Abstract

All-optical quasi logic gates are demonstrated by means of polarization-dependent four-wave mixing (FWM) in metal-insulator-metal (MIM) waveguides filled with a Kerr nonlinear medium. By using finite-difference-time-domain (FDTD) methods, we perform a quantitative comparison of the FWM efficiency associated with different pump polarization states. By manipulating the core thickness and the polarization properties of the pump and signals, all-optical NOT, NAND, NOR, and NXOR logical functions are obtained.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Jung, C. Son, S. Lee, S. Gil, H. Kim, and N. Park, “Demonstration of 10 Gbps, all-optical encryption and decryption system utilizing SOA XOR logic gates,” Opt. Quantum Electron. 40(5-6), 425–430 (2008).
    [CrossRef]
  2. A. Poustie, R. J. Manning, A. E. Kelly, and K. J. Blow, “All-optical binary counter,” Opt. Express 6(3), 69–74 (2000).
    [CrossRef] [PubMed]
  3. A. G. Rahbar, “Review of dynamic impairment-aware routing and wavelength assignment techniques in all-optical wavelength-routed networks,” IEEE Commun. Surveys Tutorials 14(4), 1065–1089 (2012).
    [CrossRef]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  5. Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
    [CrossRef] [PubMed]
  6. Y. Liu and J. Kim, “Plasmonic modulation and switching via combined utilization of Young interference and metal-insulator-metal waveguide coupling,” J. Opt. Soc. Am. B 28(11), 2712–2717 (2011).
    [CrossRef]
  7. Z. Chen, J. Chen, Y. Li, D. Pan, W. Lu, Z. Hao, J. Xu, and Q. Sun, “Simulation of nanoscale multifunctional interferometric logic gates based on coupled metal gap waveguides,” IEEE Photon. Technol. Lett. 24(16), 1366–1368 (2012).
    [CrossRef]
  8. K. Song and P. Mazumder, “Dynamic terahertz spoof surface Plasmon-polariton switch based on resonance and absorption,” IEEE Trans. Electron. Dev. 58(7), 2172–2176 (2011).
    [CrossRef]
  9. Y. Tian, L. Zhang, and L. Yang, “Electro-optic directed AND/NAND logic circuit based on two parallel microring resonators,” Opt. Express 20(15), 16794–16800 (2012).
    [CrossRef]
  10. L. Zhang, J. Ding, Y. Tian, R. Ji, L. Yang, H. Chen, P. Zhou, Y. Lu, W. Zhu, and R. Min, “Electro-optic directed logic circuit based on microring resonators for XOR/XNOR operations,” Opt. Express 20(11), 11605–11614 (2012).
    [CrossRef] [PubMed]
  11. H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
    [CrossRef] [PubMed]
  12. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
    [CrossRef]
  13. Z. J. Zhong, Y. Xu, S. Lan, Q. F. Dai, and L. J. Wu, “Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media,” Opt. Express 18(1), 79–86 (2010).
    [CrossRef] [PubMed]
  14. C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Optical bistability in subwavelength metallic grating coated by nonlinear material,” Opt. Express 15(19), 12368–12373 (2007).
    [CrossRef] [PubMed]
  15. J. A. Porto, L. Martín-Moreno, and F. J. García-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70(8), 081402 (2004).
    [CrossRef]
  16. G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
    [CrossRef] [PubMed]
  17. J. B. Khurgin and G. Sun, “The case for using gap plasmon-polaritons in second-order optical nonlinear processes,” Opt. Express 20(27), 28717–28723 (2012).
    [CrossRef] [PubMed]
  18. J. Renger, R. Quidant, N. van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104(4), 046803 (2010).
    [CrossRef] [PubMed]
  19. E. Poutrina, C. Ciracì, D. J. Gauthier, and D. R. Smith, “Enhancing four-wave-mixing processes by nanowire arrays coupled to a gold film,” Opt. Express 20(10), 11005–11013 (2012).
    [CrossRef] [PubMed]
  20. S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
    [CrossRef] [PubMed]
  21. D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriezis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express 20(7), 7655–7662 (2012).
    [CrossRef] [PubMed]
  22. C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam manipulating by metallic nano-optic lens containing nonlinear media,” Opt. Express 15(15), 9541–9546 (2007).
    [CrossRef] [PubMed]
  23. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16(1), 413–425 (2008).
    [CrossRef] [PubMed]
  24. R. W. Boyd, “The intensity-dependent refractive index,” in Nonlinear Optics, 3rd ed. (Academic Press, 2008).
  25. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
    [CrossRef]
  26. H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
    [CrossRef]
  27. N. Shibata, R. P. Braun, and R. G. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
    [CrossRef]
  28. S. Song, C. T. Allen, K. R. Demarest, and R. Hui, “Intensity-dependent phase-matching effects on four-wave mixing in optical fibers,” J. Lightwave Technol. 17(11), 2285–2290 (1999).
    [CrossRef]
  29. K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “CW three-wave mixing in single-mode optical fibers,” J. Appl. Phys. 49(10), 5098–5106 (1978).
    [CrossRef]
  30. X. Zou, W. Pan, B. Luo, and L.-S. Yan, “Generation of repetition-rate-quadrupled optical pulse trains using a PolM or a pair of PolMs,” IEEE J. Quantum Electron. 48(1), 3–7 (2012).
    [CrossRef]
  31. S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci Rep 2, 652 (2012).
    [CrossRef] [PubMed]

