Abstract

We theoretically explore the spectral behavior of the fundamental and sum-frequency waves generated from the surface of a thin metal film in the Kretschmann configuration with coherent ultrashort pulses. We show that the spectra of reflected sum-frequency waves exhibit pronounced shifts for the incident fundamental waves close to the plasmon coupling angle. We also demonstrate that the scale of discovered plasmon-enhanced spectral changes is strongly influenced by the magnitude of the incidence angle and the bandwidth of the source spectrum.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19, 22029–22106 (2011).
    [CrossRef] [PubMed]
  2. P. N. Prasad, Nanophotonics (Wiley, 2004).
    [CrossRef]
  3. L. Novotny and B. Hechi, Principles of Nano-Optics (Cambridge University, 2006).
    [CrossRef]
  4. L. M. Zhang and D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett.23, 1469–1470 (1988).
    [CrossRef]
  5. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sersors: review,” Sensors and Actuators B54, 3–15 (1999).
    [CrossRef]
  6. H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic genernation with surfance plasmons in silver films,” Phys. Rev. Lett.33, 1531–1534 (1974).
    [CrossRef]
  7. A. Bouhelier, M. Beverslius, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90, 13903–1–4 (2003).
    [CrossRef]
  8. S. I. Bozhevolny, J. Beermann, and V. Coello, “Direct observation of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. Lett.90, 197403–1–4 (2003).
    [PubMed]
  9. M. Labardi, M. Allegrini, M. Zavelani-Rossi, D. Polli, G. Cerullo, S. D. Silvestri, and O. Sveto, “Highly efficient second-harmonic nanosource for near-field optics and microscopy,” Opt. Lett.29, 62–64 (2004).
    [CrossRef] [PubMed]
  10. M. I. Stockman, D. G. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: Nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett.92, 057402–1–4 (2004).
    [CrossRef] [PubMed]
  11. N. I. Zheludev and V. I. Emelyanov, “Phase-matched second harmonic generation from nanostructured metal surfaces,” J. Opt. A.6, 26–28 (2004).
    [CrossRef]
  12. A. Liebsch, “Theory of sum frequency generation from metal surfaces,” Appl. Phys. B68, 301–304 (1999).
    [CrossRef]
  13. E. M. M. van der Ham, Q. H. F. Vrehen, E. R. Eltel, V. A. Yakovlev, E. V. Alieva, L. A. Kuzik, J. E. Petrov, V. A. Sychugov, and A. F. G. van der Meer, “Giant enhancement of sum-frequency yeild by surface-plasmon excitation,” J. Opt. Soc. Am. B16, 1146–1152 (1999).
    [CrossRef]
  14. A. T. Georges and N. E. Karatzas, “Optimizing the excitation of surface plasmon polaritions by difference-frequency generation on a gold surface,” Phys. Rev. B85, 155442–1–5 (2012).
    [CrossRef]
  15. F. DeMartini, F. G. Giuliani, M. Mataloni, E. Palange, and Y. R. Shen, “Study of Surface Polaritons in GaP by Optical Four-Wave Mixing,” Phys. Rev. Lett.37, 440–443 (1976).
    [CrossRef]
  16. S. Polomba and L. Novotny, “Nonlinear excitation of surface plasmon polaritons by four-wave mixing,” Phys. Rev. Lett.101, 056802–1–4 (2008).
    [PubMed]
  17. R. M. Corn and D. A. Higgins, “Optical second harmonic generation as a probe of surface chemistry,” Chem. Rev.94, 107–125 (1994).
    [CrossRef]
  18. J. Vydra and M. Eich, “Mapping of the lateral polar orientational distribution in second-order nonlinear thin films by scanning second-harmonic microscopy,” Appl. Phys. Lett.72, 275–277 (1998).
    [CrossRef]
  19. T.-H. Lan, Y.-K. Chyng, J. Li, and C.-H. Tien, “Plasmonic rainbow rings induced by white radial polarization,” Opt. Lett.37, 1205–1207 (2012).
    [CrossRef] [PubMed]
  20. Y. Nishijima, L. Roza, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express20, 11466–11477 (2012).
    [CrossRef] [PubMed]
  21. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, Cambridge, 1995).
    [CrossRef]
  22. S. A. Ponomarenko, H. Roychowdhury, and E. Wolf, “Physical significance of complete spatial coherence of optical fields,” Phys. Lett. A345, 10–12 (2005).
    [CrossRef]
  23. E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A23, 2135–2136 (1968).
  24. S. A. Ponomarenko, G. P. Agrawal, and E. Wolf, “Energy spectrum of nonstationary ensemble of pulses,” Opt. Lett.29, 394–396 (2004).
    [CrossRef] [PubMed]
  25. W. C. Chew, Waves and Fields in Inhomogeneous Media, II ed. (Institute of Electrical and Electronics Engineers, New York, 1995).
  26. R. W. Boyd, Nonlinear Optics, II ed. (Academic, Boston, 2003).
  27. W. Hübner, K. H. Bennemann, and K. Böhmer, “Theory for the nonlinear optical response of transition metals: Polarization dependence as a fingerprint of the electronic structure at surfaces and interfaces,” Phys. Rev. B50, 17597–17605 (1994).
    [CrossRef]
  28. F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80, 233402–1–4 (2009).
  29. D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: Gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys.96, 3626–3634 (2004).
    [CrossRef]
  30. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, II ed. (Academic, Boston, 2006).
  31. J. A. Maytorena, W. L. Mochán, and B. S. Mendoza, “Hydrodynamic model of sum and difference frequency generation at metal surfaces,” Phys. Rev. B57, 2580–2585 (1998).
    [CrossRef]
  32. S. A. Ponomarenko and E. Wolf, “Spectral anomalies in Fraunhofer diffraction,” Opt. Lett.27, 1211–1213 (2002).
    [CrossRef]

