Abstract

We introduce the idea of discontinuous electric and magnetic fields at a boundary to design and shape wavefronts in an arbitrary manner. To create this discontinuity in the field we use orthogonal electric and magnetic currents which act like Huygens source to radiate the desired wavefront. These currents can be synthesized either by an array of electric and magnetic dipoles or by a combined impedance and admittance surface. A dipole array is an active implementation to impose discontinuous fields while the impedance/admittance surface acts as a passive one. We then expand on our previous work showing how electric and magnetic dipole arrays can be used to cloak an object demonstrating novel cloaking and anti-cloaking schemes. We also show how to arbitrarily refract a beam using a set of impedance and admittance surfaces. Refraction using the idea of discontinuous fields is shown to be a more general case of refraction than using simple phase discontinuities.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Selvanayagam and G. V. Eleftheriades, “An active electromagnetic cloak based on the equivalence principle,” IEEE Antennas and Wireless Propagation Letters11, 1226–1229 (2012).
    [CrossRef]
  2. C. G. M. Ryan, M. Chaharmir, J. Shaker, J. Bray, Y. M. M. Antar, and A. Ittipiboon, “A wideband transmitarray using dual-resonant double square rings,” IEEE Transactions on Antennas and Propagation58, 1486–1493 (2010).
    [CrossRef]
  3. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley-Interscience, 2005).
  4. B. Munk, Frequency Selective Surfaces: Theory and Design (Wiley-Interscience, 2000).
  5. R. F. Harrington, Time-Harmonic Electromagnetic Fields (Wiley-Interscience, 2001).
  6. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005), 3rd ed.
  7. J.-P. Berenger, “A Huygens subgridding for the FDTD method,” IEEE Trans. on Antennas and Propagation54, 3797–3804 (2006).
    [CrossRef]
  8. R. C. Hansen, Phased Array Antennas (Wiley-Interscience, 2009).
  9. D.-H. Kwon and D. M. Pozar, “Optimal characteristics of an arbitrary receive antenna,” IEEE Transactions on Antennas and Propagation57, 3720–3727 (2009).
    [CrossRef]
  10. A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems (Prentice Hall, 1997).
  11. S. Tretyakov, Analytical Modeling in Applied Electromagnets (Artech House, 2003).
  12. A. Grbic and R. Merlin, “Near-field focusing plates and their design,” IEEE Transactions on Antennas and Propagation56, 3159–3165 (2008).
    [CrossRef]
  13. H. Chen, X. Luo, H. Ma, and C. Chan, “The anti-cloak,” Opt. Express16, 14603–14608 (2008).
    [CrossRef] [PubMed]
  14. I. Gallina, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “General class of metamaterial transformation slabs,” Phys. Rev. B81, 125124 (2010).
    [CrossRef]
  15. W. C. Gibson, The Method of Moments in Electromagnetics (Chapman and Hall/CRC, 2008).
  16. J. Du, S. Liu, and Z. Lin, “Broadband optical cloak and illusion created by the low order active sources,” Opt. Express20, 8608–8617 (2012).
    [CrossRef] [PubMed]
  17. D. A. Miller, “On perfect cloaking,” Opt. Express14, 12457–12466 (2006).
    [CrossRef] [PubMed]
  18. F. G. Vasquez, G. W. Milton, and D. Onofrei, “Active exterior cloaking for the 2D Laplace and Helmholtz equations,” Phys. Rev. Lett.103, 073901 (2009).
    [CrossRef] [PubMed]
  19. J. Lau and S. Hum, “Reconfigurable transmitarray design approaches for beamforming applications,” IEEE Transactions on Antennas and Propagation60, 5679–5689 (2012).
    [CrossRef]
  20. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
    [CrossRef] [PubMed]
  21. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science339(2013).
    [CrossRef] [PubMed]
  22. Y.-J. Tsai, S. Larouche, T. Tyler, G. Lipworth, N. M. Jokerst, and D. R. Smith, “Design and fabrication of a metamaterial gradient index diffraction grating at infrared wavelengths,” Opt. Express19, 24411–24423 (2011).
    [CrossRef] [PubMed]
  23. H. Steyskal, A. Hessel, and J. Shmoys, “On the gain-versus-scan trade-offs and the phase gradient synthesis for a cylindrical dome antenna,” IEEE Trans. on Antennas and PropagationAP-27, 825–831 (1979).
    [CrossRef]
  24. M. Born and E. Wolf, Principle of Optics (Cambridge University, 1999), 7th ed.
  25. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express14, 9794–9804 (2006).
    [CrossRef] [PubMed]
  26. A. Alú and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” Journal of Optics A: Pure and Applied Optics10, 093002 (2008).
    [CrossRef]
  27. D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Transactions on Microwave Theory and Techniques47, 2059–2074 (1999).
    [CrossRef]
  28. N. Engheta, “Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials,” Science317, 1698–1702 (2007).
    [CrossRef] [PubMed]
  29. L. Novotny and N. van Hulst, “Antennas for light,” Nature Photonics5, 83–90 (2011).
    [CrossRef]
  30. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493, 195–199 (2013).
    [CrossRef] [PubMed]
  31. C. Pfieffer and A. Grbic, “Metamaterial huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett.110, 197401 (2013).
    [CrossRef]
  32. F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett.110, 203903 (2013).
    [CrossRef]