2012 (12)

A. G. Rahbar, “Review of dynamic impairment-aware routing and wavelength assignment techniques in all-optical wavelength-routed networks,” IEEE Commun. Surveys Tutorials 14(4), 1065–1089 (2012).
[CrossRef]

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[CrossRef] [PubMed]

Z. Chen, J. Chen, Y. Li, D. Pan, W. Lu, Z. Hao, J. Xu, and Q. Sun, “Simulation of nanoscale multifunctional interferometric logic gates based on coupled metal gap waveguides,” IEEE Photon. Technol. Lett. 24(16), 1366–1368 (2012).
[CrossRef]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[CrossRef]

Y. Tian, L. Zhang, and L. Yang, “Electro-optic directed AND/NAND logic circuit based on two parallel microring resonators,” Opt. Express 20(15), 16794–16800 (2012).
[CrossRef]

L. Zhang, J. Ding, Y. Tian, R. Ji, L. Yang, H. Chen, P. Zhou, Y. Lu, W. Zhu, and R. Min, “Electro-optic directed logic circuit based on microring resonators for XOR/XNOR operations,” Opt. Express 20(11), 11605–11614 (2012).
[CrossRef] [PubMed]

J. B. Khurgin and G. Sun, “The case for using gap plasmon-polaritons in second-order optical nonlinear processes,” Opt. Express 20(27), 28717–28723 (2012).
[CrossRef] [PubMed]

E. Poutrina, C. Ciracì, D. J. Gauthier, and D. R. Smith, “Enhancing four-wave-mixing processes by nanowire arrays coupled to a gold film,” Opt. Express 20(10), 11005–11013 (2012).
[CrossRef] [PubMed]

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriezis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express 20(7), 7655–7662 (2012).
[CrossRef] [PubMed]

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[CrossRef]

X. Zou, W. Pan, B. Luo, and L.-S. Yan, “Generation of repetition-rate-quadrupled optical pulse trains using a PolM or a pair of PolMs,” IEEE J. Quantum Electron. 48(1), 3–7 (2012).
[CrossRef]

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci Rep 2, 652 (2012).
[CrossRef] [PubMed]

2011 (4)

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[CrossRef] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[CrossRef] [PubMed]

K. Song and P. Mazumder, “Dynamic terahertz spoof surface Plasmon-polariton switch based on resonance and absorption,” IEEE Trans. Electron. Dev. 58(7), 2172–2176 (2011).
[CrossRef]

