Abstract

The coherent control of optical images has garnered attention because all information embedded in optical images is expected to be controlled in a parallel way. One of the most important control processes is switch for information delivery. We experimentally demonstrated phase-controlled optical image switching in a double-Λ system where the transmission of the image through a medium was switched. Two independent laser sources were adopted for a double-Λ system such that images inscribed in two weak probe light beams were incoherent with each other. Arbitrary phase was added to the optical images to show that switching could be accomplished just with the relative phase difference between the probe pixels.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-optical delay of images using slow light,” Phys. Rev. Lett.98, 043902 (2007).
    [CrossRef] [PubMed]
  2. M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett.100, 223601 (2008).
    [CrossRef] [PubMed]
  3. P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic rubidium vapor,” Phys. Rev. Lett.100, 123903 (2008).
    [CrossRef] [PubMed]
  4. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science321, 544–547 (2008).
    [CrossRef] [PubMed]
  5. V. Boyer, A. M. Marino, and P. D. Lett, “Generation of spatially broadband twin beams for quantum imaging,” Phys. Rev. Lett.100, 143601 (2008).
    [CrossRef] [PubMed]
  6. G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nature Photon.4, 227–230 (2010).
    [CrossRef]
  7. S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett.81, 3611 (1998).
    [CrossRef]
  8. H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett.76, 3173–3175 (2000).
    [CrossRef]
  9. H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett.91, 093601 (2003).
    [CrossRef] [PubMed]
  10. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
    [CrossRef] [PubMed]
  11. Y. H. Chen, Meng-Jung Lee, Weilun Hung, Ying-Cheng Chen, Yong-Fan Chen, and Ite A. Yu, “Demonstration of the interaction between two stopped light pulses,” Phys. Rev. Lett.108, 173603 (2012).
    [CrossRef] [PubMed]
  12. M. G. Payne and L. Deng, “Consequences of induced transparency in a double-Λ scheme,” Phys. Rev. A65, 063806 (2002).
    [CrossRef]
  13. H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A73, 011802 (2006).
    [CrossRef]
  14. A. F. Huss, E. A. Korsunsky, and L. Windholz, “Phase control of electromagnetically induced transparency in a double-Λ system, J. of Morde. Opt.49, 141–155 (2002).
    [CrossRef]
  15. J. Zhang, G. Hernandez, and Y. Zhu, “All-optical switching at ultralow light levels,” Opt. Lett.32, 1317–1319 (2007).
    [CrossRef] [PubMed]
  16. B. Dayan and Y. Silberberg, “Atoms and photons share quarters,” Nat. Photon.3, 429–430 (2009).
    [CrossRef]
  17. Jiepeng Zhang, Jun Xu, Gessler Hernandez, Xiang-Ming Hu, and Yifu Zhu, “Polychromatic-field-induced transparency and absorption in a three-level Λ system,” Phys. Rev. A75, 043810 (2007).
    [CrossRef]
  18. Jiepeng Zhang, Gessler Hernandez, and Yifu Zhu, “Optical switching mediated by quantum interference of Raman transitions,” Opt. Expr.16, 19112–19117 (2008).
    [CrossRef]
  19. S. Sevincli, N. Henkel, C. Ates, and T. Pohl, “Nonlocal nonlinear optics in cold Rydberg gases,” Phys. Rev. Lett.107, 153001 (2011).
    [CrossRef] [PubMed]
  20. H. Kang, B. Kim, Y. Park, C.-H. Oh, and I. Lee, “Phase-controlled switching by interference between incoherent fields in a double-Λ system,” Opt. Exp.19, 4113–4119, (2011).
    [CrossRef]
  21. Jeffrey O. White and Amnon Yariv, “Real time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett.37, 5–7 (1980).
    [CrossRef]
  22. Qun-Feng Chen, Bao-Sen Shi, Min Feng, Yong-Sheng Zhang, and Guang-Can Guo, “Non-degenerate nonclassical photon pairs in a hot atomic ensemble,” Opt. Exp.16, 21708–21713 (2008).
    [CrossRef]
  23. H. Kang, Y. Park, I. Sohn, and M. Jeong, “All-optical switching with a biexcitonic double lambda system,” Opt. Comm.284, 1045–1052 (2011).
    [CrossRef]

2012 (1)

