Abstract

We report significant enhancements in Er3+ luminescence as well as in Raman intensity in silver nanoparticles embedded zinc-tellurite glass. Surface enhanced Raman scattering effect is highlighted for the first time in tellurite glass containing silver NPs resulting in an enhanced Raman signal (~10 times). SAED manifest the growth of Ag0 nanoparticles along the (111) and (200) crystallographic planes having average diameter in the range 14-36 nm. Surface plasmon resonance bands are observed in the range 484-551 nm. Furthermore, four prominent photoluminescence bands undergo significant enhancements up to 3 times. The enhancement is majorly attributed to the local field effect of silver NPs.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett.71(9), 1198–1200 (1997).
    [CrossRef]
  2. S. Moon, P. R. Watekar, B. H. Kim, and W. T. Han, “Fabrication and photoluminescence characteristics of Er3+-doped optical fibre sensitised by silicon,” Electron. Lett.43(2), 85–87 (2007).
    [CrossRef]
  3. S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W. T. Han, “Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles,” J. Nanosci. Nanotechnol.6(11), 3555–3558 (2006).
    [CrossRef] [PubMed]
  4. M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, “Spectroscopic properties of Er3+ and Yb3+doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B56(15), 9302–9318 (1997).
    [CrossRef]
  5. C. Strohhofer and A. Polman, “Silver as a sensitizer for erbium,” Appl. Phys. Lett.81(8), 1414–1416 (2002).
    [CrossRef]
  6. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005).
    [CrossRef]
  7. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  8. C. D. Geddes and J. R. Lakowicz, “Editorial: Metal-enhanced fluorescence,” J. Fluoresc.12(2), 121–129 (2002).
    [CrossRef] [PubMed]
  9. K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol.16(1), 55–62 (2005).
    [CrossRef] [PubMed]
  10. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3-4), 131–314 (2005).
    [CrossRef]
  11. J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem.298(1), 1–24 (2001).
    [CrossRef] [PubMed]
  12. J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem.301(2), 261–277 (2002).
    [CrossRef] [PubMed]
  13. E. B. Desurvire, “Capacity demand and technology challenges for lightwave systems in the next two decades,” J. Lightwave Technol.24(12), 4697–4710 (2006).
    [CrossRef]
  14. J. A. García-Macedo, G. Valverde, J. Lockard, and J. I. Zink, “SERS on mesostructured thin films with silver nanoparticles,” Proc. SPIE5361, 117–124 (2004).
    [CrossRef]
  15. D. Roy, Z. H. Barber, and T. W. Clyne, “Ag nanoparticle induced surface enhanced Raman spectroscopy of chemical vapor deposition diamond thin films prepared by hot filament chemical vapor deposition,” J. Appl. Phys.91(9), 6085–6088 (2002).
    [CrossRef]
  16. F. Gonella and P. Mazzoldi, “Metal nanocluster composite glasses,” in Handbook of Nanostructured Materials and Nanotechnology, Nalwa HS (Ed), vol 4. (Academic, 2000).
  17. T. Som and B. Karmakar, “Core shell Au Ag Nanoparticles in Dielectric Nanocomposites with Plasmon-Enhanced Fluorescence: A New Paradigm in Antimony Glasses,” Nano Res.2(8), 607–616 (2009).
    [CrossRef]
  18. T. Som and B. Karmakar, “Surface Plasmon Resonance and Enhanced Fluorescence Application of Single-Step Synthesized Elliptical Nano Gold-embedded Antimony Glass Dichroic Nanocomposites,” Plasmonics5(2), 149–159 (2010).
    [CrossRef]
  19. T. Sekiya, N. Mochida, A. Ohtsuka, and A. Soejima, “Raman spectra of BO3/2-TeO2 glasses,” J. Non-Cryst. Solids151(3), 222–228 (1992).
    [CrossRef]
  20. T. Komatsu, H. Tawarayama, H. Mohri, and K. Matusita, “Properties and crystallization behaviors of TeO2-LiNbO3 glasses,” J. Non-Cryst. Solids135(2-3), 105–113 (1991).
    [CrossRef]
  21. K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals,” J. Appl. Phys.97(12), 124313 (2005).
    [CrossRef]
  22. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26(2), 163–166 (1974).
    [CrossRef]
  23. E. Nardou, D. Vouagner, A.-M. Jurdyc, A. Berthelot, A. Pillonnet, V. Sablonière, F. Bessueille, and B. Champagnon, “Surface enhanced Raman scattering in an amorphous matrix for Raman amplification,” J. Non-Cryst. Solids357(8-9), 1895–1899 (2011).
    [CrossRef]
  24. K. Kneipp, “Surface-enhanced Raman scattering,” Phys. Today, 40–46 (2007).
  25. M. K. Hossain and Y. Ozaki, “Surface-enhanced Raman scattering: facts and inline trends,” Curr. Sci.97, 192–201 (2009).
  26. A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121(43), 9932–9939 (1999).
    [CrossRef]
  27. P. Etchegoin, H. Liem, R. C. Maher, L. F. Cohen, R. J. C. Brown, H. Hartigan, M. J. T. Milton, and J. C. Gallop, “A novel amplification mechanism for surface enhanced Raman scattering,” Chem. Phys. Lett.366(1-2), 115–121 (2002).
    [CrossRef]
  28. A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” Condens. Matter.4(5), 1143–1212 (1992).
    [CrossRef]
  29. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
    [CrossRef] [PubMed]
  30. R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, A. R. Samavati, R. Arifin, and S. Naseem, “Annealing time dependent up-conversion luminescence enhancement in magnesium–tellurite glass,” J. Lumin.136, 145–149 (2013).
    [CrossRef]
  31. R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, and B. A. Tahir, “Enhanced infrared to visible upconversion emission in Er3+ doped phosphate glass: Role of silver nanoparticle,” J. Lumin.132(10), 2714–2718 (2012).
    [CrossRef]
  32. L. R. P. Kassab, C. B. de Araújo, R. A. Kobayashi, R. D. De, A. Pinto, and D. M. da Silva, “Influence of silver nanoparticles in the luminescence efficiency of Pr3+-doped tellurite glasses,” J. Appl. Phys.102, 103515 (2007).
  33. L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. de Araújo, “Energy transfer and frequency upconversion in Yb3+–Er3+-doped PbO- GeO2 glass containing silver nanoparticles,” Appl. Phys. B94(2), 239–242 (2009).
    [CrossRef]
  34. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
    [CrossRef] [PubMed]
  35. O. L. Malta and M. A. dos Santos, “Theoretical analysis of the fluorescence yield of rare earth ions in glasses containing small metallic particles,” Chem. Phys. Lett.174(1), 13–18 (1990).
    [CrossRef]
  36. T. Hayakawa, S. T. Selvan, and M. Nogami, “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett.74(11), 1513–1515 (1999).
    [CrossRef]
  37. C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence: Potential applications in HTS,” Comb. Chem. High Throughput Screen.6(2), 109–117 (2003).
    [CrossRef] [PubMed]
  38. J. Zhu, “SPR induced quenching of the 5D1→7F1 emission of Eu3+ doped gold colloids,” Phys. Lett. A341(1-4), 212–215 (2005).
    [CrossRef]
  39. E. G. Matveeva, T. Shtoyko, I. Gryczynski, I. Akopova, and Z. Gryczynski, “Fluorescence quenching/enhancement surface assays: Signal manipulation using silver-coated gold nanoparticles,” Chem. Phys. Lett.454(1-3), 85–90 (2008).
    [CrossRef] [PubMed]
  40. T. Som and B. Karmakar, “Nanosilver enhanced upconversion fluorescence of erbium ions in Er3+: Ag-antimony glass nanocomposites,” J. Appl. Phys.105(1), 013102 (2009).
    [CrossRef]
  41. V. A. G. Rivera, S. P. A. Osorio, Y. Ledemi, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Localized surface plasmon resonance interaction with Er3+-doped tellurite glass,” Opt. Express18(24), 25321–25328 (2010).
    [CrossRef] [PubMed]

