Abstract

We present an optical mode solver for a whispering gallery resonator coupled to an adjacent arbitrary shaped nano-particle that breaks the axial symmetry of the resonator. Such a hybrid resonator-nanoparticle is similar to what was recently used for bio-detection and for field enhancement. We demonstrate our solver by parametrically studying a toroid-nanoplasmonic device and get the optimal nano-plasmonic size for maximal enhancement. We investigate cases near a plasmonic resonance as well as far from a plasmonic resonance. Unlike common plasmons that typically benefit from working near their resonance, here working far from plasmonic resonance provides comparable performance. This is because the plasmonic resonance enhancement is accompanied by cavity quality degradation through plasmonic absorption.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
    [CrossRef] [PubMed]
  2. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A137(7-8), 393–397 (1989).
    [CrossRef]
  3. I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun.265(1), 33–38 (2006).
    [CrossRef]
  4. B. Sprenger, H. G. L. Schwefel, Z. H. Lu, S. Svitlov, and L. J. Wang, “CaF2 whispering-gallery-mode-resonator stabilized-narrow-linewidth laser,” Opt. Lett.35(17), 2870–2872 (2010).
    [CrossRef] [PubMed]
  5. B. Sprenger, H. G. L. Schwefel, and L. J. Wang, “Whispering-gallery-mode-resonator-stabilized narrow-linewidth fiber loop laser,” Opt. Lett.34(21), 3370–3372 (2009).
    [CrossRef] [PubMed]
  6. J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Low-Threshold Optical Parametric Oscillations in a Whispering Gallery Mode Resonator,” Phys. Rev. Lett.105(26), 263904 (2010).
    [CrossRef] [PubMed]
  7. T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett.106(14), 143903 (2011).
    [CrossRef] [PubMed]
  8. J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett.104(15), 153901 (2010).
    [CrossRef] [PubMed]
  9. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  10. T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys.3(6), 430–435 (2007).
    [CrossRef]
  11. J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave ultraviolet emission through fourth-harmonic generation in a whispering-gallery resonator,” Opt. Express19(24), 24139–24146 (2011).
    [CrossRef] [PubMed]
  12. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett.94(22), 223902 (2005).
    [CrossRef] [PubMed]
  13. D. V. Strekalov, H. G. L. Schwefel, A. A. Savchenkov, A. B. Matsko, L. J. Wang, and N. Yu, “Microwave whispering-gallery resonator for efficient optical up-conversion,” Phys. Rev. A80(3), 033810 (2009).
    [CrossRef]
  14. M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) Rates,” Phys. Rev. Lett.102(11), 113601 (2009).
    [CrossRef] [PubMed]
  15. I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett.102(4), 043902 (2009).
    [CrossRef] [PubMed]
  16. G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat Commun2, 403 (2011).
    [CrossRef] [PubMed]
  17. G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys.8(3), 203–207 (2012).
    [CrossRef]
  18. J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Quantum light from a whispering-gallery-mode disk resonator,” Phys. Rev. Lett.106(11), 113901 (2011).
    [CrossRef] [PubMed]
  19. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics6(6), 369–373 (2012).
    [CrossRef]
  20. J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A82(3), 031804 (2010).
    [CrossRef]
  21. J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A84(1), 011804 (2011).
    [CrossRef]
  22. M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” Microwave Theory and Techniques, IEEE Transactions on55(6), 1209–1218 (2007).
    [CrossRef]
  23. W. Kim, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, “Fractals in microcavities: Giant coupled, multiplicative enhancement of optical responses,” Phys. Rev. Lett.82(24), 4811–4814 (1999).
    [CrossRef]
  24. K. A. Fuller and D. D. Smith, “Cascaded photoenhancement from coupled nanoparticle and microcavity resonance effects,” Opt. Express15(6), 3575–3580 (2007).
    [CrossRef] [PubMed]
  25. I. M. White, H. Oveys, and X. Fan, “Increasing the Enhancement of SERS with dielectric microsphere resonators,” Spectroscopy21, 36–42 (2006).
  26. S. I. Shopova, C. W. Blackledge, and A. T. Rosenberger, “Enhanced evanescent coupling to whispering-gallery modes due to gold nanorods grown on the microresonator surface,” Appl. Phys. B93(1), 183–187 (2008).
    [CrossRef]
  27. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
    [CrossRef]
  28. J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett.99(24), 243109 (2011).
    [CrossRef]
  29. S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett.98(24), 243104 (2011).
    [CrossRef]
  30. M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99(7), 073701 (2011).
    [CrossRef]
  31. V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett.101(4), 043704 (2012).
    [CrossRef]
  32. Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A85(3), 031805 (2012).
    [CrossRef]
  33. “COMSOL Multiphysics,” (2010).
  34. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  35. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
    [CrossRef] [PubMed]
  36. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
    [CrossRef]
  37. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
    [CrossRef]
  38. K. Jiang, M. Bosnick, Maillard, and L. Brus, “Single molecule raman spectroscopy at the junctions of large ag Nanocrystals,” J. Phys. Chem. B107(37), 9964–9972 (2003).
    [CrossRef]
  39. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008).
    [CrossRef] [PubMed]
  40. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express17(13), 11107–11112 (2009).
    [CrossRef] [PubMed]
  41. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
    [CrossRef] [PubMed]
  42. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
    [CrossRef] [PubMed]
  43. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature457(7228), 455–458 (2009).
    [CrossRef] [PubMed]
  44. V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett.9(10), 3489–3493 (2009).
    [CrossRef] [PubMed]
  45. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  46. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005).
    [CrossRef]
  47. M. Kozlov, O. Kfir, A. Fleischer, A. Kaplan, T. Carmon, H. G. L. Schwefel, G. Bartal, and O. Cohen, “Narrow-bandwidth high-order harmonics driven by long-duration hot spots,” New J. Phys.14(6), 063036 (2012).
    [CrossRef]
  48. M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J Biophotonics5(8-9), 629–638 (2012).
    [CrossRef] [PubMed]
  49. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1998).
  50. M. Quinten, A. Pack, and R. Wannemacher, “Scattering and extinction of evanescent waves by small particles,” Appl. Phys. B68(1), 87–92 (1999).
    [CrossRef]
  51. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer Series in Materials Science, 1995).
  52. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
    [CrossRef]
  53. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
    [CrossRef] [PubMed]
  54. J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” JOSA A5, 53–60 (2003).
  55. H. G. L. Schwefel and C. G. Poulton, “An improved method for calculating resonances of multiple dielectric disks arbitrarily positioned in the plane,” Opt. Express17(15), 13178–13186 (2009).
    [CrossRef] [PubMed]
  56. C.-L. Zou, H. G. L. Schwefel, F.-W. Sun, Z.-F. Han, and G.-C. Guo, “Quick root searching method for resonances of dielectric optical microcavities with the boundary element method,” Opt. Express19(17), 15669–15678 (2011).
    [CrossRef] [PubMed]
  57. A. N. Oraevsky, “Whispering-gallery waves,” Quantum Electron.32(5), 377–400 (2002).
    [CrossRef]
  58. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
    [CrossRef]
  59. P. Nordlander and F. Le, “Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system,” Appl. Phys. B84(1-2), 35–41 (2006).
    [CrossRef]
  60. D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett.29(10), 1069–1071 (2004).
    [CrossRef] [PubMed]
  61. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
    [CrossRef] [PubMed]
  62. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier Science & Tech, 1998).
  63. http://www.quantumchaos.de/Media/comsol2013/Supplement_Script_for_Fig.3_Comsol_4.3a.mph