2012

2011

2009

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80, 233402–1–4 (2009).

2008

S. Polomba and L. Novotny, “Nonlinear excitation of surface plasmon polaritons by four-wave mixing,” Phys. Rev. Lett.101, 056802–1–4 (2008).
[PubMed]

2005

S. A. Ponomarenko, H. Roychowdhury, and E. Wolf, “Physical significance of complete spatial coherence of optical fields,” Phys. Lett. A345, 10–12 (2005).
[CrossRef]

2004

D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: Gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys.96, 3626–3634 (2004).
[CrossRef]

M. I. Stockman, D. G. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: Nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett.92, 057402–1–4 (2004).
[CrossRef] [PubMed]

N. I. Zheludev and V. I. Emelyanov, “Phase-matched second harmonic generation from nanostructured metal surfaces,” J. Opt. A.6, 26–28 (2004).
[CrossRef]

M. Labardi, M. Allegrini, M. Zavelani-Rossi, D. Polli, G. Cerullo, S. D. Silvestri, and O. Sveto, “Highly efficient second-harmonic nanosource for near-field optics and microscopy,” Opt. Lett.29, 62–64 (2004).
[CrossRef] [PubMed]

S. A. Ponomarenko, G. P. Agrawal, and E. Wolf, “Energy spectrum of nonstationary ensemble of pulses,” Opt. Lett.29, 394–396 (2004).
[CrossRef] [PubMed]

2003

A. Bouhelier, M. Beverslius, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90, 13903–1–4 (2003).
[CrossRef]

S. I. Bozhevolny, J. Beermann, and V. Coello, “Direct observation of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. Lett.90, 197403–1–4 (2003).
[PubMed]

2002

1999

E. M. M. van der Ham, Q. H. F. Vrehen, E. R. Eltel, V. A. Yakovlev, E. V. Alieva, L. A. Kuzik, J. E. Petrov, V. A. Sychugov, and A. F. G. van der Meer, “Giant enhancement of sum-frequency yeild by surface-plasmon excitation,” J. Opt. Soc. Am. B16, 1146–1152 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sersors: review,” Sensors and Actuators B54, 3–15 (1999).
[CrossRef]

