Abstract

This paper describes the first demonstrations of two dynamic exit pupil (DEP) tracker techniques for autostereoscopic displays. The first DEP tracker forms an exit pupil pair for a single viewer in a defined space with low intraocular crosstalk using a pair of moving shutter glasses located within the optical system. A display prototype using the first DEP tracker is constructed from a pair of laser projectors, pupil-forming optics, moving shutter glasses at an intermediate pupil plane, an image relay lens, and a Gabor superlens based viewing screen. The left and right eye images are presented time-sequentially to a single viewer and seen as a 3D image without wearing glasses and allows the viewer to move within a region of 40 cm × 20 cm in the lateral plane, and 30 cm along the axial axis. The second DEP optics can move the exit pupil location dynamically in a much larger 3D space by using a custom spatial light modulator (SLM) forming an array of shutters. Simultaneous control of multiple exit pupils in both lateral and axial axes is demonstrated for the first time and provides a viewing volume with an axial extent of 0.6−3 m from the screen and within a lateral viewing angle of ± 20° for multiple viewers. This system has acceptable crosstalk (< 5%) between the stereo image pairs. In this novel version of the display the optical system is used as an advanced dynamic backlight for a liquid crystal display (LCD). This has advantages in terms of overall display size as there is no requirement for an intermediate image, and in image quality. This system has acceptable crosstalk (< 5%) between the stereo image pairs.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Urey, K. Chellappan, E. Erden, P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
    [CrossRef]
  2. L. Onural, F. Yaraş, H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
    [CrossRef]
  3. J. C. Liou, F. H. Chen, “Design and fabrication of optical system for time-multiplex autostereoscopic display,” Opt. Express 19(12), 11007–11017 (2011).
    [CrossRef] [PubMed]
  4. T. Balogh, “Method and apparatus for displaying three-dimensional images,” (2001). US Patent 6,201,565.
  5. A. Sullivan, “3-deep new displays render images you can almost reach out and touch,” Spectrum, IEEE, 42, 30-35 (2005).
  6. P. Surman, “Multi-user autostereoscopic display,” (2008). WO Patent WO/2008/139,181.
  7. K. Akşit, S. Olcer, E. Erden, V. C. Kishore, H. Urey, E. Willman, H. Baghsiahi, S. Day, D. R. Selviah, and F. A. Fernandez, “Light engine and optics for HELIUM3D auto-stereoscopic laser scanning display,” in Proceedings of IEEE 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON) (IEEE, 2011) 1–4.
    [CrossRef]
  8. H. Baghsiahi, D. R. Selviah, E. Willman, A. Fernández, S. Day, K. Akşit, S. Ölçer, A. Mostafazadeh, E. Erden, V. Kishore, H. Urey, and P. Surman, “48.4: Beam Forming for a laser based auto-stereoscopic multi-viewer display,” in “SID Display Week, Los Angeles, USA,” 42 (SID, 2011), pp. 702–706.
  9. E. Erden, V. Kishore, H. Urey, H. Baghsiahi, E. Willman, S. E. Day, D. R. Selviah, F. A. Fernández, and P. Surman, “Laser scanning based autostereoscopic 3D display with pupil tracking,” in “22nd Annual Meeting of the IEEE-Photonics-Society, Belek Antalya, Turkey, LEOS Annual Meeting Conference Proceedings, 2009. LEOS’09. IEEE,” (IEEE, 2009), pp. 10–11.
    [CrossRef]
  10. P. Surman, K. Hopf, I. Sexton, W. Lee, and R. Bates, “Solving the 3D problem - the history and development of viable domestic 3DTV displays,” Three-Dimensional Television: Capture, Transmission, Display (2007), pp. 471–503.
  11. P. C. H. Poon, D. R. Selviah, M. G. Robinson, and C. Tombling, “Microlens array diffuser for incoherent illumination,” National Physical Laboratory, Teddington, UK. Microlens array: 11–12 May 1995, Institute of Physics, London, no.5,UK, pp. 89–92.
  12. P. C. H. Poon, D. R. Selviah, J. E. Midwinter, D. Daly, and M. G. Robinson, “Design of a microlens based total interconnection for optical neural networks” in “Optical Society of America Optical Computing Conference, Palm Springs, USA,” (OSA, 1993), 46–49.
  13. E. Willman, H. Baghsiahi, F. A. Fernández, D. R. Selviah, S. E. Day, V. C. Kishore, E. Erden, H. Urey, and P. A. Surman, “The optics of an autostereoscopic multiview display,” SID International Symposium Digest of Technical Papers. Society for Information Display: San Jose, US (2010).
    [CrossRef]
  14. J. Goodman, Speckle phenomena in optics: theory and applications, First edition (Roberts & Co Greenwood Village, CO 80111, 2007).
  15. R. Voelkel, K. Weible, “Laser beam homogenizing: limitations and constraints,” Proc. SPIE 7102, 207–219 (2008).
    [CrossRef]
  16. D. Daly, M. Hutley, R. Hunt, K. Khand, R. Stevens, and R. Wilson, “The use of a series of lens arrays to match optical arrays of different pitch,” in “Microengineering Applications in Optoelectronics, IEE Colloquium on,” IET, 1–11, 1996.
    [CrossRef]
  17. C. Hembd-Sölner, R. Stevens, M. Hutley, “Imaging properties of the Gabor superlens,” J. Opt. A, Pure Appl. Opt. 1(1), 94–102 (1999).
    [CrossRef]
  18. K. Hopf, F. Neumann, and D. Przewozny, “Multi-user eye tracking suitable for 3D display applications” in “3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON),” (IEEE, 2011), pp. 1–4.
    [CrossRef]
  19. K. Akşit, “oynak on github” ‘’Software for HELIUM3D project which provides head tracker control over the linear stage” https://github.com/kunguz/oynak (2012).
  20. S. G. De Groot, J. W. Gebhard, “Pupil size as determined by adapting luminance,” J. Opt. Soc. Am. 42(7), 492–495 (1952).
    [CrossRef] [PubMed]
  21. A. J. Woods, “How are crosstalk and ghosting defined in the stereoscopic literature?” Proceedings of SPIE, vol. 7863 ed 2011, p. 78630.
    [CrossRef]
  22. M. Barkowsky, “55.3: Crosstalk Measurements of Shutter Glasses 3D Displays.” SID Symposium Digest of Technical Papers. 42. No. 1. Blackwell Publishing Ltd, 2011.
    [CrossRef]
  23. P. Seuntiëns, L. Meesters, W. IJsselsteijn, “Perceptual attributes of crosstalk in 3D images,” Displays 26(4-5), 177–183 (2005).
    [CrossRef]
  24. I. Tsirlin, L. Wilcox, R. Allison, “The effect of crosstalk on the perceived depth from disparity and monocular occlusions,” IEEE Trans. Broadcast 57(2), 445–453 (2011).
    [CrossRef]