2012 (6)

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys.8(3), 203–207 (2012).
[CrossRef]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics6(6), 369–373 (2012).
[CrossRef]

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett.101(4), 043704 (2012).
[CrossRef]

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A85(3), 031805 (2012).
[CrossRef]

M. Kozlov, O. Kfir, A. Fleischer, A. Kaplan, T. Carmon, H. G. L. Schwefel, G. Bartal, and O. Cohen, “Narrow-bandwidth high-order harmonics driven by long-duration hot spots,” New J. Phys.14(6), 063036 (2012).
[CrossRef]

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J Biophotonics5(8-9), 629–638 (2012).
[CrossRef] [PubMed]

2011 (10)

C.-L. Zou, H. G. L. Schwefel, F.-W. Sun, Z.-F. Han, and G.-C. Guo, “Quick root searching method for resonances of dielectric optical microcavities with the boundary element method,” Opt. Express19(17), 15669–15678 (2011).
[CrossRef] [PubMed]

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett.99(24), 243109 (2011).
[CrossRef]

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett.98(24), 243104 (2011).
[CrossRef]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99(7), 073701 (2011).
[CrossRef]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A84(1), 011804 (2011).
[CrossRef]

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Quantum light from a whispering-gallery-mode disk resonator,” Phys. Rev. Lett.106(11), 113901 (2011).
[CrossRef] [PubMed]

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat Commun2, 403 (2011).
[CrossRef] [PubMed]

J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave ultraviolet emission through fourth-harmonic generation in a whispering-gallery resonator,” Opt. Express19(24), 24139–24146 (2011).
[CrossRef] [PubMed]

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett.106(14), 143903 (2011).
[CrossRef] [PubMed]

2010 (5)

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett.104(15), 153901 (2010).
[CrossRef] [PubMed]

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Low-Threshold Optical Parametric Oscillations in a Whispering Gallery Mode Resonator,” Phys. Rev. Lett.105(26), 263904 (2010).
[CrossRef] [PubMed]

B. Sprenger, H. G. L. Schwefel, Z. H. Lu, S. Svitlov, and L. J. Wang, “CaF2 whispering-gallery-mode-resonator stabilized-narrow-linewidth laser,” Opt. Lett.35(17), 2870–2872 (2010).
[CrossRef] [PubMed]

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A82(3), 031804 (2010).
[CrossRef]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef]

2009 (11)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

B. Sprenger, H. G. L. Schwefel, and L. J. Wang, “Whispering-gallery-mode-resonator-stabilized narrow-linewidth fiber loop laser,” Opt. Lett.34(21), 3370–3372 (2009).
[CrossRef] [PubMed]

D. V. Strekalov, H. G. L. Schwefel, A. A. Savchenkov, A. B. Matsko, L. J. Wang, and N. Yu, “Microwave whispering-gallery resonator for efficient optical up-conversion,” Phys. Rev. A80(3), 033810 (2009).
[CrossRef]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) Rates,” Phys. Rev. Lett.102(11), 113601 (2009).
[CrossRef] [PubMed]