Y. Liu and J. Kim, “Plasmonic modulation and switching via combined utilization of Young interference and metal-insulator-metal waveguide coupling,” J. Opt. Soc. Am. B 28(11), 2712–2717 (2011).
[CrossRef]

2010 (2)

2008 (2)

Y. Jung, C. Son, S. Lee, S. Gil, H. Kim, and N. Park, “Demonstration of 10 Gbps, all-optical encryption and decryption system utilizing SOA XOR logic gates,” Opt. Quantum Electron. 40(5-6), 425–430 (2008).
[CrossRef]

J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16(1), 413–425 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (2)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[CrossRef] [PubMed]

2004 (1)

J. A. Porto, L. Martín-Moreno, and F. J. García-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70(8), 081402 (2004).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

1987 (1)

N. Shibata, R. P. Braun, and R. G. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[CrossRef]

1978 (1)

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “CW three-wave mixing in single-mode optical fibers,” J. Appl. Phys. 49(10), 5098–5106 (1978).
[CrossRef]

Allen, C. T.

Apostolopoulos, D.

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Avramopoulos, H.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bartal, G.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[CrossRef] [PubMed]

Baus, M.

Blow, K. J.

Bozhevolnyi, S. I.

Braun, R. P.

N. Shibata, R. P. Braun, and R. G. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[CrossRef]

Chen, H.

Chen, J.

Z. Chen, J. Chen, Y. Li, D. Pan, W. Lu, Z. Hao, J. Xu, and Q. Sun, “Simulation of nanoscale multifunctional interferometric logic gates based on coupled metal gap waveguides,” IEEE Photon. Technol. Lett. 24(16), 1366–1368 (2012).
[CrossRef]

Chen, Z.

Z. Chen, J. Chen, Y. Li, D. Pan, W. Lu, Z. Hao, J. Xu, and Q. Sun, “Simulation of nanoscale multifunctional interferometric logic gates based on coupled metal gap waveguides,” IEEE Photon. Technol. Lett. 24(16), 1366–1368 (2012).
[CrossRef]

Ciracì, C.

Cong, F.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[CrossRef] [PubMed]

Dai, Q. F.

Demarest, K. R.

Deng, Y.

Dereux, A.

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci Rep 2, 652 (2012).
[CrossRef] [PubMed]

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriezis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express 20(7), 7655–7662 (2012).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ding, J.

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Fu, Y.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[CrossRef] [PubMed]

García-Vidal, F. J.

J. A. Porto, L. Martín-Moreno, and F. J. García-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70(8), 081402 (2004).
[CrossRef]

Gauthier, D. J.

Giannoulis, G.

Gil, S.

Y. Jung, C. Son, S. Lee, S. Gil, H. Kim, and N. Park, “Demonstration of 10 Gbps, all-optical encryption and decryption system utilizing SOA XOR logic gates,” Opt. Quantum Electron. 40(5-6), 425–430 (2008).
[CrossRef]

Gong, Q.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[CrossRef] [PubMed]

Halas, N. J.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[CrossRef] [PubMed]

Hao, Z.

Z. Chen, J. Chen, Y. Li, D. Pan, W. Lu, Z. Hao, J. Xu, and Q. Sun, “Simulation of nanoscale multifunctional interferometric logic gates based on coupled metal gap waveguides,” IEEE Photon. Technol. Lett. 24(16), 1366–1368 (2012).
[CrossRef]

Hassan, K.

Hill, K. O.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “CW three-wave mixing in single-mode optical fibers,” J. Appl. Phys. 49(10), 5098–5106 (1978).
[CrossRef]

Hu, X.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[CrossRef] [PubMed]

Hui, R.

Ji, R.

Jiao, X.

Johnson, D. C.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “CW three-wave mixing in single-mode optical fibers,” J. Appl. Phys. 49(10), 5098–5106 (1978).
[CrossRef]

Jung, Y.