2011 (4)

H. Urey, K. Chellappan, E. Erden, P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
[CrossRef]

L. Onural, F. Yaraş, H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
[CrossRef]

J. C. Liou, F. H. Chen, “Design and fabrication of optical system for time-multiplex autostereoscopic display,” Opt. Express 19(12), 11007–11017 (2011).
[CrossRef] [PubMed]

I. Tsirlin, L. Wilcox, R. Allison, “The effect of crosstalk on the perceived depth from disparity and monocular occlusions,” IEEE Trans. Broadcast 57(2), 445–453 (2011).
[CrossRef]

2008 (1)

R. Voelkel, K. Weible, “Laser beam homogenizing: limitations and constraints,” Proc. SPIE 7102, 207–219 (2008).
[CrossRef]

2005 (2)

P. Seuntiëns, L. Meesters, W. IJsselsteijn, “Perceptual attributes of crosstalk in 3D images,” Displays 26(4-5), 177–183 (2005).
[CrossRef]

A. Sullivan, “3-deep new displays render images you can almost reach out and touch,” Spectrum, IEEE, 42, 30-35 (2005).

1999 (1)

C. Hembd-Sölner, R. Stevens, M. Hutley, “Imaging properties of the Gabor superlens,” J. Opt. A, Pure Appl. Opt. 1(1), 94–102 (1999).
[CrossRef]

1952 (1)

Allison, R.

I. Tsirlin, L. Wilcox, R. Allison, “The effect of crosstalk on the perceived depth from disparity and monocular occlusions,” IEEE Trans. Broadcast 57(2), 445–453 (2011).
[CrossRef]

Chellappan, K.

H. Urey, K. Chellappan, E. Erden, P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
[CrossRef]

Chen, F. H.

De Groot, S. G.

Erden, E.

H. Urey, K. Chellappan, E. Erden, P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
[CrossRef]

Gebhard, J. W.

Hembd-Sölner, C.

C. Hembd-Sölner, R. Stevens, M. Hutley, “Imaging properties of the Gabor superlens,” J. Opt. A, Pure Appl. Opt. 1(1), 94–102 (1999).
[CrossRef]

Hutley, M.

C. Hembd-Sölner, R. Stevens, M. Hutley, “Imaging properties of the Gabor superlens,” J. Opt. A, Pure Appl. Opt. 1(1), 94–102 (1999).
[CrossRef]

IJsselsteijn, W.

P. Seuntiëns, L. Meesters, W. IJsselsteijn, “Perceptual attributes of crosstalk in 3D images,” Displays 26(4-5), 177–183 (2005).
[CrossRef]

Kang, H.

