Abstract

A general model is proposed to describe thermal-induced mode distortion in the step-index fiber (SIF) high power lasers. Two normalized parameters in the model are able to determine the mode characteristic in the heated SIFs completely. Shrinking of the mode fields and excitation of the high-order modes by the thermal-optic effect are investigated. A simplified power amplification model is used to describe the output power redistribution under various guiding modes. The results suggest that fiber with large mode area is more sensitive on the thermally induced mode distortion and hence is disadvantaged in keeping the beam quality in high power operation. The model is further applied to improve the power scaling analysis of Yb-doped fiber lasers. Here the thermal effect is considered to couple with the optical damage and the stimulated Raman scattering dynamically, whereas direct constraint from the thermal lens is relaxed. The resulting maximal output power is from 67kW to 97kW, depending on power fraction of the fundamental mode.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B27(11), B63–B92 (2010).
    [CrossRef]
  2. Y. Y. Fan, B. He, J. Zhou, J. T. Zheng, H. K. Liu, Y. R. Wei, J. X. Dong, and Q. H. Lou, “Thermal effects in kilowatt all-fiber MOPA,” Opt. Express19(16), 15162–15172 (2011).
    [CrossRef] [PubMed]
  3. M. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J. Maran, “Thermal effects in high power CW fiber lasers,” Proc. SPIE 7195, 71951U (2009).
  4. S. Hädrich, T. Schreiber, T. Pertsch, J. Limpert, T. Peschel, R. Eberhardt, and A. Tünnermann, “Thermo-optical behavior of rare-earth-doped low-NA fibers in high power operation,” Opt. Express14(13), 6091–6097 (2006).
    [CrossRef] [PubMed]
  5. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermo-optical effects in high-power ytterbium-doped fiber amplifiers,” Opt. Express19(24), 23965–23980 (2011).
    [CrossRef] [PubMed]
  6. C. Jauregui, T. Eidam, H. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “On the thermal origin of mode instabilities in high power fiber lasers,” Proc. SPIE 8237, 82370D (2012).
  7. J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, and A. Tünnermann, “Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express11(22), 2982–2990 (2003).
    [CrossRef] [PubMed]
  8. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express19(14), 13218–13224 (2011).
    [CrossRef] [PubMed]
  9. A. V. Smith and J. J. Smith, “Thermally induced mode instability in high power fiber amplifiers,” Proc. SPIE 8237, 82370B (2012).
  10. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express16(17), 13240–13266 (2008).
    [CrossRef] [PubMed]
  11. J. J. Zhu, P. Zhou, Y. X. Ma, X. J. Xu, and Z. J. Liu, “Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers,” Opt. Express19(19), 18645–18654 (2011).
    [CrossRef] [PubMed]
  12. D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron.37(2), 207–217 (2001).
    [CrossRef]
  13. A. Liu, X. Chen, M. Li, J. Wang, D. T. Walton, and L. A. Zenteno, “Comprehensive modeling of single frequency fiber amplifiers for mitigating stimulated Brillouin scattering,” J. Lightwave Tech.27(13), 2189–2198 (2009).
    [CrossRef]
  14. A. W. Snyder and R. A. Sammut, “Fundamental (HE11) modes of graded optical fibers,” J. Opt. Soc. Am.69(12), 1663–1671 (1979).
    [CrossRef]
  15. B. Morasse, S. Chatigny, C. Desrosiers, É. Gagnon, and M. Lapointe, “Simple Design for Single mode High Power CW Fiber Laser using Multimode High NA Fiber,” Proc. SPIE 7195, 719505 (2009).

2011 (4)

2010 (1)

2009 (1)

A. Liu, X. Chen, M. Li, J. Wang, D. T. Walton, and L. A. Zenteno, “Comprehensive modeling of single frequency fiber amplifiers for mitigating stimulated Brillouin scattering,” J. Lightwave Tech.27(13), 2189–2198 (2009).
[CrossRef]

2008 (1)

2006 (1)

2003 (1)

2001 (1)

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron.37(2), 207–217 (2001).
[CrossRef]

1979 (1)

Alkeskjold, T. T.