Y. H. Chen, Meng-Jung Lee, Weilun Hung, Ying-Cheng Chen, Yong-Fan Chen, and Ite A. Yu, “Demonstration of the interaction between two stopped light pulses,” Phys. Rev. Lett.108, 173603 (2012).
[CrossRef] [PubMed]

2011 (3)

S. Sevincli, N. Henkel, C. Ates, and T. Pohl, “Nonlocal nonlinear optics in cold Rydberg gases,” Phys. Rev. Lett.107, 153001 (2011).
[CrossRef] [PubMed]

H. Kang, B. Kim, Y. Park, C.-H. Oh, and I. Lee, “Phase-controlled switching by interference between incoherent fields in a double-Λ system,” Opt. Exp.19, 4113–4119, (2011).
[CrossRef]

H. Kang, Y. Park, I. Sohn, and M. Jeong, “All-optical switching with a biexcitonic double lambda system,” Opt. Comm.284, 1045–1052 (2011).
[CrossRef]

2010 (1)

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nature Photon.4, 227–230 (2010).
[CrossRef]

2009 (2)

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

B. Dayan and Y. Silberberg, “Atoms and photons share quarters,” Nat. Photon.3, 429–430 (2009).
[CrossRef]

2008 (6)

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett.100, 223601 (2008).
[CrossRef] [PubMed]

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic rubidium vapor,” Phys. Rev. Lett.100, 123903 (2008).
[CrossRef] [PubMed]

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science321, 544–547 (2008).
[CrossRef] [PubMed]

V. Boyer, A. M. Marino, and P. D. Lett, “Generation of spatially broadband twin beams for quantum imaging,” Phys. Rev. Lett.100, 143601 (2008).
[CrossRef] [PubMed]

Jiepeng Zhang, Gessler Hernandez, and Yifu Zhu, “Optical switching mediated by quantum interference of Raman transitions,” Opt. Expr.16, 19112–19117 (2008).
[CrossRef]

Qun-Feng Chen, Bao-Sen Shi, Min Feng, Yong-Sheng Zhang, and Guang-Can Guo, “Non-degenerate nonclassical photon pairs in a hot atomic ensemble,” Opt. Exp.16, 21708–21713 (2008).
[CrossRef]

2007 (3)

J. Zhang, G. Hernandez, and Y. Zhu, “All-optical switching at ultralow light levels,” Opt. Lett.32, 1317–1319 (2007).
[CrossRef] [PubMed]

R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-optical delay of images using slow light,” Phys. Rev. Lett.98, 043902 (2007).
[CrossRef] [PubMed]

Jiepeng Zhang, Jun Xu, Gessler Hernandez, Xiang-Ming Hu, and Yifu Zhu, “Polychromatic-field-induced transparency and absorption in a three-level Λ system,” Phys. Rev. A75, 043810 (2007).
[CrossRef]

2006 (1)

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A73, 011802 (2006).
[CrossRef]

2003 (1)

H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett.91, 093601 (2003).
[CrossRef] [PubMed]

2002 (2)

M. G. Payne and L. Deng, “Consequences of induced transparency in a double-Λ scheme,” Phys. Rev. A65, 063806 (2002).
[CrossRef]

A. F. Huss, E. A. Korsunsky, and L. Windholz, “Phase control of electromagnetically induced transparency in a double-Λ system, J. of Morde. Opt.49, 141–155 (2002).
[CrossRef]

2000 (1)

H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett.76, 3173–3175 (2000).
[CrossRef]

1998 (1)

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett.81, 3611 (1998).
[CrossRef]

1980 (1)

Jeffrey O. White and Amnon Yariv, “Real time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett.37, 5–7 (1980).
[CrossRef]

Ali-Khan, I.

R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-optical delay of images using slow light,” Phys. Rev. Lett.98, 043902 (2007).
[CrossRef] [PubMed]

Ates, C.

S. Sevincli, N. Henkel, C. Ates, and T. Pohl, “Nonlocal nonlinear optics in cold Rydberg gases,” Phys. Rev. Lett.107, 153001 (2011).
[CrossRef] [PubMed]

Bajcsy, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

Balic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

Berchera, I. R.

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nature Photon.4, 227–230 (2010).
[CrossRef]

Boyer, V.