2013

R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, A. R. Samavati, R. Arifin, and S. Naseem, “Annealing time dependent up-conversion luminescence enhancement in magnesium–tellurite glass,” J. Lumin.136, 145–149 (2013).
[CrossRef]

2012

R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, and B. A. Tahir, “Enhanced infrared to visible upconversion emission in Er3+ doped phosphate glass: Role of silver nanoparticle,” J. Lumin.132(10), 2714–2718 (2012).
[CrossRef]

2011

E. Nardou, D. Vouagner, A.-M. Jurdyc, A. Berthelot, A. Pillonnet, V. Sablonière, F. Bessueille, and B. Champagnon, “Surface enhanced Raman scattering in an amorphous matrix for Raman amplification,” J. Non-Cryst. Solids357(8-9), 1895–1899 (2011).
[CrossRef]

2010

T. Som and B. Karmakar, “Surface Plasmon Resonance and Enhanced Fluorescence Application of Single-Step Synthesized Elliptical Nano Gold-embedded Antimony Glass Dichroic Nanocomposites,” Plasmonics5(2), 149–159 (2010).
[CrossRef]

V. A. G. Rivera, S. P. A. Osorio, Y. Ledemi, D. Manzani, Y. Messaddeq, L. A. O. Nunes, and E. Marega., “Localized surface plasmon resonance interaction with Er3+-doped tellurite glass,” Opt. Express18(24), 25321–25328 (2010).
[CrossRef] [PubMed]

2009

T. Som and B. Karmakar, “Core shell Au Ag Nanoparticles in Dielectric Nanocomposites with Plasmon-Enhanced Fluorescence: A New Paradigm in Antimony Glasses,” Nano Res.2(8), 607–616 (2009).
[CrossRef]

M. K. Hossain and Y. Ozaki, “Surface-enhanced Raman scattering: facts and inline trends,” Curr. Sci.97, 192–201 (2009).

L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. de Araújo, “Energy transfer and frequency upconversion in Yb3+–Er3+-doped PbO- GeO2 glass containing silver nanoparticles,” Appl. Phys. B94(2), 239–242 (2009).
[CrossRef]

T. Som and B. Karmakar, “Nanosilver enhanced upconversion fluorescence of erbium ions in Er3+: Ag-antimony glass nanocomposites,” J. Appl. Phys.105(1), 013102 (2009).
[CrossRef]

2008

E. G. Matveeva, T. Shtoyko, I. Gryczynski, I. Akopova, and Z. Gryczynski, “Fluorescence quenching/enhancement surface assays: Signal manipulation using silver-coated gold nanoparticles,” Chem. Phys. Lett.454(1-3), 85–90 (2008).
[CrossRef] [PubMed]

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

2007

S. Moon, P. R. Watekar, B. H. Kim, and W. T. Han, “Fabrication and photoluminescence characteristics of Er3+-doped optical fibre sensitised by silicon,” Electron. Lett.43(2), 85–87 (2007).
[CrossRef]

L. R. P. Kassab, C. B. de Araújo, R. A. Kobayashi, R. D. De, A. Pinto, and D. M. da Silva, “Influence of silver nanoparticles in the luminescence efficiency of Pr3+-doped tellurite glasses,” J. Appl. Phys.102, 103515 (2007).

K. Kneipp, “Surface-enhanced Raman scattering,” Phys. Today, 40–46 (2007).

2006

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W. T. Han, “Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles,” J. Nanosci. Nanotechnol.6(11), 3555–3558 (2006).
[CrossRef] [PubMed]

E. B. Desurvire, “Capacity demand and technology challenges for lightwave systems in the next two decades,” J. Lightwave Technol.24(12), 4697–4710 (2006).
[CrossRef]

2005

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005).
[CrossRef]

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol.16(1), 55–62 (2005).
[CrossRef] [PubMed]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3-4), 131–314 (2005).
[CrossRef]

J. Zhu, “SPR induced quenching of the 5D1→7F1 emission of Eu3+ doped gold colloids,” Phys. Lett. A341(1-4), 212–215 (2005).
[CrossRef]

K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals,” J. Appl. Phys.97(12), 124313 (2005).
[CrossRef]

2004

J. A. García-Macedo, G. Valverde, J. Lockard, and J. I. Zink, “SERS on mesostructured thin films with silver nanoparticles,” Proc. SPIE5361, 117–124 (2004).
[CrossRef]

2003

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence: Potential applications in HTS,” Comb. Chem. High Throughput Screen.6(2), 109–117 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2002

C. D. Geddes and J. R. Lakowicz, “Editorial: Metal-enhanced fluorescence,” J. Fluoresc.12(2), 121–129 (2002).
[CrossRef] [PubMed]

C. Strohhofer and A. Polman, “Silver as a sensitizer for erbium,” Appl. Phys. Lett.81(8), 1414–1416 (2002).
[CrossRef]

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem.301(2), 261–277 (2002).
[CrossRef] [PubMed]

D. Roy, Z. H. Barber, and T. W. Clyne, “Ag nanoparticle induced surface enhanced Raman spectroscopy of chemical vapor deposition diamond thin films prepared by hot filament chemical vapor deposition,” J. Appl. Phys.91(9), 6085–6088 (2002).
[CrossRef]

P. Etchegoin, H. Liem, R. C. Maher, L. F. Cohen, R. J. C. Brown, H. Hartigan, M. J. T. Milton, and J. C. Gallop, “A novel amplification mechanism for surface enhanced Raman scattering,” Chem. Phys. Lett.366(1-2), 115–121 (2002).
[CrossRef]

2001

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem.298(1), 1–24 (2001).
[CrossRef] [PubMed]

1999

T. Hayakawa, S. T. Selvan, and M. Nogami, “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett.74(11), 1513–1515 (1999).
[CrossRef]