Barty, C. P. J.

Beach, R. J.

Broeng, J.

Brown, D. C.

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron.37(2), 207–217 (2001).
[CrossRef]

Chen, X.

A. Liu, X. Chen, M. Li, J. Wang, D. T. Walton, and L. A. Zenteno, “Comprehensive modeling of single frequency fiber amplifiers for mitigating stimulated Brillouin scattering,” J. Lightwave Tech.27(13), 2189–2198 (2009).
[CrossRef]

Clarkson, W. A.

Dawson, J. W.

Dong, J. X.

Eberhardt, R.

Eidam, T.

Fan, Y. Y.

Guyenot, V.

Hädrich, S.

Hansen, K. R.

He, B.

Heebner, J. E.

Hoffman, H. J.

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron.37(2), 207–217 (2001).
[CrossRef]

Jansen, F.

Jauregui, C.

Lægsgaard, J.

Li, M.

A. Liu, X. Chen, M. Li, J. Wang, D. T. Walton, and L. A. Zenteno, “Comprehensive modeling of single frequency fiber amplifiers for mitigating stimulated Brillouin scattering,” J. Lightwave Tech.27(13), 2189–2198 (2009).
[CrossRef]

Liem, A.

Limpert, J.

Liu, A.

A. Liu, X. Chen, M. Li, J. Wang, D. T. Walton, and L. A. Zenteno, “Comprehensive modeling of single frequency fiber amplifiers for mitigating stimulated Brillouin scattering,” J. Lightwave Tech.27(13), 2189–2198 (2009).
[CrossRef]

Liu, H. K.

Liu, Z. J.

Lou, Q. H.

Ma, Y. X.

Messerly, M. J.

Nilsson, J.

Nolte, S.

Otto, H. J.

Pax, P. H.

Pertsch, T.

Peschel, T.

Richardson, D. J.

Sammut, R. A.

Schmidt, O.

Schreiber, T.

Shverdin, M. Y.

Siders, C. W.

Snyder, A. W.

Sridharan, A. K.

Stappaerts, E. A.

Stutzki, F.

Tünnermann, A.

Walton, D. T.

A. Liu, X. Chen, M. Li, J. Wang, D. T. Walton, and L. A. Zenteno, “Comprehensive modeling of single frequency fiber amplifiers for mitigating stimulated Brillouin scattering,” J. Lightwave Tech.27(13), 2189–2198 (2009).
[CrossRef]

Wang, J.

A. Liu, X. Chen, M. Li, J. Wang, D. T. Walton, and L. A. Zenteno, “Comprehensive modeling of single frequency fiber amplifiers for mitigating stimulated Brillouin scattering,” J. Lightwave Tech.27(13), 2189–2198 (2009).
[CrossRef]

Wei, Y. R.

Wirth, C.

Xu, X. J.

Zellmer, H.

Zenteno, L. A.

A. Liu, X. Chen, M. Li, J. Wang, D. T. Walton, and L. A. Zenteno, “Comprehensive modeling of single frequency fiber amplifiers for mitigating stimulated Brillouin scattering,” J. Lightwave Tech.27(13), 2189–2198 (2009).
[CrossRef]

Zheng, J. T.

Zhou, J.

Zhou, P.

Zhu, J. J.

IEEE J. Quantum Electron. (1)

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron.37(2), 207–217 (2001).
[CrossRef]

J. Lightwave Tech. (1)

A. Liu, X. Chen, M. Li, J. Wang, D. T. Walton, and L. A. Zenteno, “Comprehensive modeling of single frequency fiber amplifiers for mitigating stimulated Brillouin scattering,” J. Lightwave Tech.27(13), 2189–2198 (2009).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (7)

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express19(14), 13218–13224 (2011).
[CrossRef] [PubMed]

Y. Y. Fan, B. He, J. Zhou, J. T. Zheng, H. K. Liu, Y. R. Wei, J. X. Dong, and Q. H. Lou, “Thermal effects in kilowatt all-fiber MOPA,” Opt. Express19(16), 15162–15172 (2011).
[CrossRef] [PubMed]

J. J. Zhu, P. Zhou, Y. X. Ma, X. J. Xu, and Z. J. Liu, “Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers,” Opt. Express19(19), 18645–18654 (2011).
[CrossRef] [PubMed]

K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermo-optical effects in high-power ytterbium-doped fiber amplifiers,” Opt. Express19(24), 23965–23980 (2011).
[CrossRef] [PubMed]

J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, and A. Tünnermann, “Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express11(22), 2982–2990 (2003).
[CrossRef] [PubMed]

S. Hädrich, T. Schreiber, T. Pertsch, J. Limpert, T. Peschel, R. Eberhardt, and A. Tünnermann, “Thermo-optical behavior of rare-earth-doped low-NA fibers in high power operation,” Opt. Express14(13), 6091–6097 (2006).
[CrossRef] [PubMed]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express16(17), 13240–13266 (2008).
[CrossRef] [PubMed]

Other (4)

B. Morasse, S. Chatigny, C. Desrosiers, É. Gagnon, and M. Lapointe, “Simple Design for Single mode High Power CW Fiber Laser using Multimode High NA Fiber,” Proc. SPIE 7195, 719505 (2009).

M. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J. Maran, “Thermal effects in high power CW fiber lasers,” Proc. SPIE 7195, 71951U (2009).

C. Jauregui, T. Eidam, H. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “On the thermal origin of mode instabilities in high power fiber lasers,” Proc. SPIE 8237, 82370D (2012).

A. V. Smith and J. J. Smith, “Thermally induced mode instability in high power fiber amplifiers,” Proc. SPIE 8237, 82370B (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Amplitude profiles of LP01, LP11 and LP02 modes for different Z and V = 2.4 (a, b, c) and V = 3.8 (d, e, f).

Fig. 2
Fig. 2

The variation of confinement factor (a, b, c) and MFD/dco (d, e, f) along with Z for several V values.

Fig. 3
Fig. 3

The output power fractions of LP01 and LP02 modes as a function of Z.

Fig. 4
Fig. 4

Power scaling analysis with the improved model. The title of each subfigure provides the maximal power, the V-value, and the LP01 content.

Tables (1)

Tables Icon

Table 1 Definition of some symbols in Eq. (13) and their values.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ψ''+ 1 r ψ'+( k 2 (n (r) 2 n eff 2 ) ν 2 r 2 )ψ=0
n(r)={ n co + dn dT ( T co T 0 )+( 1 r 2 r co 2 ) dn dT Δ T co r r co n cl + dn dT ( T co T 0 )( 2ln r r co ) dn dT Δ T co r> r co
ψ''+ 1 x ψ'+( m(x) k 2 r co 2 ( n eff 2 n cl 2 ) ν 2 x 2 )f=0
m(x)={ V 2 +(1 x 2 ) Z 2 x1 (2lnx) Z 2 x>1
{ V=k r co n co 2 n cl 2 Z=k r co ( n co + n cl ) dn dT Δ T co
ψ in k c k ψ k P k (0)=| c k | 2 P in
P k (L)= P k (0) a Γ k =| c k | 2 a Γ k P in
G= P k (L) P k (0) = | c k | 2 a Γ k | c k | 2
p k = P k (L) P k (L) = | c k | 2 a Γ k G | c k | 2
D mode d co = 2 Z
g(f( P max conditionlens ))= P max conditionlens
P max BQ = η laser η heat Z c 2 κ λ 2 2 n 0 π dn dT L r co 2
P max pump = η laser I pump π r cl 2 πN A 2 P max rupture = η laser η heat 4π R m 1 r co 2 /(2 r cl 2 ) L P max temp = η laser η heat 4πκ( T max T cooling ) 1+2κ/( r cl h)+2ln( r cl / r co ) L P max damage = A eff I damage P max SRS =( 20.3lnβ+ln A eff g R L eff ) A eff g R L eff G P max lens = η laser η heat 2κ λ 2 Γ 4 π n co dn dT L r co 2

Metrics