Y. Jung, C. Son, S. Lee, S. Gil, H. Kim, and N. Park, “Demonstration of 10 Gbps, all-optical encryption and decryption system utilizing SOA XOR logic gates,” Opt. Quantum Electron. 40(5-6), 425–430 (2008).
[CrossRef]

Kalavrouziotis, D.

Karl, M.

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “CW three-wave mixing in single-mode optical fibers,” J. Appl. Phys. 49(10), 5098–5106 (1978).
[CrossRef]

Kelly, A. E.

Khurgin, J. B.

Kim, H.

J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16(1), 413–425 (2008).
[CrossRef] [PubMed]

Y. Jung, C. Son, S. Lee, S. Gil, H. Kim, and N. Park, “Demonstration of 10 Gbps, all-optical encryption and decryption system utilizing SOA XOR logic gates,” Opt. Quantum Electron. 40(5-6), 425–430 (2008).
[CrossRef]

Kim, J.

Kriezis, E. E.

Kumar, A.

Lan, S.

Lee, B.

Lee, S.

Y. Jung, C. Son, S. Lee, S. Gil, H. Kim, and N. Park, “Demonstration of 10 Gbps, all-optical encryption and decryption system utilizing SOA XOR logic gates,” Opt. Quantum Electron. 40(5-6), 425–430 (2008).
[CrossRef]

Li, Y.

Z. Chen, J. Chen, Y. Li, D. Pan, W. Lu, Z. Hao, J. Xu, and Q. Sun, “Simulation of nanoscale multifunctional interferometric logic gates based on coupled metal gap waveguides,” IEEE Photon. Technol. Lett. 24(16), 1366–1368 (2012).
[CrossRef]

Li, Z.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[CrossRef] [PubMed]

Liu, N.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[CrossRef] [PubMed]

Liu, X.

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[CrossRef]

Liu, Y.

Lu, C.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[CrossRef] [PubMed]

Lu, H.

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[CrossRef]

Lu, W.

Z. Chen, J. Chen, Y. Li, D. Pan, W. Lu, Z. Hao, J. Xu, and Q. Sun, “Simulation of nanoscale multifunctional interferometric logic gates based on coupled metal gap waveguides,” IEEE Photon. Technol. Lett. 24(16), 1366–1368 (2012).
[CrossRef]

Lu, Y.

Luo, B.

X. Zou, W. Pan, B. Luo, and L.-S. Yan, “Generation of repetition-rate-quadrupled optical pulse trains using a PolM or a pair of PolMs,” IEEE J. Quantum Electron. 48(1), 3–7 (2012).
[CrossRef]

MacDonald, R. I.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “CW three-wave mixing in single-mode optical fibers,” J. Appl. Phys. 49(10), 5098–5106 (1978).
[CrossRef]

Manning, R. J.

Mao, D.

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[CrossRef]

Markey, L.

Martín-Moreno, L.

J. A. Porto, L. Martín-Moreno, and F. J. García-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70(8), 081402 (2004).
[CrossRef]

Mazumder, P.

K. Song and P. Mazumder, “Dynamic terahertz spoof surface Plasmon-polariton switch based on resonance and absorption,” IEEE Trans. Electron. Dev. 58(7), 2172–2176 (2011).
[CrossRef]

Min, C.

Min, R.

Ming, H.

Nordlander, P.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[CrossRef] [PubMed]

Novotny, L.

J. Renger, R. Quidant, N. van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104(4), 046803 (2010).
[CrossRef] [PubMed]

Palomba, S.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[CrossRef] [PubMed]

Pan, D.

Z. Chen, J. Chen, Y. Li, D. Pan, W. Lu, Z. Hao, J. Xu, and Q. Sun, “Simulation of nanoscale multifunctional interferometric logic gates based on coupled metal gap waveguides,” IEEE Photon. Technol. Lett. 24(16), 1366–1368 (2012).
[CrossRef]

Pan, W.

