Abstract

Polarization handling is a key requirement for the next generation of photonic integrated circuits (PICs). Integrated polarization beam splitters (PBS) are central elements for polarization management, but their use in PICs is hindered by poor fabrication tolerances. In this work we present a fully passive, highly fabrication tolerant polarization beam splitter, based on an asymmetrical Mach-Zehnder interferometer (MZI) with a Si/SiO2 Periodic Layer Structure (PLS) on top of one of its arms. By engineering the birefringence of the PLS we are able to design the MZI arms so that sensitivities to the most critical fabrication errors are greatly reduced. Our PBS design tolerates waveguide width variations of 400nm maintaining a polarization extinction ratio better than 13dB in the complete C-Band.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Barwicz, M. R. Watts, P. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1, 57–60 (2007).
    [CrossRef]
  2. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express16, 753–791 (2007).
    [CrossRef]
  3. W. Yuan, K. Kojima, B. Wang, T. Koike-Akino, K. Parsons, S. Nishikawa, and E. Yagyu, “Mode-evolution-based polarization rotator-splitter design via simple fabrication process,” Opt. Express20, 10163–10169 (2012).
    [CrossRef] [PubMed]
  4. J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett.15, 72–74 (2003).
    [CrossRef]
  5. L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y.-S. Oei, and M. K. Smit, “A single etch-step fabrication-tolerant polarization splitter,” J. Lightwave Technol.25, 740–746 (2007).
    [CrossRef]
  6. D. Dai, Z. Wang, J. Peters, and J. E. Bowers, “Compact polarization beam splitter using an asymmetrical mach–zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett.24, 673–675 (2012).
    [CrossRef]
  7. L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach-zehnder interferometer polarization splitter in ingaasp/inp,” IEEE Photon. Technol. Lett.6, 402–405 (1994).
    [CrossRef]
  8. J. J. G. M Vand der Tol, M. Felicetti, and M. K. Smit, “Increasing Tolerance in Passive Integrated Optical Polarization Converters,” J. Lightw. Technol.30, 2884–2889 (2012).
    [CrossRef]
  9. C. Alonso-Ramos, S. Romero-García, A. Ortega-Moñux, I. Molina-Fernández, R. Zhang, H. G. Bach, and M. Schell, “Polarization rotator for InP rib waveguide,” Opt. Lett.37, 335–337 (2012).
    [CrossRef] [PubMed]
  10. C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic inp dual-polarization and dual-quadrature coherent receiver,”IEEE Photon. Technol. Lett.23, 694–696 (2011).
    [CrossRef]
  11. D. Dai, Z. Wang, and J. E. Bowers, “Considerations for the design of asymmetrical mach–zehnder interferometers used as polarization beam splitters on a submicrometer silicon-on-insulator platform,” J. Lightwave Technol.29, 1808–1817 (2011).
    [CrossRef]
  12. C. Alonso-Ramos, R. Halir, A. Ortega-Moñux, P. Cheben, L. Vivien, I. Molina-Fernández, D. Marris-Morini, S. Janz, D.-X. Xu, and J. Schmid, “Highly tolerant tunable waveguide polarization rotator scheme,” Opt. Lett.37, 3534–3536 (2012).
    [CrossRef] [PubMed]
  13. K. Kojima, W. Yuan, B. Wang, T. Koike-Akino, K. Parsons, S. Nishikawa, and E. Yagyu, “An mmi-based polarization splitter using patterned metal and tilted joint,” Opt. Express20, B371–B376 (2012).
    [CrossRef] [PubMed]
  14. B. Lahiri, R. Dylewicz, R. M. D. L. Rue, and N. P. Johnson, “Impact of titanium adhesion layers on the response of arrays of metallic split-ring resonators (srrs),” Opt. Express18, 11202–11208 (2010).
    [CrossRef] [PubMed]
  15. C. Yao, H.-G. Bach, R. Zhang, G. Zhou, J. H. Choi, C. Jiang, and R. Kunkel, “An ultracompact multimode interference wavelength splitter employing asymmetrical multi-section structures,” Opt. Express20, 18248–18253 (2012).
    [CrossRef] [PubMed]
  16. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13, 615–627 (1995).
    [CrossRef]
  17. R. Halir, A. Ortega-Monux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D.-X. Xu, B. Lamontagne, and S. Janz, “Compact high performance multi-mode interference couplers in silicon-on-insulator,” IEEE Photon. Technol. Lett.21, 1600–1602 (2009).
    [CrossRef]
  18. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phy. JETP2, 466 (1956).
  19. D. Poitras, J. A. Dobrowolski, T. Cassidy, and S. Moisa, “Ion-beam etching for the precise manufacture of optical coatings,” Appl. Opt.42, 4037–4044 (2003).
    [CrossRef] [PubMed]
  20. P. Runge and R. Zhang, “Deposition of Periodic Layer Structures,” Private Communication.