A. Liebsch, “Theory of sum frequency generation from metal surfaces,” Appl. Phys. B68, 301–304 (1999).
[CrossRef]

1998

J. A. Maytorena, W. L. Mochán, and B. S. Mendoza, “Hydrodynamic model of sum and difference frequency generation at metal surfaces,” Phys. Rev. B57, 2580–2585 (1998).
[CrossRef]

J. Vydra and M. Eich, “Mapping of the lateral polar orientational distribution in second-order nonlinear thin films by scanning second-harmonic microscopy,” Appl. Phys. Lett.72, 275–277 (1998).
[CrossRef]

1994

W. Hübner, K. H. Bennemann, and K. Böhmer, “Theory for the nonlinear optical response of transition metals: Polarization dependence as a fingerprint of the electronic structure at surfaces and interfaces,” Phys. Rev. B50, 17597–17605 (1994).
[CrossRef]

R. M. Corn and D. A. Higgins, “Optical second harmonic generation as a probe of surface chemistry,” Chem. Rev.94, 107–125 (1994).
[CrossRef]

1988

L. M. Zhang and D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett.23, 1469–1470 (1988).
[CrossRef]

1976

F. DeMartini, F. G. Giuliani, M. Mataloni, E. Palange, and Y. R. Shen, “Study of Surface Polaritons in GaP by Optical Four-Wave Mixing,” Phys. Rev. Lett.37, 440–443 (1976).
[CrossRef]

1974

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic genernation with surfance plasmons in silver films,” Phys. Rev. Lett.33, 1531–1534 (1974).
[CrossRef]

1968

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A23, 2135–2136 (1968).

Agrawal, G. P.

Ahorinta, R.

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80, 233402–1–4 (2009).

Albers, W. M.

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80, 233402–1–4 (2009).

Alieva, E. V.

Allegrini, M.

Anceau, C.

M. I. Stockman, D. G. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: Nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett.92, 057402–1–4 (2004).
[CrossRef] [PubMed]

Beermann, J.

S. I. Bozhevolny, J. Beermann, and V. Coello, “Direct observation of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. Lett.90, 197403–1–4 (2003).
[PubMed]

Bennemann, K. H.

W. Hübner, K. H. Bennemann, and K. Böhmer, “Theory for the nonlinear optical response of transition metals: Polarization dependence as a fingerprint of the electronic structure at surfaces and interfaces,” Phys. Rev. B50, 17597–17605 (1994).
[CrossRef]

Bergman, D. G.

M. I. Stockman, D. G. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: Nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett.92, 057402–1–4 (2004).
[CrossRef] [PubMed]

Beverslius, M.

A. Bouhelier, M. Beverslius, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90, 13903–1–4 (2003).
[CrossRef]

Böhmer, K.

W. Hübner, K. H. Bennemann, and K. Böhmer, “Theory for the nonlinear optical response of transition metals: Polarization dependence as a fingerprint of the electronic structure at surfaces and interfaces,” Phys. Rev. B50, 17597–17605 (1994).
[CrossRef]

Bouhelier, A.

A. Bouhelier, M. Beverslius, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90, 13903–1–4 (2003).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, II ed. (Academic, Boston, 2003).

Bozhevolny, S. I.

S. I. Bozhevolny, J. Beermann, and V. Coello, “Direct observation of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. Lett.90, 197403–1–4 (2003).
[PubMed]

Brasselet, S.

M. I. Stockman, D. G. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: Nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett.92, 057402–1–4 (2004).
[CrossRef] [PubMed]

Cerullo, G.

Chew, W. C.

W. C. Chew, Waves and Fields in Inhomogeneous Media, II ed. (Institute of Electrical and Electronics Engineers, New York, 1995).

Chyng, Y.-K.

Coello, V.