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett.102(4), 043902 (2009).
[CrossRef] [PubMed]

H. G. L. Schwefel and C. G. Poulton, “An improved method for calculating resonances of multiple dielectric disks arbitrarily positioned in the plane,” Opt. Express17(15), 13178–13186 (2009).
[CrossRef] [PubMed]

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express17(13), 11107–11112 (2009).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature457(7228), 455–458 (2009).
[CrossRef] [PubMed]

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett.9(10), 3489–3493 (2009).
[CrossRef] [PubMed]

2008 (3)

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

S. I. Shopova, C. W. Blackledge, and A. T. Rosenberger, “Enhanced evanescent coupling to whispering-gallery modes due to gold nanorods grown on the microresonator surface,” Appl. Phys. B93(1), 183–187 (2008).
[CrossRef]

2007 (3)

K. A. Fuller and D. D. Smith, “Cascaded photoenhancement from coupled nanoparticle and microcavity resonance effects,” Opt. Express15(6), 3575–3580 (2007).
[CrossRef] [PubMed]

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” Microwave Theory and Techniques, IEEE Transactions on55(6), 1209–1218 (2007).
[CrossRef]

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys.3(6), 430–435 (2007).
[CrossRef]

2006 (4)

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun.265(1), 33–38 (2006).
[CrossRef]

I. M. White, H. Oveys, and X. Fan, “Increasing the Enhancement of SERS with dielectric microsphere resonators,” Spectroscopy21, 36–42 (2006).

P. Nordlander and F. Le, “Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system,” Appl. Phys. B84(1-2), 35–41 (2006).
[CrossRef]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

2005 (3)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005).
[CrossRef]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett.94(22), 223902 (2005).
[CrossRef] [PubMed]

2004 (2)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
[CrossRef] [PubMed]

D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett.29(10), 1069–1071 (2004).
[CrossRef] [PubMed]

2003 (6)

J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” JOSA A5, 53–60 (2003).

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

K. Jiang, M. Bosnick, Maillard, and L. Brus, “Single molecule raman spectroscopy at the junctions of large ag Nanocrystals,” J. Phys. Chem. B107(37), 9964–9972 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

2002 (1)

A. N. Oraevsky, “Whispering-gallery waves,” Quantum Electron.32(5), 377–400 (2002).
[CrossRef]

1999 (2)

M. Quinten, A. Pack, and R. Wannemacher, “Scattering and extinction of evanescent waves by small particles,” Appl. Phys. B68(1), 87–92 (1999).
[CrossRef]

W. Kim, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, “Fractals in microcavities: Giant coupled, multiplicative enhancement of optical responses,” Phys. Rev. Lett.82(24), 4811–4814 (1999).
[CrossRef]

1989 (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A137(7-8), 393–397 (1989).
[CrossRef]

Aiello, A.

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Quantum light from a whispering-gallery-mode disk resonator,” Phys. Rev. Lett.106(11), 113901 (2011).
[CrossRef] [PubMed]

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Low-Threshold Optical Parametric Oscillations in a Whispering Gallery Mode Resonator,” Phys. Rev. Lett.105(26), 263904 (2010).
[CrossRef] [PubMed]

Alnis, J.

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A84(1), 011804 (2011).
[CrossRef]

Andersen, U. L.

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Quantum light from a whispering-gallery-mode disk resonator,” Phys. Rev. Lett.106(11), 113901 (2011).
[CrossRef] [PubMed]

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Low-Threshold Optical Parametric Oscillations in a Whispering Gallery Mode Resonator,” Phys. Rev. Lett.105(26), 263904 (2010).
[CrossRef] [PubMed]

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett.104(15), 153901 (2010).
[CrossRef] [PubMed]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Armstrong, R. L.

W. Kim, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, “Fractals in microcavities: Giant coupled, multiplicative enhancement of optical responses,” Phys. Rev. Lett.82(24), 4811–4814 (1999).
[CrossRef]

Arnold, S.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett.101(4), 043704 (2012).
[CrossRef]

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett.98(24), 243104 (2011).
[CrossRef]

Atwater, H. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005).
[CrossRef]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Bahl, G.

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys.8(3), 203–207 (2012).
[CrossRef]

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat Commun2, 403 (2011).
[CrossRef] [PubMed]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bartal, G.

M. Kozlov, O. Kfir, A. Fleischer, A. Kaplan, T. Carmon, H. G. L. Schwefel, G. Bartal, and O. Cohen, “Narrow-bandwidth high-order harmonics driven by long-duration hot spots,” New J. Phys.14(6), 063036 (2012).
[CrossRef]

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett.9(10), 3489–3493 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Beckmann, T.

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett.106(14), 143903 (2011).
[CrossRef] [PubMed]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Blackledge, C. W.

S. I. Shopova, C. W. Blackledge, and A. T. Rosenberger, “Enhanced evanescent coupling to whispering-gallery modes due to gold nanorods grown on the microresonator surface,” Appl. Phys. B93(1), 183–187 (2008).
[CrossRef]

Boriskina, S. V.

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J Biophotonics5(8-9), 629–638 (2012).
[CrossRef] [PubMed]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99(7), 073701 (2011).
[CrossRef]

Bosnick, M.