L. Onural, F. Yaraş, H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
[CrossRef]

Liou, J. C.

Meesters, L.

P. Seuntiëns, L. Meesters, W. IJsselsteijn, “Perceptual attributes of crosstalk in 3D images,” Displays 26(4-5), 177–183 (2005).
[CrossRef]

Onural, L.

L. Onural, F. Yaraş, H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
[CrossRef]

Seuntiëns, P.

P. Seuntiëns, L. Meesters, W. IJsselsteijn, “Perceptual attributes of crosstalk in 3D images,” Displays 26(4-5), 177–183 (2005).
[CrossRef]

Stevens, R.

C. Hembd-Sölner, R. Stevens, M. Hutley, “Imaging properties of the Gabor superlens,” J. Opt. A, Pure Appl. Opt. 1(1), 94–102 (1999).
[CrossRef]

Sullivan, A.

A. Sullivan, “3-deep new displays render images you can almost reach out and touch,” Spectrum, IEEE, 42, 30-35 (2005).

Surman, P.

H. Urey, K. Chellappan, E. Erden, P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
[CrossRef]

Tsirlin, I.

I. Tsirlin, L. Wilcox, R. Allison, “The effect of crosstalk on the perceived depth from disparity and monocular occlusions,” IEEE Trans. Broadcast 57(2), 445–453 (2011).
[CrossRef]

Urey, H.

H. Urey, K. Chellappan, E. Erden, P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
[CrossRef]

Voelkel, R.

R. Voelkel, K. Weible, “Laser beam homogenizing: limitations and constraints,” Proc. SPIE 7102, 207–219 (2008).
[CrossRef]

Weible, K.

R. Voelkel, K. Weible, “Laser beam homogenizing: limitations and constraints,” Proc. SPIE 7102, 207–219 (2008).
[CrossRef]

Wilcox, L.

I. Tsirlin, L. Wilcox, R. Allison, “The effect of crosstalk on the perceived depth from disparity and monocular occlusions,” IEEE Trans. Broadcast 57(2), 445–453 (2011).
[CrossRef]

Woods, A. J.

A. J. Woods, “How are crosstalk and ghosting defined in the stereoscopic literature?” Proceedings of SPIE, vol. 7863 ed 2011, p. 78630.
[CrossRef]

Yaras, F.

L. Onural, F. Yaraş, H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
[CrossRef]

3-deep new displays render images you can almost reach out and touch (1)

A. Sullivan, “3-deep new displays render images you can almost reach out and touch,” Spectrum, IEEE, 42, 30-35 (2005).

Displays (1)

P. Seuntiëns, L. Meesters, W. IJsselsteijn, “Perceptual attributes of crosstalk in 3D images,” Displays 26(4-5), 177–183 (2005).
[CrossRef]

IEEE Trans. Broadcast (1)

I. Tsirlin, L. Wilcox, R. Allison, “The effect of crosstalk on the perceived depth from disparity and monocular occlusions,” IEEE Trans. Broadcast 57(2), 445–453 (2011).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

C. Hembd-Sölner, R. Stevens, M. Hutley, “Imaging properties of the Gabor superlens,” J. Opt. A, Pure Appl. Opt. 1(1), 94–102 (1999).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (1)

Proc. IEEE (2)

H. Urey, K. Chellappan, E. Erden, P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
[CrossRef]

L. Onural, F. Yaraş, H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 576–589 (2011).
[CrossRef]

Proc. SPIE (1)

R. Voelkel, K. Weible, “Laser beam homogenizing: limitations and constraints,” Proc. SPIE 7102, 207–219 (2008).
[CrossRef]

Other (15)

D. Daly, M. Hutley, R. Hunt, K. Khand, R. Stevens, and R. Wilson, “The use of a series of lens arrays to match optical arrays of different pitch,” in “Microengineering Applications in Optoelectronics, IEE Colloquium on,” IET, 1–11, 1996.
[CrossRef]

K. Hopf, F. Neumann, and D. Przewozny, “Multi-user eye tracking suitable for 3D display applications” in “3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON),” (IEEE, 2011), pp. 1–4.
[CrossRef]

K. Akşit, “oynak on github” ‘’Software for HELIUM3D project which provides head tracker control over the linear stage” https://github.com/kunguz/oynak (2012).