V. Boyer, A. M. Marino, and P. D. Lett, “Generation of spatially broadband twin beams for quantum imaging,” Phys. Rev. Lett.100, 143601 (2008).
[CrossRef] [PubMed]

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science321, 544–547 (2008).
[CrossRef] [PubMed]

Brida, G.

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nature Photon.4, 227–230 (2010).
[CrossRef]

Broadbent, C. J.

R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-optical delay of images using slow light,” Phys. Rev. Lett.98, 043902 (2007).
[CrossRef] [PubMed]

Camacho, R. M.

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic rubidium vapor,” Phys. Rev. Lett.100, 123903 (2008).
[CrossRef] [PubMed]

R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-optical delay of images using slow light,” Phys. Rev. Lett.98, 043902 (2007).
[CrossRef] [PubMed]

Chen, Qun-Feng

Qun-Feng Chen, Bao-Sen Shi, Min Feng, Yong-Sheng Zhang, and Guang-Can Guo, “Non-degenerate nonclassical photon pairs in a hot atomic ensemble,” Opt. Exp.16, 21708–21713 (2008).
[CrossRef]

Chen, Y. H.

Y. H. Chen, Meng-Jung Lee, Weilun Hung, Ying-Cheng Chen, Yong-Fan Chen, and Ite A. Yu, “Demonstration of the interaction between two stopped light pulses,” Phys. Rev. Lett.108, 173603 (2012).
[CrossRef] [PubMed]

Chen, Ying-Cheng

Y. H. Chen, Meng-Jung Lee, Weilun Hung, Ying-Cheng Chen, Yong-Fan Chen, and Ite A. Yu, “Demonstration of the interaction between two stopped light pulses,” Phys. Rev. Lett.108, 173603 (2012).
[CrossRef] [PubMed]

Chen, Yong-Fan

Y. H. Chen, Meng-Jung Lee, Weilun Hung, Ying-Cheng Chen, Yong-Fan Chen, and Ite A. Yu, “Demonstration of the interaction between two stopped light pulses,” Phys. Rev. Lett.108, 173603 (2012).
[CrossRef] [PubMed]

Davidson, N.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett.100, 223601 (2008).
[CrossRef] [PubMed]

Dayan, B.

B. Dayan and Y. Silberberg, “Atoms and photons share quarters,” Nat. Photon.3, 429–430 (2009).
[CrossRef]

Deng, L.

M. G. Payne and L. Deng, “Consequences of induced transparency in a double-Λ scheme,” Phys. Rev. A65, 063806 (2002).
[CrossRef]

Feng, Min

Qun-Feng Chen, Bao-Sen Shi, Min Feng, Yong-Sheng Zhang, and Guang-Can Guo, “Non-degenerate nonclassical photon pairs in a hot atomic ensemble,” Opt. Exp.16, 21708–21713 (2008).
[CrossRef]

Firstenberg, O.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett.100, 223601 (2008).
[CrossRef] [PubMed]

Genovese, M.

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nature Photon.4, 227–230 (2010).
[CrossRef]

Guo, Guang-Can

Qun-Feng Chen, Bao-Sen Shi, Min Feng, Yong-Sheng Zhang, and Guang-Can Guo, “Non-degenerate nonclassical photon pairs in a hot atomic ensemble,” Opt. Exp.16, 21708–21713 (2008).
[CrossRef]

Hafezi, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

Harris, S. E.

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett.81, 3611 (1998).
[CrossRef]

Henkel, N.

S. Sevincli, N. Henkel, C. Ates, and T. Pohl, “Nonlocal nonlinear optics in cold Rydberg gases,” Phys. Rev. Lett.107, 153001 (2011).
[CrossRef] [PubMed]

Hernandez, G.

J. Zhang, G. Hernandez, and Y. Zhu, “All-optical switching at ultralow light levels,” Opt. Lett.32, 1317–1319 (2007).
[CrossRef] [PubMed]

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A73, 011802 (2006).
[CrossRef]

Hernandez, Gessler

Jiepeng Zhang, Gessler Hernandez, and Yifu Zhu, “Optical switching mediated by quantum interference of Raman transitions,” Opt. Expr.16, 19112–19117 (2008).
[CrossRef]

Jiepeng Zhang, Jun Xu, Gessler Hernandez, Xiang-Ming Hu, and Yifu Zhu, “Polychromatic-field-induced transparency and absorption in a three-level Λ system,” Phys. Rev. A75, 043810 (2007).
[CrossRef]

Hofferberth, S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

Howell, J. C.