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121(43), 9932–9939 (1999).
[CrossRef]

1997

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett.71(9), 1198–1200 (1997).
[CrossRef]

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, “Spectroscopic properties of Er3+ and Yb3+doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B56(15), 9302–9318 (1997).
[CrossRef]

1992

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” Condens. Matter.4(5), 1143–1212 (1992).
[CrossRef]

T. Sekiya, N. Mochida, A. Ohtsuka, and A. Soejima, “Raman spectra of BO3/2-TeO2 glasses,” J. Non-Cryst. Solids151(3), 222–228 (1992).
[CrossRef]

1991

T. Komatsu, H. Tawarayama, H. Mohri, and K. Matusita, “Properties and crystallization behaviors of TeO2-LiNbO3 glasses,” J. Non-Cryst. Solids135(2-3), 105–113 (1991).
[CrossRef]

1990

O. L. Malta and M. A. dos Santos, “Theoretical analysis of the fluorescence yield of rare earth ions in glasses containing small metallic particles,” Chem. Phys. Lett.174(1), 13–18 (1990).
[CrossRef]

1974

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26(2), 163–166 (1974).
[CrossRef]

Aizpurua, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Akemann, W.

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” Condens. Matter.4(5), 1143–1212 (1992).
[CrossRef]

Akopova, I.

E. G. Matveeva, T. Shtoyko, I. Gryczynski, I. Akopova, and Z. Gryczynski, “Fluorescence quenching/enhancement surface assays: Signal manipulation using silver-coated gold nanoparticles,” Chem. Phys. Lett.454(1-3), 85–90 (2008).
[CrossRef] [PubMed]

Alim, K. A.

K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals,” J. Appl. Phys.97(12), 124313 (2005).
[CrossRef]

Amjad, R. J.

R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, A. R. Samavati, R. Arifin, and S. Naseem, “Annealing time dependent up-conversion luminescence enhancement in magnesium–tellurite glass,” J. Lumin.136, 145–149 (2013).
[CrossRef]

R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, and B. A. Tahir, “Enhanced infrared to visible upconversion emission in Er3+ doped phosphate glass: Role of silver nanoparticle,” J. Lumin.132(10), 2714–2718 (2012).
[CrossRef]

Arifin, R.

R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, A. R. Samavati, R. Arifin, and S. Naseem, “Annealing time dependent up-conversion luminescence enhancement in magnesium–tellurite glass,” J. Lumin.136, 145–149 (2013).
[CrossRef]

Aslan, K.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol.16(1), 55–62 (2005).
[CrossRef] [PubMed]

Atwater, H. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005).
[CrossRef]

Balandin, A. A.

K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals,” J. Appl. Phys.97(12), 124313 (2005).
[CrossRef]

Barber, Z. H.

D. Roy, Z. H. Barber, and T. W. Clyne, “Ag nanoparticle induced surface enhanced Raman spectroscopy of chemical vapor deposition diamond thin films prepared by hot filament chemical vapor deposition,” J. Appl. Phys.91(9), 6085–6088 (2002).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Berthelot, A.

E. Nardou, D. Vouagner, A.-M. Jurdyc, A. Berthelot, A. Pillonnet, V. Sablonière, F. Bessueille, and B. Champagnon, “Surface enhanced Raman scattering in an amorphous matrix for Raman amplification,” J. Non-Cryst. Solids357(8-9), 1895–1899 (2011).
[CrossRef]

Bessueille, F.

E. Nardou, D. Vouagner, A.-M. Jurdyc, A. Berthelot, A. Pillonnet, V. Sablonière, F. Bessueille, and B. Champagnon, “Surface enhanced Raman scattering in an amorphous matrix for Raman amplification,” J. Non-Cryst. Solids357(8-9), 1895–1899 (2011).
[CrossRef]

Bomfim, F. A.

L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. de Araújo, “Energy transfer and frequency upconversion in Yb3+–Er3+-doped PbO- GeO2 glass containing silver nanoparticles,” Appl. Phys. B94(2), 239–242 (2009).
[CrossRef]

Boo, S.

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W. T. Han, “Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles,” J. Nanosci. Nanotechnol.6(11), 3555–3558 (2006).
[CrossRef] [PubMed]

Brandl, D. W.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Brown, R. J. C.

P. Etchegoin, H. Liem, R. C. Maher, L. F. Cohen, R. J. C. Brown, H. Hartigan, M. J. T. Milton, and J. C. Gallop, “A novel amplification mechanism for surface enhanced Raman scattering,” Chem. Phys. Lett.366(1-2), 115–121 (2002).
[CrossRef]

Bruce, A. J.

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, “Spectroscopic properties of Er3+ and Yb3+doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B56(15), 9302–9318 (1997).
[CrossRef]

Brus, L. E.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121(43), 9932–9939 (1999).
[CrossRef]

Champagnon, B.

E. Nardou, D. Vouagner, A.-M. Jurdyc, A. Berthelot, A. Pillonnet, V. Sablonière, F. Bessueille, and B. Champagnon, “Surface enhanced Raman scattering in an amorphous matrix for Raman amplification,” J. Non-Cryst. Solids357(8-9), 1895–1899 (2011).
[CrossRef]

Clyne, T. W.

D. Roy, Z. H. Barber, and T. W. Clyne, “Ag nanoparticle induced surface enhanced Raman spectroscopy of chemical vapor deposition diamond thin films prepared by hot filament chemical vapor deposition,” J. Appl. Phys.91(9), 6085–6088 (2002).
[CrossRef]

Cockroft, N. J.

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, “Spectroscopic properties of Er3+ and Yb3+doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B56(15), 9302–9318 (1997).
[CrossRef]

Cohen, L. F.

P. Etchegoin, H. Liem, R. C. Maher, L. F. Cohen, R. J. C. Brown, H. Hartigan, M. J. T. Milton, and J. C. Gallop, “A novel amplification mechanism for surface enhanced Raman scattering,” Chem. Phys. Lett.366(1-2), 115–121 (2002).
[CrossRef]

D’Auria, S.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem.301(2), 261–277 (2002).
[CrossRef] [PubMed]

da Silva, D. M.

L. R. P. Kassab, C. B. de Araújo, R. A. Kobayashi, R. D. De, A. Pinto, and D. M. da Silva, “Influence of silver nanoparticles in the luminescence efficiency of Pr3+-doped tellurite glasses,” J. Appl. Phys.102, 103515 (2007).

De, R. D.

L. R. P. Kassab, C. B. de Araújo, R. A. Kobayashi, R. D. De, A. Pinto, and D. M. da Silva, “Influence of silver nanoparticles in the luminescence efficiency of Pr3+-doped tellurite glasses,” J. Appl. Phys.102, 103515 (2007).

de Araújo, C. B.