2013 (4)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science339(2013).
[CrossRef] [PubMed]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493, 195–199 (2013).
[CrossRef] [PubMed]

C. Pfieffer and A. Grbic, “Metamaterial huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett.110, 197401 (2013).
[CrossRef]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett.110, 203903 (2013).
[CrossRef]

2012 (3)

J. Lau and S. Hum, “Reconfigurable transmitarray design approaches for beamforming applications,” IEEE Transactions on Antennas and Propagation60, 5679–5689 (2012).
[CrossRef]

M. Selvanayagam and G. V. Eleftheriades, “An active electromagnetic cloak based on the equivalence principle,” IEEE Antennas and Wireless Propagation Letters11, 1226–1229 (2012).
[CrossRef]

J. Du, S. Liu, and Z. Lin, “Broadband optical cloak and illusion created by the low order active sources,” Opt. Express20, 8608–8617 (2012).
[CrossRef] [PubMed]

2011 (3)

Y.-J. Tsai, S. Larouche, T. Tyler, G. Lipworth, N. M. Jokerst, and D. R. Smith, “Design and fabrication of a metamaterial gradient index diffraction grating at infrared wavelengths,” Opt. Express19, 24411–24423 (2011).
[CrossRef] [PubMed]

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photonics5, 83–90 (2011).
[CrossRef]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

2010 (2)

I. Gallina, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “General class of metamaterial transformation slabs,” Phys. Rev. B81, 125124 (2010).
[CrossRef]

C. G. M. Ryan, M. Chaharmir, J. Shaker, J. Bray, Y. M. M. Antar, and A. Ittipiboon, “A wideband transmitarray using dual-resonant double square rings,” IEEE Transactions on Antennas and Propagation58, 1486–1493 (2010).
[CrossRef]

2009 (2)

D.-H. Kwon and D. M. Pozar, “Optimal characteristics of an arbitrary receive antenna,” IEEE Transactions on Antennas and Propagation57, 3720–3727 (2009).
[CrossRef]

F. G. Vasquez, G. W. Milton, and D. Onofrei, “Active exterior cloaking for the 2D Laplace and Helmholtz equations,” Phys. Rev. Lett.103, 073901 (2009).
[CrossRef] [PubMed]

2008 (3)

A. Alú and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” Journal of Optics A: Pure and Applied Optics10, 093002 (2008).
[CrossRef]

A. Grbic and R. Merlin, “Near-field focusing plates and their design,” IEEE Transactions on Antennas and Propagation56, 3159–3165 (2008).
[CrossRef]

H. Chen, X. Luo, H. Ma, and C. Chan, “The anti-cloak,” Opt. Express16, 14603–14608 (2008).
[CrossRef] [PubMed]

2007 (1)

N. Engheta, “Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials,” Science317, 1698–1702 (2007).
[CrossRef] [PubMed]

2006 (3)

1999 (1)

D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Transactions on Microwave Theory and Techniques47, 2059–2074 (1999).
[CrossRef]

1979 (1)

H. Steyskal, A. Hessel, and J. Shmoys, “On the gain-versus-scan trade-offs and the phase gradient synthesis for a cylindrical dome antenna,” IEEE Trans. on Antennas and PropagationAP-27, 825–831 (1979).
[CrossRef]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Alexopolous, N.

D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Transactions on Microwave Theory and Techniques47, 2059–2074 (1999).
[CrossRef]

Alú, A.

A. Alú and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” Journal of Optics A: Pure and Applied Optics10, 093002 (2008).
[CrossRef]

Alù, A.

