Abstract

The metrology institute in Germany, the Physikalisch-Technische Bundesanstalt (PTB), calibrates the spectral responsivity of THz detectors at 2.52 THz traceable to International System of Units. The Terahertz detector calibration facility is equipped with a standard detector calibrated against a cryogenic radiometer at this frequency. In order to extend this service to a broader spectral range in the THz region a new standard detector was developed. This detector is based on a commercial thermopile detector. Its absorber was modified and characterized by spectroscopic methods with respect to its absorptance and reflectance from 1 THz to 5 THz and at the wavelength of a helium-neon laser in the visible spectral range. This offers the possibility of tracing back the THz power responsivity scale to the more accurate responsivity scale in the visible spectral range and thereby to reduce the uncertainty of detector calibrations in the THz range significantly.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia46(4), 160–164 (2009).
    [CrossRef]
  2. A. Steiger, B. Gutschwager, M. Kehrt, C. Monte, R. Müller, and J. Hollandt, “Optical methods for power measurement of terahertz radiation,” Opt. Express18(21), 21804–21814 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-21-21804 .
    [CrossRef] [PubMed]
  3. P. Meindl, A. E. Klinkmüller, L. Werner, U. Johannsen, and K. Grützmacher, “New UV spectral responsivity scale of the PTB based on a cryogenic radiometer and an argon plasma arc radiation source,” Metrologia43(2), S72–S77 (2006).
    [CrossRef]
  4. L. P. Boivin, “Realization of spectral responsivity scales” in Optical Radiometry, A. C. Parr, R. U. Datla, and J. L. Gardner, eds. (Elsevier, 2005), pp. 97–154.
  5. E. R. Mueller, “Optically pumped THz laser technology,” http://www.coherent.com/downloads/OpticallyPumpedLaser.pdf .
  6. H.-W. Hübers, S. Pavlov, A. Semenov, R. Köhler, L. Mahler, A. Tredicucci, H. Beere, D. Ritchie, and E. Linfield, “Terahertz quantum cascade laser as local oscillator in a heterodyne receiver,” Opt. Express13(15), 5890–5896 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-15-5890 .
    [CrossRef] [PubMed]
  7. L. Werner, J. Fischer, U. Johannsen, and J. Hartmann, “Accurate determination of the spectral responsivity of silicon trap detectors between 238 nm 1015 nm using a cryogenic radiometer,” Metrologia37(4), 279–284 (2000).
    [CrossRef]
  8. BIPM key comparison database (February 2013), “Calibration and measurement capabilities, photometry and radiometry, Germany, PTB,” second item on page 4 of http://kcdb.bipm.org/appendixC/PR/DE/PR_DE.pdf .
  9. X. Li, T. Scott, C. Cromer, D. Keenan, F. Brandt, and K. Möstl, “PTB Power measurement standards for high-power lasers: comparison between the NIST and the PTB,” Metrologia37(5), 445–447 (2000).
    [CrossRef]

2010 (1)

2009 (1)

L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia46(4), 160–164 (2009).
[CrossRef]

2006 (1)

P. Meindl, A. E. Klinkmüller, L. Werner, U. Johannsen, and K. Grützmacher, “New UV spectral responsivity scale of the PTB based on a cryogenic radiometer and an argon plasma arc radiation source,” Metrologia43(2), S72–S77 (2006).
[CrossRef]

2005 (1)

2000 (2)

L. Werner, J. Fischer, U. Johannsen, and J. Hartmann, “Accurate determination of the spectral responsivity of silicon trap detectors between 238 nm 1015 nm using a cryogenic radiometer,” Metrologia37(4), 279–284 (2000).
[CrossRef]

X. Li, T. Scott, C. Cromer, D. Keenan, F. Brandt, and K. Möstl, “PTB Power measurement standards for high-power lasers: comparison between the NIST and the PTB,” Metrologia37(5), 445–447 (2000).
[CrossRef]

Beere, H.

Brandt, F.

X. Li, T. Scott, C. Cromer, D. Keenan, F. Brandt, and K. Möstl, “PTB Power measurement standards for high-power lasers: comparison between the NIST and the PTB,” Metrologia37(5), 445–447 (2000).
[CrossRef]

Cromer, C.

X. Li, T. Scott, C. Cromer, D. Keenan, F. Brandt, and K. Möstl, “PTB Power measurement standards for high-power lasers: comparison between the NIST and the PTB,” Metrologia37(5), 445–447 (2000).
[CrossRef]

Fischer, J.

L. Werner, J. Fischer, U. Johannsen, and J. Hartmann, “Accurate determination of the spectral responsivity of silicon trap detectors between 238 nm 1015 nm using a cryogenic radiometer,” Metrologia37(4), 279–284 (2000).
[CrossRef]

Grützmacher, K.

P. Meindl, A. E. Klinkmüller, L. Werner, U. Johannsen, and K. Grützmacher, “New UV spectral responsivity scale of the PTB based on a cryogenic radiometer and an argon plasma arc radiation source,” Metrologia43(2), S72–S77 (2006).
[CrossRef]

Gutschwager, B.

Hartmann, J.

L. Werner, J. Fischer, U. Johannsen, and J. Hartmann, “Accurate determination of the spectral responsivity of silicon trap detectors between 238 nm 1015 nm using a cryogenic radiometer,” Metrologia37(4), 279–284 (2000).
[CrossRef]

Hollandt, J.

Hübers, H.-W.

Johannsen, U.

P. Meindl, A. E. Klinkmüller, L. Werner, U. Johannsen, and K. Grützmacher, “New UV spectral responsivity scale of the PTB based on a cryogenic radiometer and an argon plasma arc radiation source,” Metrologia43(2), S72–S77 (2006).
[CrossRef]

L. Werner, J. Fischer, U. Johannsen, and J. Hartmann, “Accurate determination of the spectral responsivity of silicon trap detectors between 238 nm 1015 nm using a cryogenic radiometer,” Metrologia37(4), 279–284 (2000).
[CrossRef]

Keenan, D.