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic rubidium vapor,” Phys. Rev. Lett.100, 123903 (2008).
[CrossRef] [PubMed]

R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-optical delay of images using slow light,” Phys. Rev. Lett.98, 043902 (2007).
[CrossRef] [PubMed]

Hu, Xiang-Ming

Jiepeng Zhang, Jun Xu, Gessler Hernandez, Xiang-Ming Hu, and Yifu Zhu, “Polychromatic-field-induced transparency and absorption in a three-level Λ system,” Phys. Rev. A75, 043810 (2007).
[CrossRef]

Hung, Weilun

Y. H. Chen, Meng-Jung Lee, Weilun Hung, Ying-Cheng Chen, Yong-Fan Chen, and Ite A. Yu, “Demonstration of the interaction between two stopped light pulses,” Phys. Rev. Lett.108, 173603 (2012).
[CrossRef] [PubMed]

Huss, A. F.

A. F. Huss, E. A. Korsunsky, and L. Windholz, “Phase control of electromagnetically induced transparency in a double-Λ system, J. of Morde. Opt.49, 141–155 (2002).
[CrossRef]

Jeong, M.

H. Kang, Y. Park, I. Sohn, and M. Jeong, “All-optical switching with a biexcitonic double lambda system,” Opt. Comm.284, 1045–1052 (2011).
[CrossRef]

Kang, H.

H. Kang, Y. Park, I. Sohn, and M. Jeong, “All-optical switching with a biexcitonic double lambda system,” Opt. Comm.284, 1045–1052 (2011).
[CrossRef]

H. Kang, B. Kim, Y. Park, C.-H. Oh, and I. Lee, “Phase-controlled switching by interference between incoherent fields in a double-Λ system,” Opt. Exp.19, 4113–4119, (2011).
[CrossRef]

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A73, 011802 (2006).
[CrossRef]

H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett.91, 093601 (2003).
[CrossRef] [PubMed]

Kim, B.

H. Kang, B. Kim, Y. Park, C.-H. Oh, and I. Lee, “Phase-controlled switching by interference between incoherent fields in a double-Λ system,” Opt. Exp.19, 4113–4119, (2011).
[CrossRef]

Korsunsky, E. A.

A. F. Huss, E. A. Korsunsky, and L. Windholz, “Phase control of electromagnetically induced transparency in a double-Λ system, J. of Morde. Opt.49, 141–155 (2002).
[CrossRef]

Lee, I.

H. Kang, B. Kim, Y. Park, C.-H. Oh, and I. Lee, “Phase-controlled switching by interference between incoherent fields in a double-Λ system,” Opt. Exp.19, 4113–4119, (2011).
[CrossRef]

Lee, Meng-Jung

Y. H. Chen, Meng-Jung Lee, Weilun Hung, Ying-Cheng Chen, Yong-Fan Chen, and Ite A. Yu, “Demonstration of the interaction between two stopped light pulses,” Phys. Rev. Lett.108, 173603 (2012).
[CrossRef] [PubMed]

Lett, P. D.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science321, 544–547 (2008).
[CrossRef] [PubMed]

V. Boyer, A. M. Marino, and P. D. Lett, “Generation of spatially broadband twin beams for quantum imaging,” Phys. Rev. Lett.100, 143601 (2008).
[CrossRef] [PubMed]

Lukin, M. D.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

Marino, A. M.

V. Boyer, A. M. Marino, and P. D. Lett, “Generation of spatially broadband twin beams for quantum imaging,” Phys. Rev. Lett.100, 143601 (2008).
[CrossRef] [PubMed]

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science321, 544–547 (2008).
[CrossRef] [PubMed]

Oh, C.-H.

H. Kang, B. Kim, Y. Park, C.-H. Oh, and I. Lee, “Phase-controlled switching by interference between incoherent fields in a double-Λ system,” Opt. Exp.19, 4113–4119, (2011).
[CrossRef]

Park, Y.

H. Kang, B. Kim, Y. Park, C.-H. Oh, and I. Lee, “Phase-controlled switching by interference between incoherent fields in a double-Λ system,” Opt. Exp.19, 4113–4119, (2011).
[CrossRef]

H. Kang, Y. Park, I. Sohn, and M. Jeong, “All-optical switching with a biexcitonic double lambda system,” Opt. Comm.284, 1045–1052 (2011).
[CrossRef]

Payne, M. G.