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett.110, 203903 (2013).
[CrossRef]

I. Gallina, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “General class of metamaterial transformation slabs,” Phys. Rev. B81, 125124 (2010).
[CrossRef]

Antar, Y. M. M.

C. G. M. Ryan, M. Chaharmir, J. Shaker, J. Bray, Y. M. M. Antar, and A. Ittipiboon, “A wideband transmitarray using dual-resonant double square rings,” IEEE Transactions on Antennas and Propagation58, 1486–1493 (2010).
[CrossRef]

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley-Interscience, 2005).

Berenger, J.-P.

J.-P. Berenger, “A Huygens subgridding for the FDTD method,” IEEE Trans. on Antennas and Propagation54, 3797–3804 (2006).
[CrossRef]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science339(2013).
[CrossRef] [PubMed]

Born, M.

M. Born and E. Wolf, Principle of Optics (Cambridge University, 1999), 7th ed.

Bray, J.

C. G. M. Ryan, M. Chaharmir, J. Shaker, J. Bray, Y. M. M. Antar, and A. Ittipiboon, “A wideband transmitarray using dual-resonant double square rings,” IEEE Transactions on Antennas and Propagation58, 1486–1493 (2010).
[CrossRef]

Broas, R.

D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Transactions on Microwave Theory and Techniques47, 2059–2074 (1999).
[CrossRef]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Castaldi, G.

I. Gallina, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “General class of metamaterial transformation slabs,” Phys. Rev. B81, 125124 (2010).
[CrossRef]

Chaharmir, M.

C. G. M. Ryan, M. Chaharmir, J. Shaker, J. Bray, Y. M. M. Antar, and A. Ittipiboon, “A wideband transmitarray using dual-resonant double square rings,” IEEE Transactions on Antennas and Propagation58, 1486–1493 (2010).
[CrossRef]

Chan, C.

Chen, H.

Du, J.

Eleftheriades, G. V.

M. Selvanayagam and G. V. Eleftheriades, “An active electromagnetic cloak based on the equivalence principle,” IEEE Antennas and Wireless Propagation Letters11, 1226–1229 (2012).
[CrossRef]

Engheta, N.

I. Gallina, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “General class of metamaterial transformation slabs,” Phys. Rev. B81, 125124 (2010).
[CrossRef]

A. Alú and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” Journal of Optics A: Pure and Applied Optics10, 093002 (2008).
[CrossRef]

N. Engheta, “Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials,” Science317, 1698–1702 (2007).
[CrossRef] [PubMed]

Estakhri, N. M.

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett.110, 203903 (2013).
[CrossRef]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Galdi, V.

I. Gallina, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “General class of metamaterial transformation slabs,” Phys. Rev. B81, 125124 (2010).
[CrossRef]

Gallina, I.

I. Gallina, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “General class of metamaterial transformation slabs,” Phys. Rev. B81, 125124 (2010).
[CrossRef]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Gibson, W. C.

W. C. Gibson, The Method of Moments in Electromagnetics (Chapman and Hall/CRC, 2008).

Grbic, A.

C. Pfieffer and A. Grbic, “Metamaterial huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett.110, 197401 (2013).
[CrossRef]

A. Grbic and R. Merlin, “Near-field focusing plates and their design,” IEEE Transactions on Antennas and Propagation56, 3159–3165 (2008).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005), 3rd ed.

Hansen, R. C.

R. C. Hansen, Phased Array Antennas (Wiley-Interscience, 2009).

Harrington, R. F.

R. F. Harrington, Time-Harmonic Electromagnetic Fields (Wiley-Interscience, 2001).

Hessel, A.

H. Steyskal, A. Hessel, and J. Shmoys, “On the gain-versus-scan trade-offs and the phase gradient synthesis for a cylindrical dome antenna,” IEEE Trans. on Antennas and PropagationAP-27, 825–831 (1979).
[CrossRef]

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493, 195–199 (2013).
[CrossRef] [PubMed]

Hum, S.

J. Lau and S. Hum, “Reconfigurable transmitarray design approaches for beamforming applications,” IEEE Transactions on Antennas and Propagation60, 5679–5689 (2012).
[CrossRef]

Ittipiboon, A.

C. G. M. Ryan, M. Chaharmir, J. Shaker, J. Bray, Y. M. M. Antar, and A. Ittipiboon, “A wideband transmitarray using dual-resonant double square rings,” IEEE Transactions on Antennas and Propagation58, 1486–1493 (2010).
[CrossRef]

Jokerst, N. M.