L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. de Araújo, “Energy transfer and frequency upconversion in Yb3+–Er3+-doped PbO- GeO2 glass containing silver nanoparticles,” Appl. Phys. B94(2), 239–242 (2009).
[CrossRef]

L. R. P. Kassab, C. B. de Araújo, R. A. Kobayashi, R. D. De, A. Pinto, and D. M. da Silva, “Influence of silver nanoparticles in the luminescence efficiency of Pr3+-doped tellurite glasses,” J. Appl. Phys.102, 103515 (2007).

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Desurvire, E. B.

dos Santos, M. A.

O. L. Malta and M. A. dos Santos, “Theoretical analysis of the fluorescence yield of rare earth ions in glasses containing small metallic particles,” Chem. Phys. Lett.174(1), 13–18 (1990).
[CrossRef]

Dousti, M. R.

R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, A. R. Samavati, R. Arifin, and S. Naseem, “Annealing time dependent up-conversion luminescence enhancement in magnesium–tellurite glass,” J. Lumin.136, 145–149 (2013).
[CrossRef]

R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, and B. A. Tahir, “Enhanced infrared to visible upconversion emission in Er3+ doped phosphate glass: Role of silver nanoparticle,” J. Lumin.132(10), 2714–2718 (2012).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Etchegoin, P.

P. Etchegoin, H. Liem, R. C. Maher, L. F. Cohen, R. J. C. Brown, H. Hartigan, M. J. T. Milton, and J. C. Gallop, “A novel amplification mechanism for surface enhanced Raman scattering,” Chem. Phys. Lett.366(1-2), 115–121 (2002).
[CrossRef]

Fang, J.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem.301(2), 261–277 (2002).
[CrossRef] [PubMed]

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26(2), 163–166 (1974).
[CrossRef]

Fonoberov, V. A.

K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals,” J. Appl. Phys.97(12), 124313 (2005).
[CrossRef]

Fujii, M.

M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett.71(9), 1198–1200 (1997).
[CrossRef]

Gallop, J. C.

P. Etchegoin, H. Liem, R. C. Maher, L. F. Cohen, R. J. C. Brown, H. Hartigan, M. J. T. Milton, and J. C. Gallop, “A novel amplification mechanism for surface enhanced Raman scattering,” Chem. Phys. Lett.366(1-2), 115–121 (2002).
[CrossRef]

García-Macedo, J. A.

J. A. García-Macedo, G. Valverde, J. Lockard, and J. I. Zink, “SERS on mesostructured thin films with silver nanoparticles,” Proc. SPIE5361, 117–124 (2004).
[CrossRef]

Geddes, C. D.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol.16(1), 55–62 (2005).
[CrossRef] [PubMed]

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence: Potential applications in HTS,” Comb. Chem. High Throughput Screen.6(2), 109–117 (2003).
[CrossRef] [PubMed]

C. D. Geddes and J. R. Lakowicz, “Editorial: Metal-enhanced fluorescence,” J. Fluoresc.12(2), 121–129 (2002).
[CrossRef] [PubMed]

Ghoshal, S. K.

R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, A. R. Samavati, R. Arifin, and S. Naseem, “Annealing time dependent up-conversion luminescence enhancement in magnesium–tellurite glass,” J. Lumin.136, 145–149 (2013).
[CrossRef]

R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, and B. A. Tahir, “Enhanced infrared to visible upconversion emission in Er3+ doped phosphate glass: Role of silver nanoparticle,” J. Lumin.132(10), 2714–2718 (2012).
[CrossRef]

Gosnell, T. R.

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, “Spectroscopic properties of Er3+ and Yb3+doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B56(15), 9302–9318 (1997).
[CrossRef]

Grabhorn, H.

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” Condens. Matter.4(5), 1143–1212 (1992).
[CrossRef]

Gryczynski, I.

E. G. Matveeva, T. Shtoyko, I. Gryczynski, I. Akopova, and Z. Gryczynski, “Fluorescence quenching/enhancement surface assays: Signal manipulation using silver-coated gold nanoparticles,” Chem. Phys. Lett.454(1-3), 85–90 (2008).
[CrossRef] [PubMed]

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol.16(1), 55–62 (2005).
[CrossRef] [PubMed]

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence: Potential applications in HTS,” Comb. Chem. High Throughput Screen.6(2), 109–117 (2003).
[CrossRef] [PubMed]

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem.301(2), 261–277 (2002).
[CrossRef] [PubMed]

Gryczynski, Z.

E. G. Matveeva, T. Shtoyko, I. Gryczynski, I. Akopova, and Z. Gryczynski, “Fluorescence quenching/enhancement surface assays: Signal manipulation using silver-coated gold nanoparticles,” Chem. Phys. Lett.454(1-3), 85–90 (2008).
[CrossRef] [PubMed]

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence: Potential applications in HTS,” Comb. Chem. High Throughput Screen.6(2), 109–117 (2003).
[CrossRef] [PubMed]

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem.301(2), 261–277 (2002).
[CrossRef] [PubMed]

Halas, N. J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Han, W. T.

S. Moon, P. R. Watekar, B. H. Kim, and W. T. Han, “Fabrication and photoluminescence characteristics of Er3+-doped optical fibre sensitised by silicon,” Electron. Lett.43(2), 85–87 (2007).
[CrossRef]

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W. T. Han, “Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles,” J. Nanosci. Nanotechnol.6(11), 3555–3558 (2006).
[CrossRef] [PubMed]

Hartigan, H.

P. Etchegoin, H. Liem, R. C. Maher, L. F. Cohen, R. J. C. Brown, H. Hartigan, M. J. T. Milton, and J. C. Gallop, “A novel amplification mechanism for surface enhanced Raman scattering,” Chem. Phys. Lett.366(1-2), 115–121 (2002).
[CrossRef]

Hayakawa, T.

T. Hayakawa, S. T. Selvan, and M. Nogami, “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett.74(11), 1513–1515 (1999).
[CrossRef]

Hayashi, S.

M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett.71(9), 1198–1200 (1997).
[CrossRef]

Hehlen, M. P.

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, “Spectroscopic properties of Er3+ and Yb3+doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B56(15), 9302–9318 (1997).
[CrossRef]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26(2), 163–166 (1974).
[CrossRef]

Hossain, M. K.

M. K. Hossain and Y. Ozaki, “Surface-enhanced Raman scattering: facts and inline trends,” Curr. Sci.97, 192–201 (2009).

Jeong, C.

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W. T. Han, “Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles,” J. Nanosci. Nanotechnol.6(11), 3555–3558 (2006).
[CrossRef] [PubMed]

Ju, S.

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W. T. Han, “Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles,” J. Nanosci. Nanotechnol.6(11), 3555–3558 (2006).
[CrossRef] [PubMed]

Jurdyc, A.-M.

E. Nardou, D. Vouagner, A.-M. Jurdyc, A. Berthelot, A. Pillonnet, V. Sablonière, F. Bessueille, and B. Champagnon, “Surface enhanced Raman scattering in an amorphous matrix for Raman amplification,” J. Non-Cryst. Solids357(8-9), 1895–1899 (2011).
[CrossRef]

Kanzawa, Y.