K. Jiang, M. Bosnick, Maillard, and L. Brus, “Single molecule raman spectroscopy at the junctions of large ag Nanocrystals,” J. Phys. Chem. B107(37), 9964–9972 (2003).
[CrossRef]

Bowen, W. P.

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett.99(24), 243109 (2011).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A137(7-8), 393–397 (1989).
[CrossRef]

Breunig, I.

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett.106(14), 143903 (2011).
[CrossRef] [PubMed]

Brus, L.

K. Jiang, M. Bosnick, Maillard, and L. Brus, “Single molecule raman spectroscopy at the junctions of large ag Nanocrystals,” J. Phys. Chem. B107(37), 9964–9972 (2003).
[CrossRef]

Buse, K.

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett.106(14), 143903 (2011).
[CrossRef] [PubMed]

Carmon, T.

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys.8(3), 203–207 (2012).
[CrossRef]

M. Kozlov, O. Kfir, A. Fleischer, A. Kaplan, T. Carmon, H. G. L. Schwefel, G. Bartal, and O. Cohen, “Narrow-bandwidth high-order harmonics driven by long-duration hot spots,” New J. Phys.14(6), 063036 (2012).
[CrossRef]

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat Commun2, 403 (2011).
[CrossRef] [PubMed]

J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave ultraviolet emission through fourth-harmonic generation in a whispering-gallery resonator,” Opt. Express19(24), 24139–24146 (2011).
[CrossRef] [PubMed]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) Rates,” Phys. Rev. Lett.102(11), 113601 (2009).
[CrossRef] [PubMed]

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys.3(6), 430–435 (2007).
[CrossRef]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett.94(22), 223902 (2005).
[CrossRef] [PubMed]

Cetinkaya, M.

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J Biophotonics5(8-9), 629–638 (2012).
[CrossRef] [PubMed]

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef]

Chen, T.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics6(6), 369–373 (2012).
[CrossRef]

Chen, Y.-L.

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A85(3), 031805 (2012).
[CrossRef]

Cohen, O.

M. Kozlov, O. Kfir, A. Fleischer, A. Kaplan, T. Carmon, H. G. L. Schwefel, G. Bartal, and O. Cohen, “Narrow-bandwidth high-order harmonics driven by long-duration hot spots,” New J. Phys.14(6), 063036 (2012).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Dantham, V. R.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett.101(4), 043704 (2012).
[CrossRef]

Demirel, M. C.

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J Biophotonics5(8-9), 629–638 (2012).
[CrossRef] [PubMed]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99(7), 073701 (2011).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Elser, D.

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Quantum light from a whispering-gallery-mode disk resonator,” Phys. Rev. Lett.106(11), 113901 (2011).
[CrossRef] [PubMed]

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett.104(15), 153901 (2010).
[CrossRef] [PubMed]

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Low-Threshold Optical Parametric Oscillations in a Whispering Gallery Mode Resonator,” Phys. Rev. Lett.105(26), 263904 (2010).
[CrossRef] [PubMed]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Fan, X.

I. M. White, H. Oveys, and X. Fan, “Increasing the Enhancement of SERS with dielectric microsphere resonators,” Spectroscopy21, 36–42 (2006).

Fleischer, A.

M. Kozlov, O. Kfir, A. Fleischer, A. Kaplan, T. Carmon, H. G. L. Schwefel, G. Bartal, and O. Cohen, “Narrow-bandwidth high-order harmonics driven by long-duration hot spots,” New J. Phys.14(6), 063036 (2012).
[CrossRef]

Fuller, K. A.

Fürst, J. U.

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Quantum light from a whispering-gallery-mode disk resonator,” Phys. Rev. Lett.106(11), 113901 (2011).
[CrossRef] [PubMed]

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Low-Threshold Optical Parametric Oscillations in a Whispering Gallery Mode Resonator,” Phys. Rev. Lett.105(26), 263904 (2010).
[CrossRef] [PubMed]

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett.104(15), 153901 (2010).
[CrossRef] [PubMed]

Geluk, E. J.

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Gong, Q.

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A85(3), 031805 (2012).
[CrossRef]

Gorodetsky, M. L.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A137(7-8), 393–397 (1989).
[CrossRef]

Gramotnev, D. K.

Grudinin, I. S.

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett.102(4), 043902 (2009).
[CrossRef] [PubMed]

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun.265(1), 33–38 (2006).
[CrossRef]

Guo, G.-C.

Haertle, D.

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett.106(14), 143903 (2011).
[CrossRef] [PubMed]

Han, Z.-F.

Hänsch, T. W.

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A84(1), 011804 (2011).
[CrossRef]

He, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Hill, M. T.

Hofer, J.

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A84(1), 011804 (2011).
[CrossRef]

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A82(3), 031804 (2010).
[CrossRef]

Holler, S.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett.101(4), 043704 (2012).
[CrossRef]

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett.98(24), 243104 (2011).
[CrossRef]

Ilchenko, V. S.

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun.265(1), 33–38 (2006).
[CrossRef]

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A137(7-8), 393–397 (1989).
[CrossRef]

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Jarrahi, M.

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics6(6), 369–373 (2012).
[CrossRef]

Jiang, K.