X. Zou, W. Pan, B. Luo, and L.-S. Yan, “Generation of repetition-rate-quadrupled optical pulse trains using a PolM or a pair of PolMs,” IEEE J. Quantum Electron. 48(1), 3–7 (2012).
[CrossRef]

Papaioannou, S.

Park, J.

Park, N.

Y. Jung, C. Son, S. Lee, S. Gil, H. Kim, and N. Park, “Demonstration of 10 Gbps, all-optical encryption and decryption system utilizing SOA XOR logic gates,” Opt. Quantum Electron. 40(5-6), 425–430 (2008).
[CrossRef]

Park, Y.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[CrossRef] [PubMed]

Pitilakis, A.

Pleros, N.

Pollard, R.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[CrossRef] [PubMed]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Porto, J. A.

J. A. Porto, L. Martín-Moreno, and F. J. García-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70(8), 081402 (2004).
[CrossRef]

Poustie, A.

Poutrina, E.

Quidant, R.

J. Renger, R. Quidant, N. van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104(4), 046803 (2010).
[CrossRef] [PubMed]

Rahbar, A. G.

A. G. Rahbar, “Review of dynamic impairment-aware routing and wavelength assignment techniques in all-optical wavelength-routed networks,” IEEE Commun. Surveys Tutorials 14(4), 1065–1089 (2012).
[CrossRef]

Renger, J.

J. Renger, R. Quidant, N. van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104(4), 046803 (2010).
[CrossRef] [PubMed]

Shibata, N.

N. Shibata, R. P. Braun, and R. G. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[CrossRef]

Smith, D. R.

Son, C.

Y. Jung, C. Son, S. Lee, S. Gil, H. Kim, and N. Park, “Demonstration of 10 Gbps, all-optical encryption and decryption system utilizing SOA XOR logic gates,” Opt. Quantum Electron. 40(5-6), 425–430 (2008).
[CrossRef]

Song, K.

K. Song and P. Mazumder, “Dynamic terahertz spoof surface Plasmon-polariton switch based on resonance and absorption,” IEEE Trans. Electron. Dev. 58(7), 2172–2176 (2011).
[CrossRef]

Song, S.

Sun, G.

Sun, Q.

Z. Chen, J. Chen, Y. Li, D. Pan, W. Lu, Z. Hao, J. Xu, and Q. Sun, “Simulation of nanoscale multifunctional interferometric logic gates based on coupled metal gap waveguides,” IEEE Photon. Technol. Lett. 24(16), 1366–1368 (2012).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Tekin, T.

Tian, X.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[CrossRef] [PubMed]

Tian, Y.

Tsilipakos, O.

van Hulst, N.

J. Renger, R. Quidant, N. van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104(4), 046803 (2010).
[CrossRef] [PubMed]

Vyrsokinos, K.

Waarts, R. G.

N. Shibata, R. P. Braun, and R. G. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[CrossRef]

Wang, P.

Wang, Z.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[CrossRef] [PubMed]

Weeber, J. C.

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci Rep 2, 652 (2012).
[CrossRef] [PubMed]

Weeber, J.-C.

Wei, H.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[CrossRef] [PubMed]

Wu, L. J.

Wurtz, G. A.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[CrossRef] [PubMed]

Xu, H.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[CrossRef] [PubMed]

Xu, J.

Z. Chen, J. Chen, Y. Li, D. Pan, W. Lu, Z. Hao, J. Xu, and Q. Sun, “Simulation of nanoscale multifunctional interferometric logic gates based on coupled metal gap waveguides,” IEEE Photon. Technol. Lett. 24(16), 1366–1368 (2012).
[CrossRef]

Xu, Y.

Yan, L.-S.

X. Zou, W. Pan, B. Luo, and L.-S. Yan, “Generation of repetition-rate-quadrupled optical pulse trains using a PolM or a pair of PolMs,” IEEE J. Quantum Electron. 48(1), 3–7 (2012).
[CrossRef]

Yang, H.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[CrossRef] [PubMed]

Yang, L.