M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett.71(9), 1198–1200 (1997).
[CrossRef]

Karmakar, B.

T. Som and B. Karmakar, “Surface Plasmon Resonance and Enhanced Fluorescence Application of Single-Step Synthesized Elliptical Nano Gold-embedded Antimony Glass Dichroic Nanocomposites,” Plasmonics5(2), 149–159 (2010).
[CrossRef]

T. Som and B. Karmakar, “Core shell Au Ag Nanoparticles in Dielectric Nanocomposites with Plasmon-Enhanced Fluorescence: A New Paradigm in Antimony Glasses,” Nano Res.2(8), 607–616 (2009).
[CrossRef]

T. Som and B. Karmakar, “Nanosilver enhanced upconversion fluorescence of erbium ions in Er3+: Ag-antimony glass nanocomposites,” J. Appl. Phys.105(1), 013102 (2009).
[CrossRef]

Kassab, L. R. P.

L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. de Araújo, “Energy transfer and frequency upconversion in Yb3+–Er3+-doped PbO- GeO2 glass containing silver nanoparticles,” Appl. Phys. B94(2), 239–242 (2009).
[CrossRef]

L. R. P. Kassab, C. B. de Araújo, R. A. Kobayashi, R. D. De, A. Pinto, and D. M. da Silva, “Influence of silver nanoparticles in the luminescence efficiency of Pr3+-doped tellurite glasses,” J. Appl. Phys.102, 103515 (2007).

Kim, B. H.

S. Moon, P. R. Watekar, B. H. Kim, and W. T. Han, “Fabrication and photoluminescence characteristics of Er3+-doped optical fibre sensitised by silicon,” Electron. Lett.43(2), 85–87 (2007).
[CrossRef]

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W. T. Han, “Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles,” J. Nanosci. Nanotechnol.6(11), 3555–3558 (2006).
[CrossRef] [PubMed]

Kim, C. J.

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W. T. Han, “Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles,” J. Nanosci. Nanotechnol.6(11), 3555–3558 (2006).
[CrossRef] [PubMed]

Kneipp, K.

K. Kneipp, “Surface-enhanced Raman scattering,” Phys. Today, 40–46 (2007).

Kobayashi, R. A.

L. R. P. Kassab, C. B. de Araújo, R. A. Kobayashi, R. D. De, A. Pinto, and D. M. da Silva, “Influence of silver nanoparticles in the luminescence efficiency of Pr3+-doped tellurite glasses,” J. Appl. Phys.102, 103515 (2007).

Komatsu, T.

T. Komatsu, H. Tawarayama, H. Mohri, and K. Matusita, “Properties and crystallization behaviors of TeO2-LiNbO3 glasses,” J. Non-Cryst. Solids135(2-3), 105–113 (1991).
[CrossRef]

Kundu, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Lakowicz, J. R.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol.16(1), 55–62 (2005).
[CrossRef] [PubMed]

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence: Potential applications in HTS,” Comb. Chem. High Throughput Screen.6(2), 109–117 (2003).
[CrossRef] [PubMed]

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem.301(2), 261–277 (2002).
[CrossRef] [PubMed]

C. D. Geddes and J. R. Lakowicz, “Editorial: Metal-enhanced fluorescence,” J. Fluoresc.12(2), 121–129 (2002).
[CrossRef] [PubMed]

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem.298(1), 1–24 (2001).
[CrossRef] [PubMed]

Le, F.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Ledemi, Y.

Liem, H.

P. Etchegoin, H. Liem, R. C. Maher, L. F. Cohen, R. J. C. Brown, H. Hartigan, M. J. T. Milton, and J. C. Gallop, “A novel amplification mechanism for surface enhanced Raman scattering,” Chem. Phys. Lett.366(1-2), 115–121 (2002).
[CrossRef]

Lockard, J.

J. A. García-Macedo, G. Valverde, J. Lockard, and J. I. Zink, “SERS on mesostructured thin films with silver nanoparticles,” Proc. SPIE5361, 117–124 (2004).
[CrossRef]

Maher, R. C.

P. Etchegoin, H. Liem, R. C. Maher, L. F. Cohen, R. J. C. Brown, H. Hartigan, M. J. T. Milton, and J. C. Gallop, “A novel amplification mechanism for surface enhanced Raman scattering,” Chem. Phys. Lett.366(1-2), 115–121 (2002).
[CrossRef]

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005).
[CrossRef]

Malicka, J.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol.16(1), 55–62 (2005).
[CrossRef] [PubMed]

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence: Potential applications in HTS,” Comb. Chem. High Throughput Screen.6(2), 109–117 (2003).
[CrossRef] [PubMed]

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem.301(2), 261–277 (2002).
[CrossRef] [PubMed]

Malta, O. L.

O. L. Malta and M. A. dos Santos, “Theoretical analysis of the fluorescence yield of rare earth ions in glasses containing small metallic particles,” Chem. Phys. Lett.174(1), 13–18 (1990).
[CrossRef]

Manzani, D.

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3-4), 131–314 (2005).
[CrossRef]

Marega, E.

Martinelli, J. R.

L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. de Araújo, “Energy transfer and frequency upconversion in Yb3+–Er3+-doped PbO- GeO2 glass containing silver nanoparticles,” Appl. Phys. B94(2), 239–242 (2009).
[CrossRef]

Matusita, K.

T. Komatsu, H. Tawarayama, H. Mohri, and K. Matusita, “Properties and crystallization behaviors of TeO2-LiNbO3 glasses,” J. Non-Cryst. Solids135(2-3), 105–113 (1991).
[CrossRef]

Matveeva, E.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol.16(1), 55–62 (2005).
[CrossRef] [PubMed]

Matveeva, E. G.

E. G. Matveeva, T. Shtoyko, I. Gryczynski, I. Akopova, and Z. Gryczynski, “Fluorescence quenching/enhancement surface assays: Signal manipulation using silver-coated gold nanoparticles,” Chem. Phys. Lett.454(1-3), 85–90 (2008).
[CrossRef] [PubMed]

McQuillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26(2), 163–166 (1974).
[CrossRef]

Messaddeq, Y.

Michaels, A. M.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121(43), 9932–9939 (1999).
[CrossRef]

Milton, M. J. T.

P. Etchegoin, H. Liem, R. C. Maher, L. F. Cohen, R. J. C. Brown, H. Hartigan, M. J. T. Milton, and J. C. Gallop, “A novel amplification mechanism for surface enhanced Raman scattering,” Chem. Phys. Lett.366(1-2), 115–121 (2002).
[CrossRef]

Mochida, N.

T. Sekiya, N. Mochida, A. Ohtsuka, and A. Soejima, “Raman spectra of BO3/2-TeO2 glasses,” J. Non-Cryst. Solids151(3), 222–228 (1992).
[CrossRef]

Mohri, H.