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science339(2013).
[CrossRef] [PubMed]

Kwon, D.-H.

D.-H. Kwon and D. M. Pozar, “Optimal characteristics of an arbitrary receive antenna,” IEEE Transactions on Antennas and Propagation57, 3720–3727 (2009).
[CrossRef]

Larouche, S.

Lau, J.

J. Lau and S. Hum, “Reconfigurable transmitarray design approaches for beamforming applications,” IEEE Transactions on Antennas and Propagation60, 5679–5689 (2012).
[CrossRef]

Lin, Z.

Lipworth, G.

Liu, S.

Luo, X.

Ma, H.

Merlin, R.

A. Grbic and R. Merlin, “Near-field focusing plates and their design,” IEEE Transactions on Antennas and Propagation56, 3159–3165 (2008).
[CrossRef]

Miller, D. A.

Milton, G. W.

F. G. Vasquez, G. W. Milton, and D. Onofrei, “Active exterior cloaking for the 2D Laplace and Helmholtz equations,” Phys. Rev. Lett.103, 073901 (2009).
[CrossRef] [PubMed]

Monticone, F.

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett.110, 203903 (2013).
[CrossRef]

Munk, B.

B. Munk, Frequency Selective Surfaces: Theory and Design (Wiley-Interscience, 2000).

Nawab, S. H.

A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems (Prentice Hall, 1997).

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photonics5, 83–90 (2011).
[CrossRef]

Onofrei, D.

F. G. Vasquez, G. W. Milton, and D. Onofrei, “Active exterior cloaking for the 2D Laplace and Helmholtz equations,” Phys. Rev. Lett.103, 073901 (2009).
[CrossRef] [PubMed]

Oppenheim, A. V.

A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems (Prentice Hall, 1997).

Pendry, J. B.

Pfieffer, C.

C. Pfieffer and A. Grbic, “Metamaterial huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett.110, 197401 (2013).
[CrossRef]

Pozar, D. M.

D.-H. Kwon and D. M. Pozar, “Optimal characteristics of an arbitrary receive antenna,” IEEE Transactions on Antennas and Propagation57, 3720–3727 (2009).
[CrossRef]

Ryan, C. G. M.

C. G. M. Ryan, M. Chaharmir, J. Shaker, J. Bray, Y. M. M. Antar, and A. Ittipiboon, “A wideband transmitarray using dual-resonant double square rings,” IEEE Transactions on Antennas and Propagation58, 1486–1493 (2010).
[CrossRef]

Schurig, D.

Selvanayagam, M.

M. Selvanayagam and G. V. Eleftheriades, “An active electromagnetic cloak based on the equivalence principle,” IEEE Antennas and Wireless Propagation Letters11, 1226–1229 (2012).
[CrossRef]

Shaker, J.

C. G. M. Ryan, M. Chaharmir, J. Shaker, J. Bray, Y. M. M. Antar, and A. Ittipiboon, “A wideband transmitarray using dual-resonant double square rings,” IEEE Transactions on Antennas and Propagation58, 1486–1493 (2010).
[CrossRef]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science339(2013).
[CrossRef] [PubMed]

Shmoys, J.

H. Steyskal, A. Hessel, and J. Shmoys, “On the gain-versus-scan trade-offs and the phase gradient synthesis for a cylindrical dome antenna,” IEEE Trans. on Antennas and PropagationAP-27, 825–831 (1979).
[CrossRef]

Sievenpiper, D.

D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Transactions on Microwave Theory and Techniques47, 2059–2074 (1999).
[CrossRef]

Smith, D. R.

Steyskal, H.

H. Steyskal, A. Hessel, and J. Shmoys, “On the gain-versus-scan trade-offs and the phase gradient synthesis for a cylindrical dome antenna,” IEEE Trans. on Antennas and PropagationAP-27, 825–831 (1979).
[CrossRef]

Sun, J.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493, 195–199 (2013).
[CrossRef] [PubMed]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005), 3rd ed.

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493, 195–199 (2013).
[CrossRef] [PubMed]

Tretyakov, S.

S. Tretyakov, Analytical Modeling in Applied Electromagnets (Artech House, 2003).

Tsai, Y.-J.

Tyler, T.

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photonics5, 83–90 (2011).
[CrossRef]

Vasquez, F. G.