Yin, X.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[CrossRef] [PubMed]

Yue, S.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[CrossRef] [PubMed]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[CrossRef]

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[CrossRef] [PubMed]

Zhang, L.

Zhang, S.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[CrossRef] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[CrossRef] [PubMed]

Zhang, X.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[CrossRef] [PubMed]

Zhong, Z. J.

Zhou, P.

Zhu, W.

Zou, X.

X. Zou, W. Pan, B. Luo, and L.-S. Yan, “Generation of repetition-rate-quadrupled optical pulse trains using a PolM or a pair of PolMs,” IEEE J. Quantum Electron. 48(1), 3–7 (2012).
[CrossRef]

IEEE Commun. Surveys Tutorials (1)

A. G. Rahbar, “Review of dynamic impairment-aware routing and wavelength assignment techniques in all-optical wavelength-routed networks,” IEEE Commun. Surveys Tutorials 14(4), 1065–1089 (2012).
[CrossRef]

IEEE J. Quantum Electron. (2)

N. Shibata, R. P. Braun, and R. G. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[CrossRef]

X. Zou, W. Pan, B. Luo, and L.-S. Yan, “Generation of repetition-rate-quadrupled optical pulse trains using a PolM or a pair of PolMs,” IEEE J. Quantum Electron. 48(1), 3–7 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. Chen, J. Chen, Y. Li, D. Pan, W. Lu, Z. Hao, J. Xu, and Q. Sun, “Simulation of nanoscale multifunctional interferometric logic gates based on coupled metal gap waveguides,” IEEE Photon. Technol. Lett. 24(16), 1366–1368 (2012).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

K. Song and P. Mazumder, “Dynamic terahertz spoof surface Plasmon-polariton switch based on resonance and absorption,” IEEE Trans. Electron. Dev. 58(7), 2172–2176 (2011).
[CrossRef]

J. Appl. Phys. (1)

K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “CW three-wave mixing in single-mode optical fibers,” J. Appl. Phys. 49(10), 5098–5106 (1978).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nano Lett. (2)

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[CrossRef] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11(2), 471–475 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[CrossRef] [PubMed]

Nat. Photonics (1)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (10)

A. Poustie, R. J. Manning, A. E. Kelly, and K. J. Blow, “All-optical binary counter,” Opt. Express 6(3), 69–74 (2000).
[CrossRef] [PubMed]

Y. Tian, L. Zhang, and L. Yang, “Electro-optic directed AND/NAND logic circuit based on two parallel microring resonators,” Opt. Express 20(15), 16794–16800 (2012).
[CrossRef]

L. Zhang, J. Ding, Y. Tian, R. Ji, L. Yang, H. Chen, P. Zhou, Y. Lu, W. Zhu, and R. Min, “Electro-optic directed logic circuit based on microring resonators for XOR/XNOR operations,” Opt. Express 20(11), 11605–11614 (2012).
[CrossRef] [PubMed]

Z. J. Zhong, Y. Xu, S. Lan, Q. F. Dai, and L. J. Wu, “Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media,” Opt. Express 18(1), 79–86 (2010).
[CrossRef] [PubMed]

C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Optical bistability in subwavelength metallic grating coated by nonlinear material,” Opt. Express 15(19), 12368–12373 (2007).
[CrossRef] [PubMed]

J. B. Khurgin and G. Sun, “The case for using gap plasmon-polaritons in second-order optical nonlinear processes,” Opt. Express 20(27), 28717–28723 (2012).
[CrossRef] [PubMed]

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriezis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express 20(7), 7655–7662 (2012).
[CrossRef] [PubMed]

C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam manipulating by metallic nano-optic lens containing nonlinear media,” Opt. Express 15(15), 9541–9546 (2007).
[CrossRef] [PubMed]

J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16(1), 413–425 (2008).
[CrossRef] [PubMed]

E. Poutrina, C. Ciracì, D. J. Gauthier, and D. R. Smith, “Enhancing four-wave-mixing processes by nanowire arrays coupled to a gold film,” Opt. Express 20(10), 11005–11013 (2012).
[CrossRef] [PubMed]