T. Komatsu, H. Tawarayama, H. Mohri, and K. Matusita, “Properties and crystallization behaviors of TeO2-LiNbO3 glasses,” J. Non-Cryst. Solids135(2-3), 105–113 (1991).
[CrossRef]

Moon, S.

S. Moon, P. R. Watekar, B. H. Kim, and W. T. Han, “Fabrication and photoluminescence characteristics of Er3+-doped optical fibre sensitised by silicon,” Electron. Lett.43(2), 85–87 (2007).
[CrossRef]

Mrozek, I.

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” Condens. Matter.4(5), 1143–1212 (1992).
[CrossRef]

Nardou, E.

E. Nardou, D. Vouagner, A.-M. Jurdyc, A. Berthelot, A. Pillonnet, V. Sablonière, F. Bessueille, and B. Champagnon, “Surface enhanced Raman scattering in an amorphous matrix for Raman amplification,” J. Non-Cryst. Solids357(8-9), 1895–1899 (2011).
[CrossRef]

Naseem, S.

R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, A. R. Samavati, R. Arifin, and S. Naseem, “Annealing time dependent up-conversion luminescence enhancement in magnesium–tellurite glass,” J. Lumin.136, 145–149 (2013).
[CrossRef]

Neto, J. J.

L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. de Araújo, “Energy transfer and frequency upconversion in Yb3+–Er3+-doped PbO- GeO2 glass containing silver nanoparticles,” Appl. Phys. B94(2), 239–242 (2009).
[CrossRef]

Nguyen, V. L.

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W. T. Han, “Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles,” J. Nanosci. Nanotechnol.6(11), 3555–3558 (2006).
[CrossRef] [PubMed]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Nirmal, M.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121(43), 9932–9939 (1999).
[CrossRef]

Nogami, M.

T. Hayakawa, S. T. Selvan, and M. Nogami, “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett.74(11), 1513–1515 (1999).
[CrossRef]

Nordlander, P.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Nunes, L. A. O.

Ohtsuka, A.

T. Sekiya, N. Mochida, A. Ohtsuka, and A. Soejima, “Raman spectra of BO3/2-TeO2 glasses,” J. Non-Cryst. Solids151(3), 222–228 (1992).
[CrossRef]

Osorio, S. P. A.

Otto, A.

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” Condens. Matter.4(5), 1143–1212 (1992).
[CrossRef]

Ozaki, Y.

M. K. Hossain and Y. Ozaki, “Surface-enhanced Raman scattering: facts and inline trends,” Curr. Sci.97, 192–201 (2009).

Pillonnet, A.

E. Nardou, D. Vouagner, A.-M. Jurdyc, A. Berthelot, A. Pillonnet, V. Sablonière, F. Bessueille, and B. Champagnon, “Surface enhanced Raman scattering in an amorphous matrix for Raman amplification,” J. Non-Cryst. Solids357(8-9), 1895–1899 (2011).
[CrossRef]

Pinto, A.

L. R. P. Kassab, C. B. de Araújo, R. A. Kobayashi, R. D. De, A. Pinto, and D. M. da Silva, “Influence of silver nanoparticles in the luminescence efficiency of Pr3+-doped tellurite glasses,” J. Appl. Phys.102, 103515 (2007).

Polman, A.

C. Strohhofer and A. Polman, “Silver as a sensitizer for erbium,” Appl. Phys. Lett.81(8), 1414–1416 (2002).
[CrossRef]

Riaz, S.

R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, A. R. Samavati, R. Arifin, and S. Naseem, “Annealing time dependent up-conversion luminescence enhancement in magnesium–tellurite glass,” J. Lumin.136, 145–149 (2013).
[CrossRef]

R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, and B. A. Tahir, “Enhanced infrared to visible upconversion emission in Er3+ doped phosphate glass: Role of silver nanoparticle,” J. Lumin.132(10), 2714–2718 (2012).
[CrossRef]

Rivera, V. A. G.

Roy, D.

D. Roy, Z. H. Barber, and T. W. Clyne, “Ag nanoparticle induced surface enhanced Raman spectroscopy of chemical vapor deposition diamond thin films prepared by hot filament chemical vapor deposition,” J. Appl. Phys.91(9), 6085–6088 (2002).
[CrossRef]

Sablonière, V.

E. Nardou, D. Vouagner, A.-M. Jurdyc, A. Berthelot, A. Pillonnet, V. Sablonière, F. Bessueille, and B. Champagnon, “Surface enhanced Raman scattering in an amorphous matrix for Raman amplification,” J. Non-Cryst. Solids357(8-9), 1895–1899 (2011).
[CrossRef]

Sahar, M. R.

R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, A. R. Samavati, R. Arifin, and S. Naseem, “Annealing time dependent up-conversion luminescence enhancement in magnesium–tellurite glass,” J. Lumin.136, 145–149 (2013).
[CrossRef]

R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, and B. A. Tahir, “Enhanced infrared to visible upconversion emission in Er3+ doped phosphate glass: Role of silver nanoparticle,” J. Lumin.132(10), 2714–2718 (2012).
[CrossRef]

Samavati, A. R.

R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, A. R. Samavati, R. Arifin, and S. Naseem, “Annealing time dependent up-conversion luminescence enhancement in magnesium–tellurite glass,” J. Lumin.136, 145–149 (2013).
[CrossRef]

Sekiya, T.

T. Sekiya, N. Mochida, A. Ohtsuka, and A. Soejima, “Raman spectra of BO3/2-TeO2 glasses,” J. Non-Cryst. Solids151(3), 222–228 (1992).
[CrossRef]

Selvan, S. T.

T. Hayakawa, S. T. Selvan, and M. Nogami, “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett.74(11), 1513–1515 (1999).
[CrossRef]

Shamsa, M.

K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals,” J. Appl. Phys.97(12), 124313 (2005).
[CrossRef]

Shen, Y.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem.301(2), 261–277 (2002).
[CrossRef] [PubMed]

Shtoyko, T.

E. G. Matveeva, T. Shtoyko, I. Gryczynski, I. Akopova, and Z. Gryczynski, “Fluorescence quenching/enhancement surface assays: Signal manipulation using silver-coated gold nanoparticles,” Chem. Phys. Lett.454(1-3), 85–90 (2008).
[CrossRef] [PubMed]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3-4), 131–314 (2005).
[CrossRef]

Soejima, A.

T. Sekiya, N. Mochida, A. Ohtsuka, and A. Soejima, “Raman spectra of BO3/2-TeO2 glasses,” J. Non-Cryst. Solids151(3), 222–228 (1992).
[CrossRef]

Som, T.