M. G. Payne and L. Deng, “Consequences of induced transparency in a double-Λ scheme,” Phys. Rev. A65, 063806 (2002).
[CrossRef]

Peyronel, T.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

Pohl, T.

S. Sevincli, N. Henkel, C. Ates, and T. Pohl, “Nonlocal nonlinear optics in cold Rydberg gases,” Phys. Rev. Lett.107, 153001 (2011).
[CrossRef] [PubMed]

Pooser, R. C.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science321, 544–547 (2008).
[CrossRef] [PubMed]

Pugatch, R.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett.100, 223601 (2008).
[CrossRef] [PubMed]

Ram, R. J.

H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett.76, 3173–3175 (2000).
[CrossRef]

Ron, A.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett.100, 223601 (2008).
[CrossRef] [PubMed]

Schmidt, H.

H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett.76, 3173–3175 (2000).
[CrossRef]

Sevincli, S.

S. Sevincli, N. Henkel, C. Ates, and T. Pohl, “Nonlocal nonlinear optics in cold Rydberg gases,” Phys. Rev. Lett.107, 153001 (2011).
[CrossRef] [PubMed]

Shi, Bao-Sen

Qun-Feng Chen, Bao-Sen Shi, Min Feng, Yong-Sheng Zhang, and Guang-Can Guo, “Non-degenerate nonclassical photon pairs in a hot atomic ensemble,” Opt. Exp.16, 21708–21713 (2008).
[CrossRef]

Shuker, M.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett.100, 223601 (2008).
[CrossRef] [PubMed]

Silberberg, Y.

B. Dayan and Y. Silberberg, “Atoms and photons share quarters,” Nat. Photon.3, 429–430 (2009).
[CrossRef]

Sohn, I.

H. Kang, Y. Park, I. Sohn, and M. Jeong, “All-optical switching with a biexcitonic double lambda system,” Opt. Comm.284, 1045–1052 (2011).
[CrossRef]

Vudyasetu, P. K.

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic rubidium vapor,” Phys. Rev. Lett.100, 123903 (2008).
[CrossRef] [PubMed]

Vuletic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

White, Jeffrey O.

Jeffrey O. White and Amnon Yariv, “Real time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett.37, 5–7 (1980).
[CrossRef]

Windholz, L.

A. F. Huss, E. A. Korsunsky, and L. Windholz, “Phase control of electromagnetically induced transparency in a double-Λ system, J. of Morde. Opt.49, 141–155 (2002).
[CrossRef]

Xu, Jun

Jiepeng Zhang, Jun Xu, Gessler Hernandez, Xiang-Ming Hu, and Yifu Zhu, “Polychromatic-field-induced transparency and absorption in a three-level Λ system,” Phys. Rev. A75, 043810 (2007).
[CrossRef]

Yamamoto, Y.

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett.81, 3611 (1998).
[CrossRef]

Yariv, Amnon

Jeffrey O. White and Amnon Yariv, “Real time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett.37, 5–7 (1980).
[CrossRef]

Yu, Ite A.

Y. H. Chen, Meng-Jung Lee, Weilun Hung, Ying-Cheng Chen, Yong-Fan Chen, and Ite A. Yu, “Demonstration of the interaction between two stopped light pulses,” Phys. Rev. Lett.108, 173603 (2012).
[CrossRef] [PubMed]

Zhang, J.

J. Zhang, G. Hernandez, and Y. Zhu, “All-optical switching at ultralow light levels,” Opt. Lett.32, 1317–1319 (2007).
[CrossRef] [PubMed]

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A73, 011802 (2006).
[CrossRef]

Zhang, Jiepeng

Jiepeng Zhang, Gessler Hernandez, and Yifu Zhu, “Optical switching mediated by quantum interference of Raman transitions,” Opt. Expr.16, 19112–19117 (2008).
[CrossRef]

Jiepeng Zhang, Jun Xu, Gessler Hernandez, Xiang-Ming Hu, and Yifu Zhu, “Polychromatic-field-induced transparency and absorption in a three-level Λ system,” Phys. Rev. A75, 043810 (2007).
[CrossRef]

Zhang, Yong-Sheng

Qun-Feng Chen, Bao-Sen Shi, Min Feng, Yong-Sheng Zhang, and Guang-Can Guo, “Non-degenerate nonclassical photon pairs in a hot atomic ensemble,” Opt. Exp.16, 21708–21713 (2008).
[CrossRef]

Zhu, Y.