K. Jiang, M. Bosnick, Maillard, and L. Brus, “Single molecule raman spectroscopy at the junctions of large ag Nanocrystals,” J. Phys. Chem. B107(37), 9964–9972 (2003).
[CrossRef]

Jin, J.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kaplan, A.

M. Kozlov, O. Kfir, A. Fleischer, A. Kaplan, T. Carmon, H. G. L. Schwefel, G. Bartal, and O. Cohen, “Narrow-bandwidth high-order harmonics driven by long-duration hot spots,” New J. Phys.14(6), 063036 (2012).
[CrossRef]

Karouta, F.

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Kfir, O.

M. Kozlov, O. Kfir, A. Fleischer, A. Kaplan, T. Carmon, H. G. L. Schwefel, G. Bartal, and O. Cohen, “Narrow-bandwidth high-order harmonics driven by long-duration hot spots,” New J. Phys.14(6), 063036 (2012).
[CrossRef]

Kim, S.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, S.-W.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, W.

W. Kim, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, “Fractals in microcavities: Giant coupled, multiplicative enhancement of optical responses,” Phys. Rev. Lett.82(24), 4811–4814 (1999).
[CrossRef]

Kim, Y.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y.-J.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Kippenberg, T. J.

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A84(1), 011804 (2011).
[CrossRef]

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A82(3), 031804 (2010).
[CrossRef]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett.94(22), 223902 (2005).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Knittel, J.

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett.99(24), 243109 (2011).
[CrossRef]

Kolchenko, V.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett.101(4), 043704 (2012).
[CrossRef]

Kozlov, M.

M. Kozlov, O. Kfir, A. Fleischer, A. Kaplan, T. Carmon, H. G. L. Schwefel, G. Bartal, and O. Cohen, “Narrow-bandwidth high-order harmonics driven by long-duration hot spots,” New J. Phys.14(6), 063036 (2012).
[CrossRef]

Lassen, M.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett.104(15), 153901 (2010).
[CrossRef] [PubMed]

Le, F.

P. Nordlander and F. Le, “Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system,” Appl. Phys. B84(1-2), 35–41 (2006).
[CrossRef]

Lee, H.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics6(6), 369–373 (2012).
[CrossRef]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Leong, E. S. P.

Leuchs, G.

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Quantum light from a whispering-gallery-mode disk resonator,” Phys. Rev. Lett.106(11), 113901 (2011).
[CrossRef] [PubMed]

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett.104(15), 153901 (2010).
[CrossRef] [PubMed]

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Low-Threshold Optical Parametric Oscillations in a Whispering Gallery Mode Resonator,” Phys. Rev. Lett.105(26), 263904 (2010).
[CrossRef] [PubMed]

Li, B.-B.

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A85(3), 031805 (2012).
[CrossRef]

Li, J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics6(6), 369–373 (2012).
[CrossRef]

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef]

Li, Y.

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A85(3), 031805 (2012).
[CrossRef]

Linnenbank, H.

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett.106(14), 143903 (2011).
[CrossRef] [PubMed]

Liu, Y.-C.

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A85(3), 031805 (2012).
[CrossRef]

Lu, Z. H.

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005).
[CrossRef]

Maillard,

K. Jiang, M. Bosnick, Maillard, and L. Brus, “Single molecule raman spectroscopy at the junctions of large ag Nanocrystals,” J. Phys. Chem. B107(37), 9964–9972 (2003).
[CrossRef]

Maleki, L.

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett.102(4), 043902 (2009).
[CrossRef] [PubMed]

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun.265(1), 33–38 (2006).
[CrossRef]

Marell, M.

Marquardt, C.

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett.104(15), 153901 (2010).
[CrossRef] [PubMed]

Marquardt, Ch.

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Quantum light from a whispering-gallery-mode disk resonator,” Phys. Rev. Lett.106(11), 113901 (2011).
[CrossRef] [PubMed]

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Low-Threshold Optical Parametric Oscillations in a Whispering Gallery Mode Resonator,” Phys. Rev. Lett.105(26), 263904 (2010).
[CrossRef] [PubMed]

Marquardt, F.

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys.8(3), 203–207 (2012).
[CrossRef]

Matsko, A. B.

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett.102(4), 043902 (2009).
[CrossRef] [PubMed]

D. V. Strekalov, H. G. L. Schwefel, A. A. Savchenkov, A. B. Matsko, L. J. Wang, and N. Yu, “Microwave whispering-gallery resonator for efficient optical up-conversion,” Phys. Rev. A80(3), 033810 (2009).
[CrossRef]

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun.265(1), 33–38 (2006).
[CrossRef]

Min, B.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Moore, J.

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Ning, C.-Z.

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Nordlander, P.

P. Nordlander and F. Le, “Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system,” Appl. Phys. B84(1-2), 35–41 (2006).
[CrossRef]

Nötzel, R.

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

Oei, Y.-S.

Oraevsky, A. N.

A. N. Oraevsky, “Whispering-gallery waves,” Quantum Electron.32(5), 377–400 (2002).
[CrossRef]

Ostby, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett.9(10), 3489–3493 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Oveys, H.

I. M. White, H. Oveys, and X. Fan, “Increasing the Enhancement of SERS with dielectric microsphere resonators,” Spectroscopy21, 36–42 (2006).

Oxborrow, M.