T. Som and B. Karmakar, “Surface Plasmon Resonance and Enhanced Fluorescence Application of Single-Step Synthesized Elliptical Nano Gold-embedded Antimony Glass Dichroic Nanocomposites,” Plasmonics5(2), 149–159 (2010).
[CrossRef]

T. Som and B. Karmakar, “Core shell Au Ag Nanoparticles in Dielectric Nanocomposites with Plasmon-Enhanced Fluorescence: A New Paradigm in Antimony Glasses,” Nano Res.2(8), 607–616 (2009).
[CrossRef]

T. Som and B. Karmakar, “Nanosilver enhanced upconversion fluorescence of erbium ions in Er3+: Ag-antimony glass nanocomposites,” J. Appl. Phys.105(1), 013102 (2009).
[CrossRef]

Strohhofer, C.

C. Strohhofer and A. Polman, “Silver as a sensitizer for erbium,” Appl. Phys. Lett.81(8), 1414–1416 (2002).
[CrossRef]

Tahir, B. A.

R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, and B. A. Tahir, “Enhanced infrared to visible upconversion emission in Er3+ doped phosphate glass: Role of silver nanoparticle,” J. Lumin.132(10), 2714–2718 (2012).
[CrossRef]

Tawarayama, H.

T. Komatsu, H. Tawarayama, H. Mohri, and K. Matusita, “Properties and crystallization behaviors of TeO2-LiNbO3 glasses,” J. Non-Cryst. Solids135(2-3), 105–113 (1991).
[CrossRef]

Urzhumov, Y. A.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Valverde, G.

J. A. García-Macedo, G. Valverde, J. Lockard, and J. I. Zink, “SERS on mesostructured thin films with silver nanoparticles,” Proc. SPIE5361, 117–124 (2004).
[CrossRef]

Vouagner, D.

E. Nardou, D. Vouagner, A.-M. Jurdyc, A. Berthelot, A. Pillonnet, V. Sablonière, F. Bessueille, and B. Champagnon, “Surface enhanced Raman scattering in an amorphous matrix for Raman amplification,” J. Non-Cryst. Solids357(8-9), 1895–1899 (2011).
[CrossRef]

Wang, H.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Watekar, P. R.

S. Moon, P. R. Watekar, B. H. Kim, and W. T. Han, “Fabrication and photoluminescence characteristics of Er3+-doped optical fibre sensitised by silicon,” Electron. Lett.43(2), 85–87 (2007).
[CrossRef]

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W. T. Han, “Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles,” J. Nanosci. Nanotechnol.6(11), 3555–3558 (2006).
[CrossRef] [PubMed]

Wetter, N. U.

L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. de Araújo, “Energy transfer and frequency upconversion in Yb3+–Er3+-doped PbO- GeO2 glass containing silver nanoparticles,” Appl. Phys. B94(2), 239–242 (2009).
[CrossRef]

Yamamoto, K.

M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett.71(9), 1198–1200 (1997).
[CrossRef]

Yoshida, M.

M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett.71(9), 1198–1200 (1997).
[CrossRef]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3-4), 131–314 (2005).
[CrossRef]

Zhu, J.

J. Zhu, “SPR induced quenching of the 5D1→7F1 emission of Eu3+ doped gold colloids,” Phys. Lett. A341(1-4), 212–215 (2005).
[CrossRef]

Zink, J. I.

J. A. García-Macedo, G. Valverde, J. Lockard, and J. I. Zink, “SERS on mesostructured thin films with silver nanoparticles,” Proc. SPIE5361, 117–124 (2004).
[CrossRef]

ACS Nano

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic Nanoparticle Arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Anal. Biochem.

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem.298(1), 1–24 (2001).
[CrossRef] [PubMed]

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem.301(2), 261–277 (2002).
[CrossRef] [PubMed]

Appl. Phys. B

L. R. P. Kassab, F. A. Bomfim, J. R. Martinelli, N. U. Wetter, J. J. Neto, and C. B. de Araújo, “Energy transfer and frequency upconversion in Yb3+–Er3+-doped PbO- GeO2 glass containing silver nanoparticles,” Appl. Phys. B94(2), 239–242 (2009).
[CrossRef]

Appl. Phys. Lett.

T. Hayakawa, S. T. Selvan, and M. Nogami, “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett.74(11), 1513–1515 (1999).
[CrossRef]

M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett.71(9), 1198–1200 (1997).
[CrossRef]

C. Strohhofer and A. Polman, “Silver as a sensitizer for erbium,” Appl. Phys. Lett.81(8), 1414–1416 (2002).
[CrossRef]

Chem. Phys. Lett.

E. G. Matveeva, T. Shtoyko, I. Gryczynski, I. Akopova, and Z. Gryczynski, “Fluorescence quenching/enhancement surface assays: Signal manipulation using silver-coated gold nanoparticles,” Chem. Phys. Lett.454(1-3), 85–90 (2008).
[CrossRef] [PubMed]

O. L. Malta and M. A. dos Santos, “Theoretical analysis of the fluorescence yield of rare earth ions in glasses containing small metallic particles,” Chem. Phys. Lett.174(1), 13–18 (1990).
[CrossRef]

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26(2), 163–166 (1974).
[CrossRef]

P. Etchegoin, H. Liem, R. C. Maher, L. F. Cohen, R. J. C. Brown, H. Hartigan, M. J. T. Milton, and J. C. Gallop, “A novel amplification mechanism for surface enhanced Raman scattering,” Chem. Phys. Lett.366(1-2), 115–121 (2002).
[CrossRef]

Comb. Chem. High Throughput Screen.

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence: Potential applications in HTS,” Comb. Chem. High Throughput Screen.6(2), 109–117 (2003).
[CrossRef] [PubMed]

Condens. Matter.

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” Condens. Matter.4(5), 1143–1212 (1992).
[CrossRef]

Curr. Opin. Biotechnol.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol.16(1), 55–62 (2005).
[CrossRef] [PubMed]

Curr. Sci.

M. K. Hossain and Y. Ozaki, “Surface-enhanced Raman scattering: facts and inline trends,” Curr. Sci.97, 192–201 (2009).

Electron. Lett.

S. Moon, P. R. Watekar, B. H. Kim, and W. T. Han, “Fabrication and photoluminescence characteristics of Er3+-doped optical fibre sensitised by silicon,” Electron. Lett.43(2), 85–87 (2007).
[CrossRef]

J. Am. Chem. Soc.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121(43), 9932–9939 (1999).
[CrossRef]

J. Appl. Phys.

D. Roy, Z. H. Barber, and T. W. Clyne, “Ag nanoparticle induced surface enhanced Raman spectroscopy of chemical vapor deposition diamond thin films prepared by hot filament chemical vapor deposition,” J. Appl. Phys.91(9), 6085–6088 (2002).
[CrossRef]

K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals,” J. Appl. Phys.97(12), 124313 (2005).
[CrossRef]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005).
[CrossRef]

T. Som and B. Karmakar, “Nanosilver enhanced upconversion fluorescence of erbium ions in Er3+: Ag-antimony glass nanocomposites,” J. Appl. Phys.105(1), 013102 (2009).
[CrossRef]

L. R. P. Kassab, C. B. de Araújo, R. A. Kobayashi, R. D. De, A. Pinto, and D. M. da Silva, “Influence of silver nanoparticles in the luminescence efficiency of Pr3+-doped tellurite glasses,” J. Appl. Phys.102, 103515 (2007).

