amplitude γ (in units of π rad), for the single-pass configuration of Fig. 1(a) (solid lines) and the cascaded setting of Fig. 2(a) (dashed lines). (b) Same performances plotted as a function of the optical phase imbalance in the delay line of each device, for a fixed modulation amplitude γ = π/4. Color scheme as in (a).

Fig. 4
Fig. 4

Schematics of the two designs and their use as optical circulators. (a) Design discussed in the main text (Fig. 1(a)). (b) Alternative design discussed here. (c) “Wiring” of design (a) to be used as a non-reciprocal modulator. (d) Same for design (b). The two designs are equivalent after reversing the light propagation direction and switching the “thru” and “cross” ports.

Fig. 5
Fig. 5

Driving 4 phase modulators with a retarded square-wave signal.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

BS= 1 2 ( 1 i i 1 )
M(φ)= 1 2 ( exp(iφ)exp(iφ) i(exp(iφ)+exp(iφ)) i(exp(iφ)+exp(iφ)) exp(iφ)+exp(iφ) )
T = 1 4 ( 1 i i 1 )×( exp(i φ b ) 0 0 exp(i φ b ) )× ( 1 i i 1 ) 2 ×( exp(i φ a ) 0 0 exp(i φ a ) )×( 1 i i 1 )
T = 1 4 ( 1 i i 1 )×( exp(i φ a ) 0 0 exp(i φ a ) )× ( 1 i i 1 ) 2 ×( exp(i φ b ) 0 0 exp(i φ b ) )×( 1 i i 1 )
T =( cos(2γF(t)) sin(2γF(t)) sin(2γF(t)) cos(2γF(t)) ) and T =( 1 0 0 1 )
BS(r,k)= 10 k/10 ( 1r i r i r 1r )
MZ(γ,α,δφ,F(t))=( exp{ iφ+( α+i )γ(1+F(t)) } 0 0 exp{ ( α+i )γ(1F(t)) } )
Δn=8.8× 10 22 Δ N e 8.5× 10 18 Δ N h 0.8
Δα=8.5× 10 18 Δ N e +6.0× 10 18 Δ N h
β e [dB]4.2× 10 4 Δn×L[cm]
β h [dB]5.7× 10 4 Δ n 1.25 ×L[cm]
β π,e 3.25 dB
β π,h 0.5×L [cm] 0.25 dB
S =i( sin(4γF(t)) cos(4γF(t)) cos(4γF(t)) sin(4γF(t)) ) and S =i( 0 1 1 0 )
T =( cos(2γF(t)) sin(2γF(t)) sin(2γF(t)) cos(2γF(t)) ) and T =( 1 0 0 1 )
φ i,j = π 8 ( + + + + + + + + )

Metrics