X. Li, T. Scott, C. Cromer, D. Keenan, F. Brandt, and K. Möstl, “PTB Power measurement standards for high-power lasers: comparison between the NIST and the PTB,” Metrologia37(5), 445–447 (2000).
[CrossRef]

Kehrt, M.

Klinkmüller, A. E.

P. Meindl, A. E. Klinkmüller, L. Werner, U. Johannsen, and K. Grützmacher, “New UV spectral responsivity scale of the PTB based on a cryogenic radiometer and an argon plasma arc radiation source,” Metrologia43(2), S72–S77 (2006).
[CrossRef]

Köhler, R.

Li, X.

X. Li, T. Scott, C. Cromer, D. Keenan, F. Brandt, and K. Möstl, “PTB Power measurement standards for high-power lasers: comparison between the NIST and the PTB,” Metrologia37(5), 445–447 (2000).
[CrossRef]

Linfield, E.

Mahler, L.

Meindl, P.

L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia46(4), 160–164 (2009).
[CrossRef]

P. Meindl, A. E. Klinkmüller, L. Werner, U. Johannsen, and K. Grützmacher, “New UV spectral responsivity scale of the PTB based on a cryogenic radiometer and an argon plasma arc radiation source,” Metrologia43(2), S72–S77 (2006).
[CrossRef]

Monte, C.

Möstl, K.

X. Li, T. Scott, C. Cromer, D. Keenan, F. Brandt, and K. Möstl, “PTB Power measurement standards for high-power lasers: comparison between the NIST and the PTB,” Metrologia37(5), 445–447 (2000).
[CrossRef]

Müller, R.

Pavlov, S.

Richter, H.

L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia46(4), 160–164 (2009).
[CrossRef]

Ritchie, D.

Scott, T.

X. Li, T. Scott, C. Cromer, D. Keenan, F. Brandt, and K. Möstl, “PTB Power measurement standards for high-power lasers: comparison between the NIST and the PTB,” Metrologia37(5), 445–447 (2000).
[CrossRef]

Semenov, A.

Steiger, A.

Tredicucci, A.

Werner, L.

L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia46(4), 160–164 (2009).
[CrossRef]

P. Meindl, A. E. Klinkmüller, L. Werner, U. Johannsen, and K. Grützmacher, “New UV spectral responsivity scale of the PTB based on a cryogenic radiometer and an argon plasma arc radiation source,” Metrologia43(2), S72–S77 (2006).
[CrossRef]

L. Werner, J. Fischer, U. Johannsen, and J. Hartmann, “Accurate determination of the spectral responsivity of silicon trap detectors between 238 nm 1015 nm using a cryogenic radiometer,” Metrologia37(4), 279–284 (2000).
[CrossRef]

Metrologia (4)

P. Meindl, A. E. Klinkmüller, L. Werner, U. Johannsen, and K. Grützmacher, “New UV spectral responsivity scale of the PTB based on a cryogenic radiometer and an argon plasma arc radiation source,” Metrologia43(2), S72–S77 (2006).
[CrossRef]

L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia46(4), 160–164 (2009).
[CrossRef]

L. Werner, J. Fischer, U. Johannsen, and J. Hartmann, “Accurate determination of the spectral responsivity of silicon trap detectors between 238 nm 1015 nm using a cryogenic radiometer,” Metrologia37(4), 279–284 (2000).
[CrossRef]

X. Li, T. Scott, C. Cromer, D. Keenan, F. Brandt, and K. Möstl, “PTB Power measurement standards for high-power lasers: comparison between the NIST and the PTB,” Metrologia37(5), 445–447 (2000).
[CrossRef]

Opt. Express (2)

Other (3)

BIPM key comparison database (February 2013), “Calibration and measurement capabilities, photometry and radiometry, Germany, PTB,” second item on page 4 of http://kcdb.bipm.org/appendixC/PR/DE/PR_DE.pdf .

L. P. Boivin, “Realization of spectral responsivity scales” in Optical Radiometry, A. C. Parr, R. U. Datla, and J. L. Gardner, eds. (Elsevier, 2005), pp. 97–154.

E. R. Mueller, “Optically pumped THz laser technology,” http://www.coherent.com/downloads/OpticallyPumpedLaser.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Measurement setup of the THz calibration facility. The radiation emitted by the THz-laser is imaged by two off-axis parabolic mirrors (OAPM) through a wire grid polarizer (WG) onto the aperture of an iris diaphragm (D). The transmitted radiation is focused by a lens to the detector under test (DUT), to the standard detector (S) or to a THz camera (C) which are all mounted on top of a linear translation stage. The reflected radiation from the surface of a gold plated chopper blade (GC) is focused to a monitor detector (M) by another lens.

Fig. 2
Fig. 2

A typical focal beam profile of the molecular gas laser at 2.52 THz. The sensitive area of the THz camera is 12 mm x 12 mm.

Fig. 3
Fig. 3

Schematic of the radiation absorption process by a sectional drawing of the gold coated NG1 disc.

Fig. 4
Fig. 4

Spectral THz transmittance of a 0.57 mm thick NG1 sample. Two different beam splitters (blue and green dots) were used inside the FT-IR spectrometer for the measurement at lower THz frequencies at 1 THz and below.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A( v ) = 1  R( v ).
s(ν)=s( ν 0 ) A(ν) A( ν 0 ) =s(2.52THz) 1R(ν) 1R(2.52THz) .
s(ν)= s HeNe 0.9562 [ 1R(ν) ].

Metrics