T. Balogh, “Method and apparatus for displaying three-dimensional images,” (2001). US Patent 6,201,565.

P. Surman, “Multi-user autostereoscopic display,” (2008). WO Patent WO/2008/139,181.

K. Akşit, S. Olcer, E. Erden, V. C. Kishore, H. Urey, E. Willman, H. Baghsiahi, S. Day, D. R. Selviah, and F. A. Fernandez, “Light engine and optics for HELIUM3D auto-stereoscopic laser scanning display,” in Proceedings of IEEE 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON) (IEEE, 2011) 1–4.
[CrossRef]

H. Baghsiahi, D. R. Selviah, E. Willman, A. Fernández, S. Day, K. Akşit, S. Ölçer, A. Mostafazadeh, E. Erden, V. Kishore, H. Urey, and P. Surman, “48.4: Beam Forming for a laser based auto-stereoscopic multi-viewer display,” in “SID Display Week, Los Angeles, USA,” 42 (SID, 2011), pp. 702–706.

E. Erden, V. Kishore, H. Urey, H. Baghsiahi, E. Willman, S. E. Day, D. R. Selviah, F. A. Fernández, and P. Surman, “Laser scanning based autostereoscopic 3D display with pupil tracking,” in “22nd Annual Meeting of the IEEE-Photonics-Society, Belek Antalya, Turkey, LEOS Annual Meeting Conference Proceedings, 2009. LEOS’09. IEEE,” (IEEE, 2009), pp. 10–11.
[CrossRef]

P. Surman, K. Hopf, I. Sexton, W. Lee, and R. Bates, “Solving the 3D problem - the history and development of viable domestic 3DTV displays,” Three-Dimensional Television: Capture, Transmission, Display (2007), pp. 471–503.

P. C. H. Poon, D. R. Selviah, M. G. Robinson, and C. Tombling, “Microlens array diffuser for incoherent illumination,” National Physical Laboratory, Teddington, UK. Microlens array: 11–12 May 1995, Institute of Physics, London, no.5,UK, pp. 89–92.

P. C. H. Poon, D. R. Selviah, J. E. Midwinter, D. Daly, and M. G. Robinson, “Design of a microlens based total interconnection for optical neural networks” in “Optical Society of America Optical Computing Conference, Palm Springs, USA,” (OSA, 1993), 46–49.

E. Willman, H. Baghsiahi, F. A. Fernández, D. R. Selviah, S. E. Day, V. C. Kishore, E. Erden, H. Urey, and P. A. Surman, “The optics of an autostereoscopic multiview display,” SID International Symposium Digest of Technical Papers. Society for Information Display: San Jose, US (2010).
[CrossRef]

J. Goodman, Speckle phenomena in optics: theory and applications, First edition (Roberts & Co Greenwood Village, CO 80111, 2007).

A. J. Woods, “How are crosstalk and ghosting defined in the stereoscopic literature?” Proceedings of SPIE, vol. 7863 ed 2011, p. 78630.
[CrossRef]

M. Barkowsky, “55.3: Crosstalk Measurements of Shutter Glasses 3D Displays.” SID Symposium Digest of Technical Papers. 42. No. 1. Blackwell Publishing Ltd, 2011.
[CrossRef]

Supplementary Material (2)

» Media 1: MP4 (4298 KB)     
» Media 2: MP4 (4298 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Simplified schematic diagram of the display optics using a liquid crystal on silicon (LCOS) projector. (b) Simplified schematic diagram of the display optics using a liquid crystal display (LCD).

Fig. 2
Fig. 2

Schematic diagram showing the imaging characteristics of a Gabor superlens with real light sources of A and B and dynamic image formation of the virtual source C.

Fig. 3
Fig. 3

(a) A photograph of the pair of shutter glasses on the linear stage (1: Linear stage, 2: pair of LC shutter glasses 3: linear motion axis). (b)-(c) Photographs showing the automatic change in position of the linear stage as the user changes position (Media 1, Media 2)

Fig. 4
Fig. 4

(a)-(f) Photographs of the viewing screen as the camera (SphereOptics PM-1000) placed 90 cm away from the screen but focused on it was moved from side to side over the range of ± 5 cm from the vision-center – point in between two eyes according to pupil tracker- along the X axis.

Fig. 5
Fig. 5

View of apparatus from the front screen showing the whole assembly for the prototype incorporating a SLM.

Fig. 6
Fig. 6

(a) Exit pupil clearly focused on target screen at 1 m from the screen. (b) Exit pupil focused at 2.5 m (Both photographs were taken 1 m from the target screen).

Fig. 7
Fig. 7

Exit Pupil Experimental cross section profiles at sample locations. The plots are normalized to the same peak value in order to allow for the variation in solid angle subtended by the screen.

Fig. 8
Fig. 8

Appearance of image 1000 mm (a) Imageobserved by the left eye (−32 mm to center). (b) Image observed at eye center.. (c) Image observed by the right eye ( + 32 mm to center).

Tables (1)

Tables Icon

Table 1 System interocular cross-talk percentages as a function of camera lens F#. A white image is shown to one eye and a black image is shown to the other eye. The values below have an accuracy of ± 0.25%.

Metrics