J. Zhang, G. Hernandez, and Y. Zhu, “All-optical switching at ultralow light levels,” Opt. Lett.32, 1317–1319 (2007).
[CrossRef] [PubMed]

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A73, 011802 (2006).
[CrossRef]

H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett.91, 093601 (2003).
[CrossRef] [PubMed]

Zhu, Yifu

Jiepeng Zhang, Gessler Hernandez, and Yifu Zhu, “Optical switching mediated by quantum interference of Raman transitions,” Opt. Expr.16, 19112–19117 (2008).
[CrossRef]

Jiepeng Zhang, Jun Xu, Gessler Hernandez, Xiang-Ming Hu, and Yifu Zhu, “Polychromatic-field-induced transparency and absorption in a three-level Λ system,” Phys. Rev. A75, 043810 (2007).
[CrossRef]

Zibrov, A. S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett.76, 3173–3175 (2000).
[CrossRef]

Jeffrey O. White and Amnon Yariv, “Real time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett.37, 5–7 (1980).
[CrossRef]

J. of Morde. Opt. (1)

A. F. Huss, E. A. Korsunsky, and L. Windholz, “Phase control of electromagnetically induced transparency in a double-Λ system, J. of Morde. Opt.49, 141–155 (2002).
[CrossRef]

Nat. Photon. (1)

B. Dayan and Y. Silberberg, “Atoms and photons share quarters,” Nat. Photon.3, 429–430 (2009).
[CrossRef]

Nature Photon. (1)

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nature Photon.4, 227–230 (2010).
[CrossRef]

Opt. Comm. (1)

H. Kang, Y. Park, I. Sohn, and M. Jeong, “All-optical switching with a biexcitonic double lambda system,” Opt. Comm.284, 1045–1052 (2011).
[CrossRef]

Opt. Exp. (2)

Qun-Feng Chen, Bao-Sen Shi, Min Feng, Yong-Sheng Zhang, and Guang-Can Guo, “Non-degenerate nonclassical photon pairs in a hot atomic ensemble,” Opt. Exp.16, 21708–21713 (2008).
[CrossRef]

H. Kang, B. Kim, Y. Park, C.-H. Oh, and I. Lee, “Phase-controlled switching by interference between incoherent fields in a double-Λ system,” Opt. Exp.19, 4113–4119, (2011).
[CrossRef]

Opt. Expr. (1)

Jiepeng Zhang, Gessler Hernandez, and Yifu Zhu, “Optical switching mediated by quantum interference of Raman transitions,” Opt. Expr.16, 19112–19117 (2008).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (3)

Jiepeng Zhang, Jun Xu, Gessler Hernandez, Xiang-Ming Hu, and Yifu Zhu, “Polychromatic-field-induced transparency and absorption in a three-level Λ system,” Phys. Rev. A75, 043810 (2007).
[CrossRef]

M. G. Payne and L. Deng, “Consequences of induced transparency in a double-Λ scheme,” Phys. Rev. A65, 063806 (2002).
[CrossRef]

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A73, 011802 (2006).
[CrossRef]

Phys. Rev. Lett. (9)

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett.81, 3611 (1998).
[CrossRef]

H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett.91, 093601 (2003).
[CrossRef] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

Y. H. Chen, Meng-Jung Lee, Weilun Hung, Ying-Cheng Chen, Yong-Fan Chen, and Ite A. Yu, “Demonstration of the interaction between two stopped light pulses,” Phys. Rev. Lett.108, 173603 (2012).
[CrossRef] [PubMed]

R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-optical delay of images using slow light,” Phys. Rev. Lett.98, 043902 (2007).
[CrossRef] [PubMed]

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett.100, 223601 (2008).
[CrossRef] [PubMed]

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic rubidium vapor,” Phys. Rev. Lett.100, 123903 (2008).
[CrossRef] [PubMed]

S. Sevincli, N. Henkel, C. Ates, and T. Pohl, “Nonlocal nonlinear optics in cold Rydberg gases,” Phys. Rev. Lett.107, 153001 (2011).
[CrossRef] [PubMed]

V. Boyer, A. M. Marino, and P. D. Lett, “Generation of spatially broadband twin beams for quantum imaging,” Phys. Rev. Lett.100, 143601 (2008).
[CrossRef] [PubMed]

Science (1)

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science321, 544–547 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

A double-Λ system and Experimental set-up. (a) A double-Λ system implemented with Zeeman levels of rubidium 87 D1 transition. (b) Experimental set-up for optical image switching with two independent extended-cavity diode lasers, polarization beam splitter (PBS), beam splitter (BS) and mirror (M), imaging lens (L), and spatial light modulator (SLM).).