2012

D. Dai, Z. Wang, J. Peters, and J. E. Bowers, “Compact polarization beam splitter using an asymmetrical mach–zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett.24, 673–675 (2012).
[CrossRef]

J. J. G. M Vand der Tol, M. Felicetti, and M. K. Smit, “Increasing Tolerance in Passive Integrated Optical Polarization Converters,” J. Lightw. Technol.30, 2884–2889 (2012).
[CrossRef]

C. Alonso-Ramos, S. Romero-García, A. Ortega-Moñux, I. Molina-Fernández, R. Zhang, H. G. Bach, and M. Schell, “Polarization rotator for InP rib waveguide,” Opt. Lett.37, 335–337 (2012).
[CrossRef] [PubMed]

W. Yuan, K. Kojima, B. Wang, T. Koike-Akino, K. Parsons, S. Nishikawa, and E. Yagyu, “Mode-evolution-based polarization rotator-splitter design via simple fabrication process,” Opt. Express20, 10163–10169 (2012).
[CrossRef] [PubMed]

C. Yao, H.-G. Bach, R. Zhang, G. Zhou, J. H. Choi, C. Jiang, and R. Kunkel, “An ultracompact multimode interference wavelength splitter employing asymmetrical multi-section structures,” Opt. Express20, 18248–18253 (2012).
[CrossRef] [PubMed]

C. Alonso-Ramos, R. Halir, A. Ortega-Moñux, P. Cheben, L. Vivien, I. Molina-Fernández, D. Marris-Morini, S. Janz, D.-X. Xu, and J. Schmid, “Highly tolerant tunable waveguide polarization rotator scheme,” Opt. Lett.37, 3534–3536 (2012).
[CrossRef] [PubMed]

K. Kojima, W. Yuan, B. Wang, T. Koike-Akino, K. Parsons, S. Nishikawa, and E. Yagyu, “An mmi-based polarization splitter using patterned metal and tilted joint,” Opt. Express20, B371–B376 (2012).
[CrossRef] [PubMed]

2011

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic inp dual-polarization and dual-quadrature coherent receiver,”IEEE Photon. Technol. Lett.23, 694–696 (2011).
[CrossRef]

D. Dai, Z. Wang, and J. E. Bowers, “Considerations for the design of asymmetrical mach–zehnder interferometers used as polarization beam splitters on a submicrometer silicon-on-insulator platform,” J. Lightwave Technol.29, 1808–1817 (2011).
[CrossRef]

2010

2009

R. Halir, A. Ortega-Monux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D.-X. Xu, B. Lamontagne, and S. Janz, “Compact high performance multi-mode interference couplers in silicon-on-insulator,” IEEE Photon. Technol. Lett.21, 1600–1602 (2009).
[CrossRef]

2007

2003

D. Poitras, J. A. Dobrowolski, T. Cassidy, and S. Moisa, “Ion-beam etching for the precise manufacture of optical coatings,” Appl. Opt.42, 4037–4044 (2003).
[CrossRef] [PubMed]

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett.15, 72–74 (2003).
[CrossRef]

1995

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13, 615–627 (1995).
[CrossRef]

1994

L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach-zehnder interferometer polarization splitter in ingaasp/inp,” IEEE Photon. Technol. Lett.6, 402–405 (1994).
[CrossRef]

1956

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phy. JETP2, 466 (1956).