S. I. Bozhevolny, J. Beermann, and V. Coello, “Direct observation of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. Lett.90, 197403–1–4 (2003).
[PubMed]

Corn, R. M.

R. M. Corn and D. A. Higgins, “Optical second harmonic generation as a probe of surface chemistry,” Chem. Rev.94, 107–125 (1994).
[CrossRef]

DeMartini, F.

F. DeMartini, F. G. Giuliani, M. Mataloni, E. Palange, and Y. R. Shen, “Study of Surface Polaritons in GaP by Optical Four-Wave Mixing,” Phys. Rev. Lett.37, 440–443 (1976).
[CrossRef]

Diels, J.-C.

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, II ed. (Academic, Boston, 2006).

Eich, M.

J. Vydra and M. Eich, “Mapping of the lateral polar orientational distribution in second-order nonlinear thin films by scanning second-harmonic microscopy,” Appl. Phys. Lett.72, 275–277 (1998).
[CrossRef]

Eltel, E. R.

Emelyanov, V. I.

N. I. Zheludev and V. I. Emelyanov, “Phase-matched second harmonic generation from nanostructured metal surfaces,” J. Opt. A.6, 26–28 (2004).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sersors: review,” Sensors and Actuators B54, 3–15 (1999).
[CrossRef]

Georges, A. T.

A. T. Georges and N. E. Karatzas, “Optimizing the excitation of surface plasmon polaritions by difference-frequency generation on a gold surface,” Phys. Rev. B85, 155442–1–5 (2012).
[CrossRef]

Giuliani, F. G.

F. DeMartini, F. G. Giuliani, M. Mataloni, E. Palange, and Y. R. Shen, “Study of Surface Polaritons in GaP by Optical Four-Wave Mixing,” Phys. Rev. Lett.37, 440–443 (1976).
[CrossRef]

Hartschuh, A.

A. Bouhelier, M. Beverslius, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90, 13903–1–4 (2003).
[CrossRef]

Hechi, B.

L. Novotny and B. Hechi, Principles of Nano-Optics (Cambridge University, 2006).
[CrossRef]

Higgins, D. A.

R. M. Corn and D. A. Higgins, “Optical second harmonic generation as a probe of surface chemistry,” Chem. Rev.94, 107–125 (1994).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sersors: review,” Sensors and Actuators B54, 3–15 (1999).
[CrossRef]

Hübner, W.

W. Hübner, K. H. Bennemann, and K. Böhmer, “Theory for the nonlinear optical response of transition metals: Polarization dependence as a fingerprint of the electronic structure at surfaces and interfaces,” Phys. Rev. B50, 17597–17605 (1994).
[CrossRef]

Juodkazis, S.

Karatzas, N. E.

A. T. Georges and N. E. Karatzas, “Optimizing the excitation of surface plasmon polaritions by difference-frequency generation on a gold surface,” Phys. Rev. B85, 155442–1–5 (2012).
[CrossRef]

Kauranen, M.

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80, 233402–1–4 (2009).

Krause, D.

D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: Gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys.96, 3626–3634 (2004).
[CrossRef]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A23, 2135–2136 (1968).

Kuzik, L. A.

Labardi, M.

Lan, T.-H.

Li, J.

Liebsch, A.

A. Liebsch, “Theory of sum frequency generation from metal surfaces,” Appl. Phys. B68, 301–304 (1999).
[CrossRef]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, Cambridge, 1995).
[CrossRef]

Mataloni, M.

F. DeMartini, F. G. Giuliani, M. Mataloni, E. Palange, and Y. R. Shen, “Study of Surface Polaritons in GaP by Optical Four-Wave Mixing,” Phys. Rev. Lett.37, 440–443 (1976).
[CrossRef]

Maytorena, J. A.

J. A. Maytorena, W. L. Mochán, and B. S. Mendoza, “Hydrodynamic model of sum and difference frequency generation at metal surfaces,” Phys. Rev. B57, 2580–2585 (1998).
[CrossRef]

Mendoza, B. S.