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” Microwave Theory and Techniques, IEEE Transactions on55(6), 1209–1218 (2007).
[CrossRef]

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef]

Pack, A.

M. Quinten, A. Pack, and R. Wannemacher, “Scattering and extinction of evanescent waves by small particles,” Appl. Phys. B68(1), 87–92 (1999).
[CrossRef]

Painter, O.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics6(6), 369–373 (2012).
[CrossRef]

Park, I.-Y.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett.29(10), 1069–1071 (2004).
[CrossRef] [PubMed]

Poulton, C. G.

Quinten, M.

M. Quinten, A. Pack, and R. Wannemacher, “Scattering and extinction of evanescent waves by small particles,” Appl. Phys. B68(1), 87–92 (1999).
[CrossRef]

Rajmangal, R.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett.98(24), 243104 (2011).
[CrossRef]

Rokhsari, H.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett.94(22), 223902 (2005).
[CrossRef] [PubMed]

Rosenberger, A. T.

S. I. Shopova, C. W. Blackledge, and A. T. Rosenberger, “Enhanced evanescent coupling to whispering-gallery modes due to gold nanorods grown on the microresonator surface,” Appl. Phys. B93(1), 183–187 (2008).
[CrossRef]

Safonov, V. P.

W. Kim, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, “Fractals in microcavities: Giant coupled, multiplicative enhancement of optical responses,” Phys. Rev. Lett.82(24), 4811–4814 (1999).
[CrossRef]

Santiago-Cordoba, M. A.

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J Biophotonics5(8-9), 629–638 (2012).
[CrossRef] [PubMed]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99(7), 073701 (2011).
[CrossRef]

Savchenkov, A. A.

D. V. Strekalov, H. G. L. Schwefel, A. A. Savchenkov, A. B. Matsko, L. J. Wang, and N. Yu, “Microwave whispering-gallery resonator for efficient optical up-conversion,” Phys. Rev. A80(3), 033810 (2009).
[CrossRef]

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun.265(1), 33–38 (2006).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Schliesser, A.

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A84(1), 011804 (2011).
[CrossRef]

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A82(3), 031804 (2010).
[CrossRef]

Schwefel, H. G. L.

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

W. Kim, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, “Fractals in microcavities: Giant coupled, multiplicative enhancement of optical responses,” Phys. Rev. Lett.82(24), 4811–4814 (1999).
[CrossRef]

Shopova, S. I.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett.98(24), 243104 (2011).
[CrossRef]

S. I. Shopova, C. W. Blackledge, and A. T. Rosenberger, “Enhanced evanescent coupling to whispering-gallery modes due to gold nanorods grown on the microresonator surface,” Appl. Phys. B93(1), 183–187 (2008).
[CrossRef]

Smalbrugge, B.

Smit, M. K.

Smith, D. D.

Sorger, V.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Sorger, V. J.

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett.9(10), 3489–3493 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Sprenger, B.

Steigerwald, H.

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett.106(14), 143903 (2011).
[CrossRef] [PubMed]

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
[CrossRef] [PubMed]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Strekalov, D.

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun.265(1), 33–38 (2006).
[CrossRef]

Strekalov, D. V.

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Quantum light from a whispering-gallery-mode disk resonator,” Phys. Rev. Lett.106(11), 113901 (2011).
[CrossRef] [PubMed]

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett.104(15), 153901 (2010).
[CrossRef] [PubMed]

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Low-Threshold Optical Parametric Oscillations in a Whispering Gallery Mode Resonator,” Phys. Rev. Lett.105(26), 263904 (2010).
[CrossRef] [PubMed]

D. V. Strekalov, H. G. L. Schwefel, A. A. Savchenkov, A. B. Matsko, L. J. Wang, and N. Yu, “Microwave whispering-gallery resonator for efficient optical up-conversion,” Phys. Rev. A80(3), 033810 (2009).
[CrossRef]

Sturman, B.

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett.106(14), 143903 (2011).
[CrossRef] [PubMed]

Sun, F.-W.

Sun, M.

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Svitlov, S.

Swaim, J. D.

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett.99(24), 243109 (2011).
[CrossRef]

Tomes, M.

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys.8(3), 203–207 (2012).
[CrossRef]

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat Commun2, 403 (2011).
[CrossRef] [PubMed]

J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave ultraviolet emission through fourth-harmonic generation in a whispering-gallery resonator,” Opt. Express19(24), 24139–24146 (2011).
[CrossRef] [PubMed]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) Rates,” Phys. Rev. Lett.102(11), 113601 (2009).
[CrossRef] [PubMed]

Ulin-Avila, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Vahala, K.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Vahala, K. J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics6(6), 369–373 (2012).
[CrossRef]

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys.3(6), 430–435 (2007).
[CrossRef]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett.94(22), 223902 (2005).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

van Veldhoven, P. J.

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Vollmer, F.

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J Biophotonics5(8-9), 629–638 (2012).
[CrossRef] [PubMed]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99(7), 073701 (2011).
[CrossRef]

Wan, Z.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett.101(4), 043704 (2012).
[CrossRef]

Wang, C. Y.

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A84(1), 011804 (2011).
[CrossRef]

Wang, L. J.

Wannemacher, R.