Alonso-Ramos, C.

Augustin, L. M.

Bach, H. G.

Bach, H.-G.

Barros, D. J. F.

Barwicz, T.

T. Barwicz, M. R. Watts, P. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1, 57–60 (2007).
[CrossRef]

Bowers, J. E.

D. Dai, Z. Wang, J. Peters, and J. E. Bowers, “Compact polarization beam splitter using an asymmetrical mach–zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett.24, 673–675 (2012).
[CrossRef]

D. Dai, Z. Wang, and J. E. Bowers, “Considerations for the design of asymmetrical mach–zehnder interferometers used as polarization beam splitters on a submicrometer silicon-on-insulator platform,” J. Lightwave Technol.29, 1808–1817 (2011).
[CrossRef]

Buhl, L. L.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic inp dual-polarization and dual-quadrature coherent receiver,”IEEE Photon. Technol. Lett.23, 694–696 (2011).
[CrossRef]

Cassidy, T.

Chandrasekhar, S.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic inp dual-polarization and dual-quadrature coherent receiver,”IEEE Photon. Technol. Lett.23, 694–696 (2011).
[CrossRef]

Cheben, P.

C. Alonso-Ramos, R. Halir, A. Ortega-Moñux, P. Cheben, L. Vivien, I. Molina-Fernández, D. Marris-Morini, S. Janz, D.-X. Xu, and J. Schmid, “Highly tolerant tunable waveguide polarization rotator scheme,” Opt. Lett.37, 3534–3536 (2012).
[CrossRef] [PubMed]

R. Halir, A. Ortega-Monux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D.-X. Xu, B. Lamontagne, and S. Janz, “Compact high performance multi-mode interference couplers in silicon-on-insulator,” IEEE Photon. Technol. Lett.21, 1600–1602 (2009).
[CrossRef]

Chen, Y. K.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic inp dual-polarization and dual-quadrature coherent receiver,”IEEE Photon. Technol. Lett.23, 694–696 (2011).
[CrossRef]

Choi, J. H.

Dai, D.

D. Dai, Z. Wang, J. Peters, and J. E. Bowers, “Compact polarization beam splitter using an asymmetrical mach–zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett.24, 673–675 (2012).
[CrossRef]

D. Dai, Z. Wang, and J. E. Bowers, “Considerations for the design of asymmetrical mach–zehnder interferometers used as polarization beam splitters on a submicrometer silicon-on-insulator platform,” J. Lightwave Technol.29, 1808–1817 (2011).
[CrossRef]

de Laat, W. J. M.

de Vreede, A. I.

L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach-zehnder interferometer polarization splitter in ingaasp/inp,” IEEE Photon. Technol. Lett.6, 402–405 (1994).
[CrossRef]

Dobrowolski, J. A.

Doerr, C. R.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic inp dual-polarization and dual-quadrature coherent receiver,”IEEE Photon. Technol. Lett.23, 694–696 (2011).
[CrossRef]

Dylewicz, R.

Felicetti, M.

J. J. G. M Vand der Tol, M. Felicetti, and M. K. Smit, “Increasing Tolerance in Passive Integrated Optical Polarization Converters,” J. Lightw. Technol.30, 2884–2889 (2012).
[CrossRef]

Green, F. H.

L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach-zehnder interferometer polarization splitter in ingaasp/inp,” IEEE Photon. Technol. Lett.6, 402–405 (1994).
[CrossRef]

Halir, R.