Fig. 2
Fig. 2

The probe transmission with a magnetic field at the condition of two relative phase differences between probe fields in a double-Λ system. A two-photon detuning in a doubleΛ system was occurred by a scanned magnetic field applied to Rb atoms. The conversion scale from magnetic field to frequency detuning is 1.4 MHz/G. The measured FWHM linewith of double EIT was 358 KHz.

Fig. 3
Fig. 3

All-optically switched images and the phase shifts of the probe fields with two cases ((a) and (c)). (a) Phase shift distributions of each probe field induced by SLM. Gray levels corresponds to phase shift induced by SLM. (b) Transmitted image (left) of (a) phase shift and a contrast-inverted image by the PZT-induced π phase over all pixels of one probe field (right). (c) Phase distributions of each probe field induced by SLM. The relative phase shift between two probe fields was H shaped π (a phase box size 40×48 μm2). (d) Transmitted image (left) of (c) phase shift and a contrast-inverted image with π-phase shifted by PZT (right).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

a 0 = 1 , a ˙ 1 = i Ω 12 a 2 + i Ω 13 a 3 + i ( Δ 2 Δ 1 + i Γ 1 ) a 1 , a ˙ 2 = i Ω 20 + i Ω 21 a 1 + i ( Δ 2 + i Γ 2 ) a 2 , a ˙ 3 = i Ω 30 + i Ω 31 a 1 + i ( Δ 2 Δ 1 + Δ 3 + i Γ 3 ) a 3 .
( z + 1 c t ) Ω 20 = i N 2 ε 0 h ¯ c ω 20 | μ 20 | 2 a 2 i κ 02 a 2 ( z + 1 c t ) Ω 30 = i N 2 ε 0 h ¯ c ω 30 | μ 30 | 2 a 3 i κ 03 a 3 ,
w 30 ( z , ω ) ( 1 κ 03 | Ω 12 | 2 κ 02 | Ω 13 | 2 + κ 03 | Ω 12 | 2 ) w 30 ( 0 , ω ) e i ω v g z + κ 03 Ω 31 Ω 12 κ 02 | Ω 13 | 2 + κ 03 | Ω 12 | 2 w 20 ( 0 , ω ) e i ω v g z ,
Ω 30 ( z , t ) ( 1 κ 03 | Ω 12 | 2 κ 02 | Ω 13 | 2 + κ 03 | Ω 12 | 2 ) Ω 30 ( 0 , t z v g ) + κ 03 Ω 31 Ω 12 κ 02 | Ω 13 | 2 + κ 03 | Ω 12 | 2 Ω 20 ( 0 , t z v g ) .
Ω 20 ( 0 , t ) = e i Φ 20 | Ω 20 ( 0 , t ) | e ( t τ ) 2 , Ω 30 ( 0 , t ) = e i Φ 30 | Ω 30 ( 0 , t ) | e ( t τ ) 2 , Ω 31 ( 0 , t ) = e i Φ 31 | Ω 31 | , Ω 21 ( 0 , t ) = e i Φ 21 | Ω 31 | .
T | Ω 30 ( z , t ) Ω 30 ( 0 , 0 ) | at peak ( t = z v g ) = ( ( 1 κ 03 | Ω 12 | 2 κ 02 | Ω 13 | 2 + κ 03 | Ω 12 | 2 ) + | Ω 20 ( 0 , 0 ) | | Ω 30 ( 0 , 0 ) | × κ 03 Ω 31 Ω 12 κ 02 | Ω 13 | 2 + κ 03 | Ω 12 | 2 e ( Φ 21 Φ 31 + Φ 30 Φ 20 ) ) 2 .
T = cos 2 η ( 1 + sin 2 η cos ( Φ 21 Φ 31 + Φ 30 Φ 20 ) ) .

Metrics