M. Quinten, A. Pack, and R. Wannemacher, “Scattering and extinction of evanescent waves by small particles,” Appl. Phys. B68(1), 87–92 (1999).
[CrossRef]

White, I. M.

I. M. White, H. Oveys, and X. Fan, “Increasing the Enhancement of SERS with dielectric microsphere resonators,” Spectroscopy21, 36–42 (2006).

Wiersig, J.

J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” JOSA A5, 53–60 (2003).

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Xiao, Y.-F.

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A85(3), 031805 (2012).
[CrossRef]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef]

Yang, K. Y.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics6(6), 369–373 (2012).
[CrossRef]

Yang, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature457(7228), 455–458 (2009).
[CrossRef] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett.94(22), 223902 (2005).
[CrossRef] [PubMed]

Yao, J.

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett.9(10), 3489–3493 (2009).
[CrossRef] [PubMed]

Yu, N.

D. V. Strekalov, H. G. L. Schwefel, A. A. Savchenkov, A. B. Matsko, L. J. Wang, and N. Yu, “Microwave whispering-gallery resonator for efficient optical up-conversion,” Phys. Rev. A80(3), 033810 (2009).
[CrossRef]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Zehnpfennig, J.

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat Commun2, 403 (2011).
[CrossRef] [PubMed]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhang, X.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature457(7228), 455–458 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett.9(10), 3489–3493 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Zhu, J.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef]

Zhu, Y.

Zou, C.-L.

Appl. Phys. B (3)

S. I. Shopova, C. W. Blackledge, and A. T. Rosenberger, “Enhanced evanescent coupling to whispering-gallery modes due to gold nanorods grown on the microresonator surface,” Appl. Phys. B93(1), 183–187 (2008).
[CrossRef]

M. Quinten, A. Pack, and R. Wannemacher, “Scattering and extinction of evanescent waves by small particles,” Appl. Phys. B68(1), 87–92 (1999).
[CrossRef]

P. Nordlander and F. Le, “Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system,” Appl. Phys. B84(1-2), 35–41 (2006).
[CrossRef]

Appl. Phys. Lett. (4)

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett.99(24), 243109 (2011).
[CrossRef]

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett.98(24), 243104 (2011).
[CrossRef]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99(7), 073701 (2011).
[CrossRef]

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett.101(4), 043704 (2012).
[CrossRef]

J Biophotonics (1)

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J Biophotonics5(8-9), 629–638 (2012).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005).
[CrossRef]

J. Phys. Chem. B (3)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

K. Jiang, M. Bosnick, Maillard, and L. Brus, “Single molecule raman spectroscopy at the junctions of large ag Nanocrystals,” J. Phys. Chem. B107(37), 9964–9972 (2003).
[CrossRef]

JOSA A (1)

J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” JOSA A5, 53–60 (2003).

Microwave Theory and Techniques, IEEE Transactions on (1)

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” Microwave Theory and Techniques, IEEE Transactions on55(6), 1209–1218 (2007).
[CrossRef]

Nano Lett. (1)

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett.9(10), 3489–3493 (2009).
[CrossRef] [PubMed]

Nat Commun (1)

G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat Commun2, 403 (2011).
[CrossRef] [PubMed]

Nat. Photonics (5)

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics6(6), 369–373 (2012).
[CrossRef]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Nat. Phys. (2)

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys.8(3), 203–207 (2012).
[CrossRef]

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys.3(6), 430–435 (2007).
[CrossRef]

Nature (7)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature457(7228), 455–458 (2009).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

New J. Phys. (1)

M. Kozlov, O. Kfir, A. Fleischer, A. Kaplan, T. Carmon, H. G. L. Schwefel, G. Bartal, and O. Cohen, “Narrow-bandwidth high-order harmonics driven by long-duration hot spots,” New J. Phys.14(6), 063036 (2012).
[CrossRef]

Opt. Commun. (1)

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun.265(1), 33–38 (2006).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Phys. Lett. A (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A137(7-8), 393–397 (1989).
[CrossRef]

Phys. Rev. A (4)

D. V. Strekalov, H. G. L. Schwefel, A. A. Savchenkov, A. B. Matsko, L. J. Wang, and N. Yu, “Microwave whispering-gallery resonator for efficient optical up-conversion,” Phys. Rev. A80(3), 033810 (2009).
[CrossRef]

J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-Q crystalline microresonators,” Phys. Rev. A82(3), 031804 (2010).
[CrossRef]

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A84(1), 011804 (2011).
[CrossRef]

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A85(3), 031805 (2012).
[CrossRef]

Phys. Rev. Lett. (10)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
[CrossRef] [PubMed]

W. Kim, V. P. Safonov, V. M. Shalaev, and R. L. Armstrong, “Fractals in microcavities: Giant coupled, multiplicative enhancement of optical responses,” Phys. Rev. Lett.82(24), 4811–4814 (1999).
[CrossRef]

M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) Rates,” Phys. Rev. Lett.102(11), 113601 (2009).
[CrossRef] [PubMed]

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett.102(4), 043902 (2009).
[CrossRef] [PubMed]

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Quantum light from a whispering-gallery-mode disk resonator,” Phys. Rev. Lett.106(11), 113901 (2011).
[CrossRef] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett.94(22), 223902 (2005).
[CrossRef] [PubMed]

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Low-Threshold Optical Parametric Oscillations in a Whispering Gallery Mode Resonator,” Phys. Rev. Lett.105(26), 263904 (2010).
[CrossRef] [PubMed]

T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett.106(14), 143903 (2011).
[CrossRef] [PubMed]

J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett.104(15), 153901 (2010).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Quantum Electron. (1)

A. N. Oraevsky, “Whispering-gallery waves,” Quantum Electron.32(5), 377–400 (2002).
[CrossRef]

Spectroscopy (1)

I. M. White, H. Oveys, and X. Fan, “Increasing the Enhancement of SERS with dielectric microsphere resonators,” Spectroscopy21, 36–42 (2006).