C. Alonso-Ramos, R. Halir, A. Ortega-Moñux, P. Cheben, L. Vivien, I. Molina-Fernández, D. Marris-Morini, S. Janz, D.-X. Xu, and J. Schmid, “Highly tolerant tunable waveguide polarization rotator scheme,” Opt. Lett.37, 3534–3536 (2012).
[CrossRef] [PubMed]

R. Halir, A. Ortega-Monux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D.-X. Xu, B. Lamontagne, and S. Janz, “Compact high performance multi-mode interference couplers in silicon-on-insulator,” IEEE Photon. Technol. Lett.21, 1600–1602 (2009).
[CrossRef]

Hanfoug, R.

Hong, J. M.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett.15, 72–74 (2003).
[CrossRef]

Houtsma, V.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic inp dual-polarization and dual-quadrature coherent receiver,”IEEE Photon. Technol. Lett.23, 694–696 (2011).
[CrossRef]

Hu, T.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic inp dual-polarization and dual-quadrature coherent receiver,”IEEE Photon. Technol. Lett.23, 694–696 (2011).
[CrossRef]

Ip, E.

Ippen, E. P.

T. Barwicz, M. R. Watts, P. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1, 57–60 (2007).
[CrossRef]

Janz, S.

C. Alonso-Ramos, R. Halir, A. Ortega-Moñux, P. Cheben, L. Vivien, I. Molina-Fernández, D. Marris-Morini, S. Janz, D.-X. Xu, and J. Schmid, “Highly tolerant tunable waveguide polarization rotator scheme,” Opt. Lett.37, 3534–3536 (2012).
[CrossRef] [PubMed]

R. Halir, A. Ortega-Monux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D.-X. Xu, B. Lamontagne, and S. Janz, “Compact high performance multi-mode interference couplers in silicon-on-insulator,” IEEE Photon. Technol. Lett.21, 1600–1602 (2009).
[CrossRef]

Jeong, J. W.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett.15, 72–74 (2003).
[CrossRef]

Jiang, C.

Johnson, N. P.

Kahn, J. M.

Kartner, F. X.

T. Barwicz, M. R. Watts, P. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1, 57–60 (2007).
[CrossRef]

Kim, S.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett.15, 72–74 (2003).
[CrossRef]

Koike-Akino, T.

Kojima, K.

Kunkel, R.

Lahiri, B.

Lamontagne, B.

R. Halir, A. Ortega-Monux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D.-X. Xu, B. Lamontagne, and S. Janz, “Compact high performance multi-mode interference couplers in silicon-on-insulator,” IEEE Photon. Technol. Lett.21, 1600–1602 (2009).
[CrossRef]

Lau, A. P. T.

Lee, E.-H.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett.15, 72–74 (2003).
[CrossRef]

Lee, S. G.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett.15, 72–74 (2003).
[CrossRef]

Marris-Morini, D.

Metaal, E. G.

L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach-zehnder interferometer polarization splitter in ingaasp/inp,” IEEE Photon. Technol. Lett.6, 402–405 (1994).
[CrossRef]

Moisa, S.

Molina-Fernández, I.

Neilson, D. T.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic inp dual-polarization and dual-quadrature coherent receiver,”IEEE Photon. Technol. Lett.23, 694–696 (2011).
[CrossRef]

Nishikawa, S.

O, B.-H.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett.15, 72–74 (2003).
[CrossRef]

Oei, Y.-S.

Ortega-Monux, A.

R. Halir, A. Ortega-Monux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D.-X. Xu, B. Lamontagne, and S. Janz, “Compact high performance multi-mode interference couplers in silicon-on-insulator,” IEEE Photon. Technol. Lett.21, 1600–1602 (2009).
[CrossRef]

Ortega-Moñux, A.

Park, S. R.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett.15, 72–74 (2003).
[CrossRef]

Park, S.-G.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett.15, 72–74 (2003).
[CrossRef]

Parsons, K.