J. A. Maytorena, W. L. Mochán, and B. S. Mendoza, “Hydrodynamic model of sum and difference frequency generation at metal surfaces,” Phys. Rev. B57, 2580–2585 (1998).
[CrossRef]

Mitchell, D. E.

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic genernation with surfance plasmons in silver films,” Phys. Rev. Lett.33, 1531–1534 (1974).
[CrossRef]

Mochán, W. L.

J. A. Maytorena, W. L. Mochán, and B. S. Mendoza, “Hydrodynamic model of sum and difference frequency generation at metal surfaces,” Phys. Rev. B57, 2580–2585 (1998).
[CrossRef]

Nishijima, Y.

Novotny, L.

S. Polomba and L. Novotny, “Nonlinear excitation of surface plasmon polaritons by four-wave mixing,” Phys. Rev. Lett.101, 056802–1–4 (2008).
[PubMed]

A. Bouhelier, M. Beverslius, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90, 13903–1–4 (2003).
[CrossRef]

L. Novotny and B. Hechi, Principles of Nano-Optics (Cambridge University, 2006).
[CrossRef]

Palange, E.

F. DeMartini, F. G. Giuliani, M. Mataloni, E. Palange, and Y. R. Shen, “Study of Surface Polaritons in GaP by Optical Four-Wave Mixing,” Phys. Rev. Lett.37, 440–443 (1976).
[CrossRef]

Petrov, J. E.

Polli, D.

Polomba, S.

S. Polomba and L. Novotny, “Nonlinear excitation of surface plasmon polaritons by four-wave mixing,” Phys. Rev. Lett.101, 056802–1–4 (2008).
[PubMed]

Ponomarenko, S. A.

Prasad, P. N.

P. N. Prasad, Nanophotonics (Wiley, 2004).
[CrossRef]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A23, 2135–2136 (1968).

Rodriguez, F. J.

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80, 233402–1–4 (2009).

Rogers, C. T.

D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: Gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys.96, 3626–3634 (2004).
[CrossRef]

Roychowdhury, H.

S. A. Ponomarenko, H. Roychowdhury, and E. Wolf, “Physical significance of complete spatial coherence of optical fields,” Phys. Lett. A345, 10–12 (2005).
[CrossRef]

Roza, L.

Rudolph, W.

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, II ed. (Academic, Boston, 2006).

Shen, Y. R.

F. DeMartini, F. G. Giuliani, M. Mataloni, E. Palange, and Y. R. Shen, “Study of Surface Polaritons in GaP by Optical Four-Wave Mixing,” Phys. Rev. Lett.37, 440–443 (1976).
[CrossRef]

Silvestri, S. D.

Simon, H. J.

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic genernation with surfance plasmons in silver films,” Phys. Rev. Lett.33, 1531–1534 (1974).
[CrossRef]

Sipe, J. E.

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80, 233402–1–4 (2009).

Stockman, M. I.

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19, 22029–22106 (2011).
[CrossRef] [PubMed]

M. I. Stockman, D. G. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: Nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett.92, 057402–1–4 (2004).
[CrossRef] [PubMed]

Sveto, O.

Sychugov, V. A.

Teplin, C. W.

D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: Gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys.96, 3626–3634 (2004).
[CrossRef]

Tien, C.-H.

Uttamchandani, D.

L. M. Zhang and D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett.23, 1469–1470 (1988).
[CrossRef]

van der Ham, E. M. M.

van der Meer, A. F. G.

Vrehen, Q. H. F.

Vydra, J.

J. Vydra and M. Eich, “Mapping of the lateral polar orientational distribution in second-order nonlinear thin films by scanning second-harmonic microscopy,” Appl. Phys. Lett.72, 275–277 (1998).
[CrossRef]

Wang, F. X.

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80, 233402–1–4 (2009).

Watson, J. G.