Opt. Quantum Electron. (1)

Y. Jung, C. Son, S. Lee, S. Gil, H. Kim, and N. Park, “Demonstration of 10 Gbps, all-optical encryption and decryption system utilizing SOA XOR logic gates,” Opt. Quantum Electron. 40(5-6), 425–430 (2008).
[CrossRef]

Phys. Rev. A (1)

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[CrossRef]

Phys. Rev. B (2)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

J. A. Porto, L. Martín-Moreno, and F. J. García-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70(8), 081402 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97(5), 057402 (2006).
[CrossRef] [PubMed]

J. Renger, R. Quidant, N. van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104(4), 046803 (2010).
[CrossRef] [PubMed]

Sci Rep (1)

S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J. C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, T. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci Rep 2, 652 (2012).
[CrossRef] [PubMed]

Other (1)

R. W. Boyd, “The intensity-dependent refractive index,” in Nonlinear Optics, 3rd ed. (Academic Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the MIM waveguide consisting of nonlinear medium and silver cladding

Fig. 2
Fig. 2

(a) Cutoff wavelength of the TE dispersion relations with core thickness (W) ranging from 40 to 400 nm. Region I is the section where TE mode is cutoff, and region II is the section where TE mode can be excited. (b) ERI of TM (solid) and TE (dashed) dispersion relations with wavelength ranging from 630 to 770 nm with a core thickness of 300nm. (c) Transmission spectrum with a core thickness of 50 nm. (d) Transmission spectrum with a core thickness of 300 nm.

Fig. 3
Fig. 3

Polarization-dependent FWM process for the function of a NOT logic gate. (a) S 1 is TM polarized. (b) S 1 is TE polarized.

Fig. 4
Fig. 4

Polarization-dependent FWM process for the function of a NOR logic gate. (a) S 1 and S 2 are both TM polarized. (b) S 1 and S 2 are both TE polarized. (c) S 1 is TM polarized, S 2 is TE polarized. (d) S 1 is TE polarized, S 2 is TM polarized.

Fig. 5
Fig. 5

Polarization-dependent FWM process for the function of a NAND logic gate. (a) S 1 and S 2 are both TM polarized. (b) S 1 and S 2 are both TE polarized. (c) S 1 is TM polarized, S 2 is TE polarized. (d) S 1 is TE polarized, S 2 is TM polarized.

Fig. 6
Fig. 6

Polarization-dependent FWM process for the function of a NXOR logic gate. (a) S 1 and S 2 are both TM polarized. (b) S 1 and S 2 are both TE polarized. (c) S 1 is TM polarized, S 2 is TE polarized. (d) S 1 is TE polarized, S 2 is TM polarized.

Fig. 7
Fig. 7

Comparison of FWM output without and with input power perturbations. (a) Incident lights without perturbations. (b) Incident lights with perturbations.

Tables (4)

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)= ε ω p 2 ω 2 +iωγ
ε m n eff 2 ε d tanh(wπ n eff 2 ε d /λ)+ ε d n eff 2 ε m =0
n eff 2 ε d tanh(wπ n eff 2 ε d /λ)+ n eff 2 ε m =0
P NL ( ω 4 )= ε 0 χ (3) ( ω 4 ; ω 1 , ω 2 , ω 3 ) E 1 E 2 E 3 *
η= P(L,Δk) P(L,Δk=0) = α 2 α 2 +Δ k 2 { 1+ 4exp(αL) sin 2 (ΔkL/2) [ 1exp(αL) ] 2 }
Δk=Δ k L +Δ k NL
Δ k L =( n ˜ 3 ω 3 + n ˜ 4 ω 4 n ˜ 1 ω 1 n ˜ 2 ω 2 )/c
Δ k NL =γ( P 1 + P 2 P 3 ){ 1exp(α L eff ) α L eff }

Metrics