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13, 615–627 (1995).
[CrossRef]

Peters, J.

D. Dai, Z. Wang, J. Peters, and J. E. Bowers, “Compact polarization beam splitter using an asymmetrical mach–zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett.24, 673–675 (2012).
[CrossRef]

Poitras, D.

Popovic, P. A.

T. Barwicz, M. R. Watts, P. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1, 57–60 (2007).
[CrossRef]

Rakich, P. T.

T. Barwicz, M. R. Watts, P. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1, 57–60 (2007).
[CrossRef]

Romero-García, S.

Rue, R. M. D. L.

Runge, P.

P. Runge and R. Zhang, “Deposition of Periodic Layer Structures,” Private Communication.

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phy. JETP2, 466 (1956).

Ryu, H. H.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett.15, 72–74 (2003).
[CrossRef]

Sauer, N. J.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic inp dual-polarization and dual-quadrature coherent receiver,”IEEE Photon. Technol. Lett.23, 694–696 (2011).
[CrossRef]

Schell, M.

Schmid, J.

Smit, M. K.

J. J. G. M Vand der Tol, M. Felicetti, and M. K. Smit, “Increasing Tolerance in Passive Integrated Optical Polarization Converters,” J. Lightw. Technol.30, 2884–2889 (2012).
[CrossRef]

L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y.-S. Oei, and M. K. Smit, “A single etch-step fabrication-tolerant polarization splitter,” J. Lightwave Technol.25, 740–746 (2007).
[CrossRef]

L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach-zehnder interferometer polarization splitter in ingaasp/inp,” IEEE Photon. Technol. Lett.6, 402–405 (1994).
[CrossRef]

Smith, H. I.

T. Barwicz, M. R. Watts, P. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1, 57–60 (2007).
[CrossRef]

Socci, L.

T. Barwicz, M. R. Watts, P. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1, 57–60 (2007).
[CrossRef]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13, 615–627 (1995).
[CrossRef]

L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach-zehnder interferometer polarization splitter in ingaasp/inp,” IEEE Photon. Technol. Lett.6, 402–405 (1994).
[CrossRef]

van de Moosdijk, M. J. E.

van der Tol, J. J. G. M.

van Dijk, P. W. L.

Vand der Tol, J. J. G. M

J. J. G. M Vand der Tol, M. Felicetti, and M. K. Smit, “Increasing Tolerance in Passive Integrated Optical Polarization Converters,” J. Lightw. Technol.30, 2884–2889 (2012).
[CrossRef]

Verbeek, B. H.

L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach-zehnder interferometer polarization splitter in ingaasp/inp,” IEEE Photon. Technol. Lett.6, 402–405 (1994).
[CrossRef]

Vivien, L.

Wang, B.

Wang, Z.

D. Dai, Z. Wang, J. Peters, and J. E. Bowers, “Compact polarization beam splitter using an asymmetrical mach–zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett.24, 673–675 (2012).
[CrossRef]

D. Dai, Z. Wang, and J. E. Bowers, “Considerations for the design of asymmetrical mach–zehnder interferometers used as polarization beam splitters on a submicrometer silicon-on-insulator platform,” J. Lightwave Technol.29, 1808–1817 (2011).
[CrossRef]

Wangüemert-Pérez, J. G.

R. Halir, A. Ortega-Monux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D.-X. Xu, B. Lamontagne, and S. Janz, “Compact high performance multi-mode interference couplers in silicon-on-insulator,” IEEE Photon. Technol. Lett.21, 1600–1602 (2009).
[CrossRef]

Watts, M. R.