J. Fluoresc.

C. D. Geddes and J. R. Lakowicz, “Editorial: Metal-enhanced fluorescence,” J. Fluoresc.12(2), 121–129 (2002).
[CrossRef] [PubMed]

J. Lightwave Technol.

J. Lumin.

R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, A. R. Samavati, R. Arifin, and S. Naseem, “Annealing time dependent up-conversion luminescence enhancement in magnesium–tellurite glass,” J. Lumin.136, 145–149 (2013).
[CrossRef]

R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, and B. A. Tahir, “Enhanced infrared to visible upconversion emission in Er3+ doped phosphate glass: Role of silver nanoparticle,” J. Lumin.132(10), 2714–2718 (2012).
[CrossRef]

J. Nanosci. Nanotechnol.

S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W. T. Han, “Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles,” J. Nanosci. Nanotechnol.6(11), 3555–3558 (2006).
[CrossRef] [PubMed]

J. Non-Cryst. Solids

E. Nardou, D. Vouagner, A.-M. Jurdyc, A. Berthelot, A. Pillonnet, V. Sablonière, F. Bessueille, and B. Champagnon, “Surface enhanced Raman scattering in an amorphous matrix for Raman amplification,” J. Non-Cryst. Solids357(8-9), 1895–1899 (2011).
[CrossRef]

T. Sekiya, N. Mochida, A. Ohtsuka, and A. Soejima, “Raman spectra of BO3/2-TeO2 glasses,” J. Non-Cryst. Solids151(3), 222–228 (1992).
[CrossRef]

T. Komatsu, H. Tawarayama, H. Mohri, and K. Matusita, “Properties and crystallization behaviors of TeO2-LiNbO3 glasses,” J. Non-Cryst. Solids135(2-3), 105–113 (1991).
[CrossRef]

Nano Res.

T. Som and B. Karmakar, “Core shell Au Ag Nanoparticles in Dielectric Nanocomposites with Plasmon-Enhanced Fluorescence: A New Paradigm in Antimony Glasses,” Nano Res.2(8), 607–616 (2009).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express

Phys. Lett. A

J. Zhu, “SPR induced quenching of the 5D1→7F1 emission of Eu3+ doped gold colloids,” Phys. Lett. A341(1-4), 212–215 (2005).
[CrossRef]

Phys. Rep.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3-4), 131–314 (2005).
[CrossRef]

Phys. Rev. B

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, “Spectroscopic properties of Er3+ and Yb3+doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B56(15), 9302–9318 (1997).
[CrossRef]

Plasmonics

T. Som and B. Karmakar, “Surface Plasmon Resonance and Enhanced Fluorescence Application of Single-Step Synthesized Elliptical Nano Gold-embedded Antimony Glass Dichroic Nanocomposites,” Plasmonics5(2), 149–159 (2010).
[CrossRef]

Proc. SPIE

J. A. García-Macedo, G. Valverde, J. Lockard, and J. I. Zink, “SERS on mesostructured thin films with silver nanoparticles,” Proc. SPIE5361, 117–124 (2004).
[CrossRef]

Science

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Surface-enhanced Raman scattering

K. Kneipp, “Surface-enhanced Raman scattering,” Phys. Today, 40–46 (2007).

Other

F. Gonella and P. Mazzoldi, “Metal nanocluster composite glasses,” in Handbook of Nanostructured Materials and Nanotechnology, Nalwa HS (Ed), vol 4. (Academic, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Absorption spectra of Er3+ doped tellurite glass for No AgCl (Glass A) and 1.0 mol% AgCl (Glass D). Inset shows surface plasmon resonance (SPR) band located at 484 nm for Glass E. Energy levels are numbered as (1-4I13/2, 2-4I11/2, 3-4I9/2, 4-4F9/2, 5-2H11/2, 6-4F7/2, 7-2G9/2) (b) SPR bands observed for glass samples G, H and I centered at 490, 521, 551 nm.

Fig. 2
Fig. 2

(a) shows the selected area electron diffraction (SAED) of glass C. The high resolution transmission electron microscope (HR-TEM) image of one single NP is shown in Fig. 2(b). Figures 2((c), (d), (e)) shows the TEM images of the glass samples C, D and E respectively. Corresponding histograms for the size distribution is also shown down to each TEM. Average diameter of NPs for glass B, C and D is 14, 24 and 36 nm respectively.

Fig. 3
Fig. 3

(A) Ostwald ripening (B) nanoparticle migration followed by coalescence.

Fig. 4
Fig. 4

Raman spectra for Er3+ doped glass samples

Fig. 5
Fig. 5

(a) luminescence spectra of glasses under an excitation of 786 nm i) No AgCl, ii) 0.1 mol% AgCl, iii) 0.5 mol% AgCl, iv) 1.0 mol% AgCl (b) plot of emission intensity vs concentration of Ag (mol%). Maximum amplification for the green and red bands is found to occur at 0.5 mol% Ag (Glass C).

Fig. 6
Fig. 6

(a) Downconversion luminescence spectra of glasses with i) No AgCl, ii) 0.1 mol% AgCl, iii) 0.5 mol% AgCl, iv) 1.0 mol% AgCl (b) plot of emission intensity vs concentration of Ag (mol%). Maximum amplification for the green and red bands are found to be occur at 0.5 mol% Ag (Glass C).

Fig. 7
Fig. 7

(a) Partial energy level diagram of Er3+ ions in zinc-tellurite glass showing UC emissions at 520, 550 and 650 nm through ground state absorption (GSA), excited state absorption (ESA) and energy transfer (ET) between two Er3+ ions. Local field effects due to silver NPs are also shown. (b) Partial energy level diagram of Er3+ ions in zinc-tellurite glass showing downconversion emission at 520, 550, 650 and 835 nm through ground state absorption (GSA) and energy transfer (ET) between two Er3+ ions. Local field effects due to silver NPs are also shown (b).

Fig. 8
Fig. 8

Red and green emissions from Er3+ under an excitation of 786 nm.

Tables (1)

Tables Icon

Table 1 Glass labels, compositions, SPR position, average NP size and corresponding heat-treatment (HT) durations.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λ max 2 = (2πc) 2 mN e 2 ( ε +2 n 2 )/ ε 0
4 I 15/2 4 I 9/2 [ GSA ] 4 I 11/2 [ NR ]   4 F 7/2 [ ESA ] 2 H 11/2 [ NR ] 4 S 3/2
( 4 I 11/2 , 4 I 11/2 ) ( 4 I 15/2 , 4 F 7/2 )
( 4 I 11/2 , 4 I 13/2 ) ( 4 I 15/2 , 4 F 9/2 )

Metrics