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic genernation with surfance plasmons in silver films,” Phys. Rev. Lett.33, 1531–1534 (1974).
[CrossRef]

Wolf, E.

S. A. Ponomarenko, H. Roychowdhury, and E. Wolf, “Physical significance of complete spatial coherence of optical fields,” Phys. Lett. A345, 10–12 (2005).
[CrossRef]

S. A. Ponomarenko, G. P. Agrawal, and E. Wolf, “Energy spectrum of nonstationary ensemble of pulses,” Opt. Lett.29, 394–396 (2004).
[CrossRef] [PubMed]

S. A. Ponomarenko and E. Wolf, “Spectral anomalies in Fraunhofer diffraction,” Opt. Lett.27, 1211–1213 (2002).
[CrossRef]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, Cambridge, 1995).
[CrossRef]

Yakovlev, V. A.

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sersors: review,” Sensors and Actuators B54, 3–15 (1999).
[CrossRef]

Zavelani-Rossi, M.

Zhang, L. M.

L. M. Zhang and D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett.23, 1469–1470 (1988).
[CrossRef]

Zheludev, N. I.

N. I. Zheludev and V. I. Emelyanov, “Phase-matched second harmonic generation from nanostructured metal surfaces,” J. Opt. A.6, 26–28 (2004).
[CrossRef]

Zyss, J.

M. I. Stockman, D. G. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: Nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett.92, 057402–1–4 (2004).
[CrossRef] [PubMed]

Appl. Phys. B

A. Liebsch, “Theory of sum frequency generation from metal surfaces,” Appl. Phys. B68, 301–304 (1999).
[CrossRef]

Appl. Phys. Lett.

J. Vydra and M. Eich, “Mapping of the lateral polar orientational distribution in second-order nonlinear thin films by scanning second-harmonic microscopy,” Appl. Phys. Lett.72, 275–277 (1998).
[CrossRef]

Chem. Rev.

R. M. Corn and D. A. Higgins, “Optical second harmonic generation as a probe of surface chemistry,” Chem. Rev.94, 107–125 (1994).
[CrossRef]

Electron. Lett.

L. M. Zhang and D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett.23, 1469–1470 (1988).
[CrossRef]

J. Appl. Phys.

D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: Gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys.96, 3626–3634 (2004).
[CrossRef]

J. Opt. A.

N. I. Zheludev and V. I. Emelyanov, “Phase-matched second harmonic generation from nanostructured metal surfaces,” J. Opt. A.6, 26–28 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Lett. A

S. A. Ponomarenko, H. Roychowdhury, and E. Wolf, “Physical significance of complete spatial coherence of optical fields,” Phys. Lett. A345, 10–12 (2005).
[CrossRef]

Phys. Rev. B

J. A. Maytorena, W. L. Mochán, and B. S. Mendoza, “Hydrodynamic model of sum and difference frequency generation at metal surfaces,” Phys. Rev. B57, 2580–2585 (1998).
[CrossRef]

W. Hübner, K. H. Bennemann, and K. Böhmer, “Theory for the nonlinear optical response of transition metals: Polarization dependence as a fingerprint of the electronic structure at surfaces and interfaces,” Phys. Rev. B50, 17597–17605 (1994).
[CrossRef]

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80, 233402–1–4 (2009).

A. T. Georges and N. E. Karatzas, “Optimizing the excitation of surface plasmon polaritions by difference-frequency generation on a gold surface,” Phys. Rev. B85, 155442–1–5 (2012).
[CrossRef]

Phys. Rev. Lett.