Other (6)

“COMSOL Multiphysics,” (2010).

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier Science & Tech, 1998).

http://www.quantumchaos.de/Media/comsol2013/Supplement_Script_for_Fig.3_Comsol_4.3a.mph

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1998).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer Series in Materials Science, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical whispering gallery with a perturbed symmetry. a) The whispering gallery device with a particle that breaks its axial symmetry. b) The simulated region, where the green and orange area has a different dielectric constant. c) Confirming that the simulated area is large enough by solving the mode in an identical section, but with no particle and then verifying that the fields and their derivatives are continuous at the domain boundaries between these two sections (dashed line). d) Top view of a 3D simulation for a toroidal resonator made of silica and a nano-particle made of gold where color represents the density of electrical energy.

Fig. 2
Fig. 2

Concept Illustration: (a) free space interaction of light (blue) and a gold nanosphere (yellow). (b) multiple recirculation of light inside the microresonator (blue) and Au particle (yellow). (c) rendering of the on-chip hybrid device where light circulates azimuthally in a silica ring interacting with a gold sphere. (d) cross section of the toroid with the nanosphere plane. The gold nanosphere at the air-silica interface is shown to enhance the field there. (e) Intensity enhancement in the gold nanosphere particle region.

Fig. 3
Fig. 3

Numerical verification of our solver validity by means of comparison to another solver. The solutions are for a toroid made of silica with a major diameter of 30 µm and a minor diameter of 4 µm pumped at 1550 nm vacuum wavelength (m = 100). (a) our method, (b) line plot of the field intensities for both methods, (c) comparison with the axsym method [22].

Fig. 4
Fig. 4

Solution for a non-symmetrical nanoparticle configuration. A gold ellipsoid with semiaxis lengths of 10, 20 and 200 nm was located 24 nm away from a silica toroid that is resonating at 1.55 µm vacuum wavelength. The ellipsoid is rotated at an arbitrary angle along an arbitrary direction vector. All other parameters are as in (Figs. 1,2,3,5). Colors describe the electric field normal. A detailed description of how to generate this figure, including a sample file, is added in the Appendix A.

Fig. 5
Fig. 5

Plasmonic nanoparticle – toroid resonator intensity enhancement at λ = 1.550 µm, (a) TM mode a in a toroid with a nanoparticle in close proximity. (b) Intensity of the electric field and direction in the close vicinity of the nanoparticle. (c). TM mode in bare Toroid (no nanoparticle). (d-f) the same as (a-c) for TE mode. The colors represent the intensity and the arrows describe the direction of the electric field. A strong enhancement is evident in the TM mode in the presence of the nanoparticle. The toroid major diameter is D = 32 µm and minor diameter is d = 4 µm, the sphere radius is 50 nm. The Quality factor of the Bare toroid Q=4× 10 7 is degraded by the plasmonic nanoparticle to Q=3.4× 10 7 .

Fig. 6
Fig. 6

1D cross-section along the line connecting the MT-NP centers: (a) intensity profile of a TM mode for 100 nm diameter gold nanoparticle at λ = 1550 nm, separated from a MT by 2 nm. The toroid surface ends at D/2 + d/2 = 18 µm. The blue line presents the normalized cavity enhancement, which is set to one at the cavity-air interface. The red line correspond to the field enhancement in the presence of optimized-radius gold nano-sphere with respect to the bare cavity field enhancement in the cavity-air interface. The right panel represents the area surrounded by dash line. (b) the same as (a) for sphere diameter of 30 nm and λ = 530 nm wavelength.

Fig. 7
Fig. 7

Intensity enhancement and Q factor degradation at resonance and far-from-resonance frequencies: (a) The Q-factor of the coupled system of toroid and Au sphere (red line) and the plasmonic enhancement (blue line) for different sphere radii at λ = 1550 nm (far from the plasmonic resonance). Note the different scale of the plasmonic enhancement ratio for the two different wavelengths. (b) The total intensity enhancement of the system, which is the product of the Q-factor and plasmonic enhancement. The r = 0 point corresponds to a bare toroid case, where no NP is present, and is given for reference. Optimal particle radii for maximum enhancement is r = 50 nm and the maximum intensity is a factor of 20 for λ = 1550 nm. For λ = 530 nm: (c,d) the same as (a,b) for λ = 530 nm, corresponding to the Plasmon resonance frequency of the Au sphere. Here, the optimal sphere radius for enhancement is r = 8 nm at which a 25 times enhancement is obtained.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E out = E 0 + 3n(np)-p 4π ε 0 ε m 1 a 3 ,
|E|exp[ 2π εμ1 r λ ],

Metrics