T. Barwicz, M. R. Watts, P. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1, 57–60 (2007).
[CrossRef]

Weimann, N.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic inp dual-polarization and dual-quadrature coherent receiver,”IEEE Photon. Technol. Lett.23, 694–696 (2011).
[CrossRef]

Winzer, P. J.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic inp dual-polarization and dual-quadrature coherent receiver,”IEEE Photon. Technol. Lett.23, 694–696 (2011).
[CrossRef]

Woo, D.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett.15, 72–74 (2003).
[CrossRef]

Xu, D.-X.

C. Alonso-Ramos, R. Halir, A. Ortega-Moñux, P. Cheben, L. Vivien, I. Molina-Fernández, D. Marris-Morini, S. Janz, D.-X. Xu, and J. Schmid, “Highly tolerant tunable waveguide polarization rotator scheme,” Opt. Lett.37, 3534–3536 (2012).
[CrossRef] [PubMed]

R. Halir, A. Ortega-Monux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D.-X. Xu, B. Lamontagne, and S. Janz, “Compact high performance multi-mode interference couplers in silicon-on-insulator,” IEEE Photon. Technol. Lett.21, 1600–1602 (2009).
[CrossRef]

Yagyu, E.

Yao, C.

Yuan, W.

Zhang, L.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic inp dual-polarization and dual-quadrature coherent receiver,”IEEE Photon. Technol. Lett.23, 694–696 (2011).
[CrossRef]

Zhang, R.

Zhou, G.

Appl. Opt.

IEEE Photon. Technol. Lett.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett.15, 72–74 (2003).
[CrossRef]

D. Dai, Z. Wang, J. Peters, and J. E. Bowers, “Compact polarization beam splitter using an asymmetrical mach–zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett.24, 673–675 (2012).
[CrossRef]

L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach-zehnder interferometer polarization splitter in ingaasp/inp,” IEEE Photon. Technol. Lett.6, 402–405 (1994).
[CrossRef]

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic inp dual-polarization and dual-quadrature coherent receiver,”IEEE Photon. Technol. Lett.23, 694–696 (2011).
[CrossRef]

R. Halir, A. Ortega-Monux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D.-X. Xu, B. Lamontagne, and S. Janz, “Compact high performance multi-mode interference couplers in silicon-on-insulator,” IEEE Photon. Technol. Lett.21, 1600–1602 (2009).
[CrossRef]

J. Lightw. Technol.

J. J. G. M Vand der Tol, M. Felicetti, and M. K. Smit, “Increasing Tolerance in Passive Integrated Optical Polarization Converters,” J. Lightw. Technol.30, 2884–2889 (2012).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

T. Barwicz, M. R. Watts, P. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1, 57–60 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Private Communication

P. Runge and R. Zhang, “Deposition of Periodic Layer Structures,” Private Communication.

Sov. Phy. JETP

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phy. JETP2, 466 (1956).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of a generic MZI-PBS.

Fig. 2
Fig. 2

Cross-sectional dimensions of the MZI-PBS arms, in (a) the conventional approach, and (b) the PLS approach.

Fig. 3
Fig. 3

(a) Estimation of the length of the arms as a function of Si/SiO2 layer thicknesses. (b) Minimum thickness tolerances as a function of Si/SiO2 layer thicknesses for a wavelength of 1550nm. The design point is shown with a dot.

Fig. 4
Fig. 4

Layout of the proposed PBS.

Fig. 5
Fig. 5

Minimum ER in the C-Band as a function of the width error for a conventional PBS and our design. The ER for different errors in the thickness of the PLS layers is also shown.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P 1 = 0.5 [ 1 + sin ( ( β 2 β 1 ) L ) ] P 2 = 0.5 [ 1 sin ( β 2 β 1 ) L ]
( β 2 TE β 1 TE ) L = π 2 ( β 2 TM β 1 TM ) L = π 2
L = π ( β 2 TE β 2 TM ) ( β 1 TE β 1 TM ) = π Δ β 2 Δ β 1
β 2 TE p β 1 TE p = 0 β 2 TM p β 1 TM p = 0 ,

Metrics