F. DeMartini, F. G. Giuliani, M. Mataloni, E. Palange, and Y. R. Shen, “Study of Surface Polaritons in GaP by Optical Four-Wave Mixing,” Phys. Rev. Lett.37, 440–443 (1976).
[CrossRef]

S. Polomba and L. Novotny, “Nonlinear excitation of surface plasmon polaritons by four-wave mixing,” Phys. Rev. Lett.101, 056802–1–4 (2008).
[PubMed]

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic genernation with surfance plasmons in silver films,” Phys. Rev. Lett.33, 1531–1534 (1974).
[CrossRef]

A. Bouhelier, M. Beverslius, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90, 13903–1–4 (2003).
[CrossRef]

S. I. Bozhevolny, J. Beermann, and V. Coello, “Direct observation of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. Lett.90, 197403–1–4 (2003).
[PubMed]

M. I. Stockman, D. G. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: Nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett.92, 057402–1–4 (2004).
[CrossRef] [PubMed]

Sensors and Actuators B

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sersors: review,” Sensors and Actuators B54, 3–15 (1999).
[CrossRef]

Z. Naturforsch. A

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A23, 2135–2136 (1968).

Other

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, Cambridge, 1995).
[CrossRef]

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, II ed. (Academic, Boston, 2006).

P. N. Prasad, Nanophotonics (Wiley, 2004).
[CrossRef]

L. Novotny and B. Hechi, Principles of Nano-Optics (Cambridge University, 2006).
[CrossRef]

W. C. Chew, Waves and Fields in Inhomogeneous Media, II ed. (Institute of Electrical and Electronics Engineers, New York, 1995).

R. W. Boyd, Nonlinear Optics, II ed. (Academic, Boston, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Illustrating the Kretschmann configuration.

Fig. 2
Fig. 2

Far-field energy spectra of (a) FW and (b) SFW around the plasmon coupling angle. The source pulse duration is tp = 90 fs.

Fig. 3
Fig. 3

Normalized far-field SFW energy spectrum for different incident angle ranges. The source pulse duration is tp = 90 fs.

Fig. 4
Fig. 4

Relative shifts of mean fundamental (sum-frequency) wavelengths at different incident angles with respect to the (half) pump carrier wavelength for different source pulse durations. Insert shows relative spectral shifts for incidence angles in the vicinity of the plasmon coupling angle. Negative values indicate blue shifts.

Fig. 5
Fig. 5

(a) Normalized far-field SFW energy spectrum in the vicinity of the plasmon coupling angle with an incident pulse duration of tp = 30 fs. (b) The SFW spectral switch.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

E i ( x , z , ω , θ i ) = A ( ω ) ( k 1 z k 1 e x k x k 1 e z ) e i ( k x x + k 1 z z ) ,
S i ( ω ) | E i ( x , z , ω , θ i ) | 2 = | A ( ω ) | 2 ,
E r ( x , z , ω , θ i ) = A ( ω ) ( k 1 z k 1 e x k x k 1 e z ) r ˜ 12 ( ω , θ i ) e i ( k x x k 1 z z ) .
S ( 1 ) ( ω , θ i ) | E r ( x , z , ω , θ i ) | 2 | r ˜ 12 ( ω , θ i ) | 2 S i ( ω ) .
r ˜ 12 ( ω , θ i ) = r 12 + r 23 e i 2 k 2 z d 1 + r 12 r 23 e i 2 k 2 z d ,
P i ( r , ω 3 ) = ε 0 j k d ω 1 2 π χ i j k ( 2 ) ( ω 3 ; ω 1 , ω 2 ) E j ( r , ω 1 ) E k ( r , ω 2 ) ,
E 1 z ( x , z , ω , θ i ) = k x k 1 A ( ω ) e i k x x [ e i k 1 z z + r ˜ 12 ( ω , θ i ) e i k 1 z z ] .
E 2 z < ( x , ω , θ i ) = k x k 1 ε 1 ε 2 A ( ω ) e i k x x [ 1 + r ˜ 12 ( ω , θ i ) ] .
E 2 z ( x , z , ω , θ i ) = k x k 2 A ( ω ) e i k x x t 12 1 + r 12 r 23 e i 2 k 2 z d [ e i k 2 z z + r 23 e i 2 k 2 z d e i k 2 z z ] .
E 2 z > ( x , ω , θ i ) = k x k 2 A ( ω ) e i k x x R ( ω , θ i ) ,
R ( ω , θ i ) = t 12 ( 1 + r 23 ) e i k 2 z d 1 + r 12 r 23 e i 2 k 2 z d .
P < ( x , ω 3 , θ i ) = e z P 0 < ( ω 3 , θ i ) e i k x ( ω 3 ) x ,
P > ( x , ω 3 , θ i ) = e z P 0 > ( ω 3 , θ i ) e i k x ( ω 3 ) x ,
P 0 < ( ω 3 , θ i ) = ε 0 ε 1 2 sin 2 θ i d ω 1 2 π χ S , z z z ( 2 ) < ( ω 3 ; ω 1 , ω 2 ) × A ( ω 1 ) A ( ω 2 ) ε 2 ( ω 1 ) ε 2 ( ω 2 ) [ 1 + r ˜ 12 ( ω 1 , θ i ) ] [ 1 + r ˜ 12 ( ω 2 , θ i ) ] ,
P 0 > ( ω 3 , θ i ) = ε 0 ε 1 sin 2 θ i d ω 1 2 π χ S , z z z ( 2 ) > ( ω 3 ; ω 1 , ω 2 ) × A ( ω 1 ) A ( ω 2 ) ε 2 ( ω 1 ) ε 2 ( ω 2 ) R ( ω 1 , θ i ) R ( ω 2 , θ i ) .
E i ( r , ω ) = ( ω / c ) 2 ε 0 j d r G i j ( r , r , ω ) P j ( r , ω ) .
G i j ( r , r , ω ) = [ δ i j + 1 k 2 i j ] G 0 ( r , r , ω ) ,
G 0 ( r , r , ω ) = e i k | r r | 4 π | r r | = i 8 π 2 d k x k z e i k x ( x x ) + i k z ( z z ) .
E down ( 2 ) < ( x , z , ω 3 , θ i ) = i ω 3 sin θ i 8 π 2 ε 0 c ε 1 P 0 < ( ω 3 , θ i ) ( e x + tan θ i e z ) e i [ k x ( ω 3 ) x k 1 z ( ω 3 ) z ] ,
E up ( 2 ) < ( x , z , ω 3 , θ i ) = i ω 3 sin θ i 8 π 2 ε 0 c ε 2 ( ω 3 ) P 0 < ( ω 3 , θ i ) ( e x + tan θ i e z ) × r 23 t 21 e i 2 k 2 z ( ω 3 ) d 1 + r 12 r 23 e i 2 k 2 z ( ω 3 ) d e i [ k x ( ω 3 ) x k 1 z ( ω 3 ) z ] .
E ( 2 ) > ( x , z , ω 3 , θ i ) = i ω 3 sin θ i 8 π 2 ε 0 c ε 2 ( ω 3 ) P 0 > ( ω 3 , θ i ) ( e x + tan θ i e z ) × t 21 e i 2 k 2 z ( ω 3 ) d 1 + r 12 r 23 e i 2 k 2 z , ω 3 d e i [ k x ( ω 3 ) x k 1 z ( ω 3 ) z ] .
S ( 2 ) ( ω 3 , θ i ) | E down ( 2 ) < ( x , z , ω 3 , θ i ) + E up ( 2 ) < ( x , z , ω 3 , θ i ) + E ( 2 ) > ( x , z , ω 3 , θ i ) | 2 .
ε 2 ( ω ) = 1 ω p 2 ω 2 + i Γ ω + ω ˜ p 2 ω 0 2 ω 2 i γ ω .
χ S , z z z ( 2 ) ( ω 3 ; ω 1 , ω 2 ) = a ( ω 1 , ω 2 ) [ ε 2 ( ω 1 ) 1 ] [ ε 2 ( ω 2 ) 1 ] 32 π 2 n B e ,
θ c ( ω ) = sin 1 ε 2 ( ω ) ε 1 [ ε 2 ( ω ) + 1 ] .

Metrics