F. G. Vasquez, G. W. Milton, and D. Onofrei, “Active exterior cloaking for the 2D Laplace and Helmholtz equations,” Phys. Rev. Lett.103, 073901 (2009).
[CrossRef] [PubMed]

Watts, M. R.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493, 195–199 (2013).
[CrossRef] [PubMed]

Willsky, A. S.

A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems (Prentice Hall, 1997).

Wolf, E.

M. Born and E. Wolf, Principle of Optics (Cambridge University, 1999), 7th ed.

Yaacobi, A.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493, 195–199 (2013).
[CrossRef] [PubMed]

Yablonovitch, E.

D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Transactions on Microwave Theory and Techniques47, 2059–2074 (1999).
[CrossRef]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Zhang, L.

D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Transactions on Microwave Theory and Techniques47, 2059–2074 (1999).
[CrossRef]

IEEE Antennas and Wireless Propagation Letters (1)

M. Selvanayagam and G. V. Eleftheriades, “An active electromagnetic cloak based on the equivalence principle,” IEEE Antennas and Wireless Propagation Letters11, 1226–1229 (2012).
[CrossRef]

IEEE Trans. on Antennas and Propagation (2)

J.-P. Berenger, “A Huygens subgridding for the FDTD method,” IEEE Trans. on Antennas and Propagation54, 3797–3804 (2006).
[CrossRef]

H. Steyskal, A. Hessel, and J. Shmoys, “On the gain-versus-scan trade-offs and the phase gradient synthesis for a cylindrical dome antenna,” IEEE Trans. on Antennas and PropagationAP-27, 825–831 (1979).
[CrossRef]

IEEE Transactions on Antennas and Propagation (4)

A. Grbic and R. Merlin, “Near-field focusing plates and their design,” IEEE Transactions on Antennas and Propagation56, 3159–3165 (2008).
[CrossRef]

J. Lau and S. Hum, “Reconfigurable transmitarray design approaches for beamforming applications,” IEEE Transactions on Antennas and Propagation60, 5679–5689 (2012).
[CrossRef]

D.-H. Kwon and D. M. Pozar, “Optimal characteristics of an arbitrary receive antenna,” IEEE Transactions on Antennas and Propagation57, 3720–3727 (2009).
[CrossRef]

C. G. M. Ryan, M. Chaharmir, J. Shaker, J. Bray, Y. M. M. Antar, and A. Ittipiboon, “A wideband transmitarray using dual-resonant double square rings,” IEEE Transactions on Antennas and Propagation58, 1486–1493 (2010).
[CrossRef]

IEEE Transactions on Microwave Theory and Techniques (1)

D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Transactions on Microwave Theory and Techniques47, 2059–2074 (1999).
[CrossRef]

Journal of Optics A: Pure and Applied Optics (1)

A. Alú and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” Journal of Optics A: Pure and Applied Optics10, 093002 (2008).
[CrossRef]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493, 195–199 (2013).
[CrossRef] [PubMed]

Nature Photonics (1)

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photonics5, 83–90 (2011).
[CrossRef]

Opt. Express (5)

Phys. Rev. B (1)

I. Gallina, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “General class of metamaterial transformation slabs,” Phys. Rev. B81, 125124 (2010).
[CrossRef]

Phys. Rev. Lett. (3)

F. G. Vasquez, G. W. Milton, and D. Onofrei, “Active exterior cloaking for the 2D Laplace and Helmholtz equations,” Phys. Rev. Lett.103, 073901 (2009).
[CrossRef] [PubMed]

C. Pfieffer and A. Grbic, “Metamaterial huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett.110, 197401 (2013).
[CrossRef]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett.110, 203903 (2013).
[CrossRef]

Science (3)

N. Engheta, “Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials,” Science317, 1698–1702 (2007).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science339(2013).
[CrossRef] [PubMed]

Other (9)

W. C. Gibson, The Method of Moments in Electromagnetics (Chapman and Hall/CRC, 2008).

M. Born and E. Wolf, Principle of Optics (Cambridge University, 1999), 7th ed.

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley-Interscience, 2005).

B. Munk, Frequency Selective Surfaces: Theory and Design (Wiley-Interscience, 2000).

R. F. Harrington, Time-Harmonic Electromagnetic Fields (Wiley-Interscience, 2001).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005), 3rd ed.

A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems (Prentice Hall, 1997).

S. Tretyakov, Analytical Modeling in Applied Electromagnets (Artech House, 2003).

R. C. Hansen, Phased Array Antennas (Wiley-Interscience, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics