Abstract

We evaluate the impacts of using multi-level modulation formats on the transmission capacity of the multi-core fiber (MCF) having trench-assisted index profile and hexagonal layout. For this evaluation, we utilize the spectral efficiency per unit area, defined as the spatial spectral efficiency (SSE). The results show that the SSE improvement achievable by using the higher-level modulation format can be reduced due to its lower tolerance to the inter-core crosstalk. We also evaluate the effects of using large effective area on the transmission capacity of the trench-assisted MCF. The results show that the use of large effective area can decrease this capacity due to the increased inter-core crosstalk and lengthened cable cutoff wavelength, although it can help increase the transmission distance. Thus, it is necessary to optimize the effective area of MCF by considering both the SSE and transmission distance. However, the results indicate that the effect of using different effective areas on the SSE-distance product is not significant, and it is not useful to increase the effective area of the trench-assisted MCF to be larger than ~110 μm2.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express19(17), 16697–16707 (2011).
    [CrossRef] [PubMed]
  2. T. Morioka, “New generation optical infrastructure technologies:“EXAT initiative” towards 2020 and beyond,” in Proc. OptoElectron. Commun. Conf. (OECC) (2009), paper FT4.
  3. T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag.50(2), S31–S42 (2012).
    [CrossRef]
  4. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s,” in Proc. Optical Fiber Commun. Conf. (OFC) (2011), paper PDP5C.1.
  5. R. Ryf, R.-J. Essiambre, S. Randel, A. H. Gnauck, P. J. Winzer, T. Hayashi, T. Taru, and T. Sasaki, “MIMO-based crosstalk suppression in spatially multiplexed 3x56-Gb/s PDM-QPSK signals for strongly coupled three-core fiber,” IEEE Photon. Technol. Lett.23(20), 1469–1471 (2011).
    [CrossRef]
  6. T. Hayashi, T. Sasaki, and E. Sasaoka, “Multi-core fibers for high capacity transmission,” in Proc. Optical Fiber Commun. Conf. (OFC) (2012), paper OTu1D4.
    [CrossRef]
  7. K. Takenaga, T. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by trench-assisted multi-core fiber,” in Proc. Optical Fiber Commun. Conf. (OFC) (2011), paper OWJ4.
    [CrossRef]
  8. K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express19(26), B543–B550 (2011).
    [CrossRef] [PubMed]
  9. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express19(17), 16576–16592 (2011).
    [CrossRef] [PubMed]
  10. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Low-loss and large-Aeff multi-core fiber for SNR enhancement,” in Proc. European Conf. on Opt. Commun. (ECOC) (2012), paper Mo.1.F.3.
  11. M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J.4(5), 1987–1995 (2012).
    [CrossRef]
  12. T. Hayashi, T. Sasaki, E. Sasaoka, K. Saitoh, and M. Koshiba, “Physical interpretation of intercore crosstalk in multicore fiber: effects of macrobend, structure fluctuation, and microbend,” Opt. Express21(5), 5401–5412 (2013).
    [CrossRef] [PubMed]
  13. P. J. Winzer, A. H. Gnauck, A. Konczykowska, F. Jorge, and J.-Y. Dupuy, “Penalties from in-band crosstalk for advanced optical modulation formats,” in Proc. European Conf. on Opt. Commun. (ECOC) (2011), paper Tu.5.B.7.
    [CrossRef]
  14. K.-P. Ho, “Effects of homodyne crosstalk on dual-polarization QPSK signals,” IEEE J. Lightw. Technol.29(1), 124–131 (2011).
    [CrossRef]
  15. S. Mumtaz, R.-J. Essiambre, and G. P. Agrawal, “Reduction of nonlinear penalties due to linear coupling in multicore optical fibers,” IEEE Photon. Technol. Lett.24(18), 1574–1576 (2012).
    [CrossRef]
  16. P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” IEEE J. Lightw. Technol.28(4), 547–556 (2010).
    [CrossRef]
  17. B. Zhu, J. M. Fini, M. F. Yan, X. Liu, S. Chandrasekhar, T. F. Taunay, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “High-capacity space-division-multiplexed DWDM transmissions using multicore fiber,” J. Lightwave Technol.30(4), 486–492 (2012).
    [CrossRef]
  18. S. Chandrasekhar, A. H. Gnauck, X. Liu, P. J. Winzer, Y. Pan, E. C. Burrows, T. F. Taunay, B. Zhu, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “WDM/SDM transmission of 10 x 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km·b/s/Hz,” Opt. Express20(2), 706–711 (2012).
    [CrossRef] [PubMed]

2013 (1)

2012 (5)

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J.4(5), 1987–1995 (2012).
[CrossRef]

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag.50(2), S31–S42 (2012).
[CrossRef]

S. Mumtaz, R.-J. Essiambre, and G. P. Agrawal, “Reduction of nonlinear penalties due to linear coupling in multicore optical fibers,” IEEE Photon. Technol. Lett.24(18), 1574–1576 (2012).
[CrossRef]

B. Zhu, J. M. Fini, M. F. Yan, X. Liu, S. Chandrasekhar, T. F. Taunay, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “High-capacity space-division-multiplexed DWDM transmissions using multicore fiber,” J. Lightwave Technol.30(4), 486–492 (2012).
[CrossRef]

S. Chandrasekhar, A. H. Gnauck, X. Liu, P. J. Winzer, Y. Pan, E. C. Burrows, T. F. Taunay, B. Zhu, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “WDM/SDM transmission of 10 x 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km·b/s/Hz,” Opt. Express20(2), 706–711 (2012).
[CrossRef] [PubMed]

2011 (5)

2010 (1)

P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” IEEE J. Lightw. Technol.28(4), 547–556 (2010).
[CrossRef]

Agrawal, G. P.

S. Mumtaz, R.-J. Essiambre, and G. P. Agrawal, “Reduction of nonlinear penalties due to linear coupling in multicore optical fibers,” IEEE Photon. Technol. Lett.24(18), 1574–1576 (2012).
[CrossRef]

Arakawa, Y.

Awaji, Y.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag.50(2), S31–S42 (2012).
[CrossRef]

Bolle, C. A.

Buhl, L. L.

P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” IEEE J. Lightw. Technol.28(4), 547–556 (2010).
[CrossRef]

Burrows, E. C.

Chandrasekhar, S.

Dimarcello, F. V.

Doerr, C. R.

P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” IEEE J. Lightw. Technol.28(4), 547–556 (2010).
[CrossRef]

Essiambre, R.-J.

S. Mumtaz, R.-J. Essiambre, and G. P. Agrawal, “Reduction of nonlinear penalties due to linear coupling in multicore optical fibers,” IEEE Photon. Technol. Lett.24(18), 1574–1576 (2012).
[CrossRef]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express19(17), 16697–16707 (2011).
[CrossRef] [PubMed]

R. Ryf, R.-J. Essiambre, S. Randel, A. H. Gnauck, P. J. Winzer, T. Hayashi, T. Taru, and T. Sasaki, “MIMO-based crosstalk suppression in spatially multiplexed 3x56-Gb/s PDM-QPSK signals for strongly coupled three-core fiber,” IEEE Photon. Technol. Lett.23(20), 1469–1471 (2011).
[CrossRef]

Fini, J. M.

Fishteyn, M.

Gnauck, A. H.

S. Chandrasekhar, A. H. Gnauck, X. Liu, P. J. Winzer, Y. Pan, E. C. Burrows, T. F. Taunay, B. Zhu, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “WDM/SDM transmission of 10 x 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km·b/s/Hz,” Opt. Express20(2), 706–711 (2012).
[CrossRef] [PubMed]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express19(17), 16697–16707 (2011).
[CrossRef] [PubMed]

R. Ryf, R.-J. Essiambre, S. Randel, A. H. Gnauck, P. J. Winzer, T. Hayashi, T. Taru, and T. Sasaki, “MIMO-based crosstalk suppression in spatially multiplexed 3x56-Gb/s PDM-QPSK signals for strongly coupled three-core fiber,” IEEE Photon. Technol. Lett.23(20), 1469–1471 (2011).
[CrossRef]

P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” IEEE J. Lightw. Technol.28(4), 547–556 (2010).
[CrossRef]

Hayashi, T.

Ho, K.-P.

K.-P. Ho, “Effects of homodyne crosstalk on dual-polarization QPSK signals,” IEEE J. Lightw. Technol.29(1), 124–131 (2011).
[CrossRef]

Koshiba, M.

Lingle, R.

Liu, X.

Magarini, M.

P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” IEEE J. Lightw. Technol.28(4), 547–556 (2010).
[CrossRef]

Matsuo, S.

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J.4(5), 1987–1995 (2012).
[CrossRef]

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express19(26), B543–B550 (2011).
[CrossRef] [PubMed]

McCurdy, A.

Monberg, E. M.

Morioka, T.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag.50(2), S31–S42 (2012).
[CrossRef]

Mumtaz, S.

S. Mumtaz, R.-J. Essiambre, and G. P. Agrawal, “Reduction of nonlinear penalties due to linear coupling in multicore optical fibers,” IEEE Photon. Technol. Lett.24(18), 1574–1576 (2012).
[CrossRef]

Pan, Y.

Peckham, D. W.

Poletti, F.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag.50(2), S31–S42 (2012).
[CrossRef]

Randel, S.

R. Ryf, R.-J. Essiambre, S. Randel, A. H. Gnauck, P. J. Winzer, T. Hayashi, T. Taru, and T. Sasaki, “MIMO-based crosstalk suppression in spatially multiplexed 3x56-Gb/s PDM-QPSK signals for strongly coupled three-core fiber,” IEEE Photon. Technol. Lett.23(20), 1469–1471 (2011).
[CrossRef]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express19(17), 16697–16707 (2011).
[CrossRef] [PubMed]

Richardson, D.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag.50(2), S31–S42 (2012).
[CrossRef]

Ryf, R.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag.50(2), S31–S42 (2012).
[CrossRef]

R. Ryf, R.-J. Essiambre, S. Randel, A. H. Gnauck, P. J. Winzer, T. Hayashi, T. Taru, and T. Sasaki, “MIMO-based crosstalk suppression in spatially multiplexed 3x56-Gb/s PDM-QPSK signals for strongly coupled three-core fiber,” IEEE Photon. Technol. Lett.23(20), 1469–1471 (2011).
[CrossRef]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express19(17), 16697–16707 (2011).
[CrossRef] [PubMed]

Saitoh, K.

Sasaki, T.

Sasaki, Y.

Sasaoka, E.

Shimakawa, O.

Sierra, A.

Takenaga, K.

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J.4(5), 1987–1995 (2012).
[CrossRef]

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express19(26), B543–B550 (2011).
[CrossRef] [PubMed]

Tanigawa, S.

Taru, T.

R. Ryf, R.-J. Essiambre, S. Randel, A. H. Gnauck, P. J. Winzer, T. Hayashi, T. Taru, and T. Sasaki, “MIMO-based crosstalk suppression in spatially multiplexed 3x56-Gb/s PDM-QPSK signals for strongly coupled three-core fiber,” IEEE Photon. Technol. Lett.23(20), 1469–1471 (2011).
[CrossRef]

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express19(17), 16576–16592 (2011).
[CrossRef] [PubMed]

Taunay, T. F.

Winzer, P.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag.50(2), S31–S42 (2012).
[CrossRef]

Winzer, P. J.

S. Chandrasekhar, A. H. Gnauck, X. Liu, P. J. Winzer, Y. Pan, E. C. Burrows, T. F. Taunay, B. Zhu, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “WDM/SDM transmission of 10 x 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km·b/s/Hz,” Opt. Express20(2), 706–711 (2012).
[CrossRef] [PubMed]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express19(17), 16697–16707 (2011).
[CrossRef] [PubMed]

R. Ryf, R.-J. Essiambre, S. Randel, A. H. Gnauck, P. J. Winzer, T. Hayashi, T. Taru, and T. Sasaki, “MIMO-based crosstalk suppression in spatially multiplexed 3x56-Gb/s PDM-QPSK signals for strongly coupled three-core fiber,” IEEE Photon. Technol. Lett.23(20), 1469–1471 (2011).
[CrossRef]

P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” IEEE J. Lightw. Technol.28(4), 547–556 (2010).
[CrossRef]

Yan, M. F.

Zhu, B.

IEEE Commun. Mag. (1)

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag.50(2), S31–S42 (2012).
[CrossRef]

IEEE J. Lightw. Technol. (2)

K.-P. Ho, “Effects of homodyne crosstalk on dual-polarization QPSK signals,” IEEE J. Lightw. Technol.29(1), 124–131 (2011).
[CrossRef]

P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” IEEE J. Lightw. Technol.28(4), 547–556 (2010).
[CrossRef]

IEEE Photon. J. (1)

M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers,” IEEE Photon. J.4(5), 1987–1995 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. Mumtaz, R.-J. Essiambre, and G. P. Agrawal, “Reduction of nonlinear penalties due to linear coupling in multicore optical fibers,” IEEE Photon. Technol. Lett.24(18), 1574–1576 (2012).
[CrossRef]

R. Ryf, R.-J. Essiambre, S. Randel, A. H. Gnauck, P. J. Winzer, T. Hayashi, T. Taru, and T. Sasaki, “MIMO-based crosstalk suppression in spatially multiplexed 3x56-Gb/s PDM-QPSK signals for strongly coupled three-core fiber,” IEEE Photon. Technol. Lett.23(20), 1469–1471 (2011).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (5)

Other (6)

T. Morioka, “New generation optical infrastructure technologies:“EXAT initiative” towards 2020 and beyond,” in Proc. OptoElectron. Commun. Conf. (OECC) (2009), paper FT4.

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s,” in Proc. Optical Fiber Commun. Conf. (OFC) (2011), paper PDP5C.1.

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Low-loss and large-Aeff multi-core fiber for SNR enhancement,” in Proc. European Conf. on Opt. Commun. (ECOC) (2012), paper Mo.1.F.3.

T. Hayashi, T. Sasaki, and E. Sasaoka, “Multi-core fibers for high capacity transmission,” in Proc. Optical Fiber Commun. Conf. (OFC) (2012), paper OTu1D4.
[CrossRef]

K. Takenaga, T. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by trench-assisted multi-core fiber,” in Proc. Optical Fiber Commun. Conf. (OFC) (2011), paper OWJ4.
[CrossRef]

P. J. Winzer, A. H. Gnauck, A. Konczykowska, F. Jorge, and J.-Y. Dupuy, “Penalties from in-band crosstalk for advanced optical modulation formats,” in Proc. European Conf. on Opt. Commun. (ECOC) (2011), paper Tu.5.B.7.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Refractive-index profile of the trench-assisted MCF.

Fig. 2
Fig. 2

Inter-core crosstalk level estimated as a function of the core pitch in the MCF with trench-assisted index profile [7]. The operating wavelength was assumed to be either 1550 nm or 1625 nm.

Fig. 3
Fig. 3

Simulation model used to evaluate the performance degradation in the MCF link. The WDM signals were modulated in the PDM-QPSK, PDM-16QAM, or PDM-64QAM format.

Fig. 4
Fig. 4

Required OSNRs to achieve the BER better than the FEC limit (i.e., BER = 3.8x10−3) as a function of the inter-core crosstalk for various modulation formats such as PDM-QPSK, PDM-16QAM and PDM-64QAM. The transmission distance was either 100 km or 1000 km.

Fig. 5
Fig. 5

(a) Spatial spectral efficiency (SSE) of 7-core MCF achievable by using various formats such as PDM-QPSK, PDM-16QAM, and PDM-64QAM. (b) Spatial spectral efficiencies (SSEs) of 7-core MCF as a function of the transmission distance for 112-Gbps PDM-QPSK, PDM-16QAM, and PDM-64QAM signals. The SSEs of the conventional SMF are also shown as references.

Fig. 6
Fig. 6

(a) Inter-core crosstalk level estimated as a function of the core pitch for three types of 7-core MCFs. The operating wavelength and transmission distance were assumed to be 1625 nm and 100 km, respectively. (b) Cable cutoff wavelength as a function of the core pitch for three types of 7-core MCFs.

Fig. 7
Fig. 7

Spatial spectral efficiencies (SSEs) of three types of 7-core MCFs (having different effective areas) achievable by using PDM-QPSK, PDM-16QAM, and PDM-64QAM formats. The SSEs of the conventional SMF are also shown as references.

Fig. 8
Fig. 8

Maximum SSE-distance products of 7-core MCFs achievable by using various formats such as PDM-QPSK, PDM-16QAM, and PDM-64QAM. The values for the conventional SMF (dashed line) are also shown as references.

Tables (1)

Tables Icon

Table 1 Parameters of various trench-assisted MCFs

Metrics