Abstract

One of the challenges of the high refractive index contrast of silicon photonics platform is the high sensitivity of the resonance wavelength of resonators to dimensional variations caused by fabrication process variations. In this work, we have experimentally demonstrated an accurate post-fabrication trimming technique for optical devices that is robust to process variations. Using this technique, we have reduced the random variation of the resonance wavelength of 4 µm diameter resonators by a factor of 6 to below 50 pm. The level of accuracy achieved in this work is adequate for most of the RF-photonic, interconnect, and optical signal processing applications. We also discuss the throughput of this technique and its viability for wafer-scale post-fabrication trimming of silicon photonic chips.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009).
    [CrossRef]
  2. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
    [CrossRef]
  3. M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Toward ultimate miniaturization of high Q silicon traveling-wave microresonators,” Opt. Express18(19), 19541–19557 (2010).
    [CrossRef] [PubMed]
  4. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic Resonant Microrings (ARMs) with Directly Integrated Thermal Microphotonics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.
    [CrossRef]
  5. A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Novel Micro-Heater Structure for Low-Power and Fast Photonic Reconfiguration,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JThE44.
    [CrossRef]
  6. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express19(22), 21989–22003 (2011).
    [CrossRef] [PubMed]
  7. W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express18(23), 23598–23607 (2010).
    [CrossRef] [PubMed]
  8. J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express16(6), 3738–3743 (2008).
    [CrossRef] [PubMed]
  9. H. Haeiwa, T. Naganawa, and Y. Kokubun, “Wide range center wavelength trimming of vertically coupled microring resonator filter by direct UV irradiation to SiN ring core,” IEEE Photon. Technol. Lett.16(1), 135–137 (2004).
    [CrossRef]
  10. D. K. Sparacin, C. Y. Hong, L. C. Kimerling, J. Michel, J. P. Lock, and K. K. Gleason, “Trimming of microring resonators by photo-oxidation of a plasma-polymerized organosilane cladding material,” Opt. Lett.30(17), 2251–2253 (2005).
    [CrossRef] [PubMed]
  11. A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express20(14), 15807–15817 (2012).
    [CrossRef] [PubMed]
  12. L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and Trimming of Slotted Silicon Microring Resonators With UV-Sensitive PMMA Upper-Cladding,” IEEE Photon. Technol. Lett.21(17), 1175–1177 (2009).
    [CrossRef]
  13. S. Lambert, W. De Cort, J. Beeckman, K. Neyts, and R. Baets, “Trimming of silicon-on-insulator ring resonators with a polymerizable liquid crystal cladding,” Opt. Lett.37(9), 1475–1477 (2012).
    [CrossRef] [PubMed]
  14. S. Prorok, A. Y. Petrov, M. Eich, J. Luo, and A. K. Jen, “Trimming of high-Q-factor silicon ring resonators by electron beam bleaching,” Opt. Lett.37(15), 3114–3116 (2012).
    [CrossRef] [PubMed]
  15. Y. Shen, I. Divliansky, D. Basov, and S. Mookherjea, “Perfect set-and-forget alignment of silicon photonic resonators and interferometers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPC3.
  16. C. B. Norris and E. P. Eernisse, “Ionization dilatation effects in fused silica from 2 to 18-Kev electron-irradiation,” J. Appl. Phys.45(9), 3876–3882 (1974).
    [CrossRef]
  17. C. G. Robertson and G. L. Wilkes, “Refractive index: A probe for monitoring volume relaxation during physical aging of glassy polymers,” Polymer (Guildf.)39(11), 2129–2133 (1998).
    [CrossRef]
  18. Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express19(13), 12356–12364 (2011).
    [CrossRef] [PubMed]
  19. Q. Li, M. Soltani, S. Yegnanarayanan, and A. Adibi, “Design and demonstration of compact, wide bandwidth coupled-resonator filters on a silicon-on- insulator platform,” Opt. Express17(4), 2247–2254 (2009).
    [CrossRef] [PubMed]

2012 (3)

2011 (2)

2010 (2)

2009 (3)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009).
[CrossRef]

Q. Li, M. Soltani, S. Yegnanarayanan, and A. Adibi, “Design and demonstration of compact, wide bandwidth coupled-resonator filters on a silicon-on- insulator platform,” Opt. Express17(4), 2247–2254 (2009).
[CrossRef] [PubMed]

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and Trimming of Slotted Silicon Microring Resonators With UV-Sensitive PMMA Upper-Cladding,” IEEE Photon. Technol. Lett.21(17), 1175–1177 (2009).
[CrossRef]

2008 (1)

2006 (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

2005 (1)

2004 (1)

H. Haeiwa, T. Naganawa, and Y. Kokubun, “Wide range center wavelength trimming of vertically coupled microring resonator filter by direct UV irradiation to SiN ring core,” IEEE Photon. Technol. Lett.16(1), 135–137 (2004).
[CrossRef]

1998 (1)

C. G. Robertson and G. L. Wilkes, “Refractive index: A probe for monitoring volume relaxation during physical aging of glassy polymers,” Polymer (Guildf.)39(11), 2129–2133 (1998).
[CrossRef]

1974 (1)

C. B. Norris and E. P. Eernisse, “Ionization dilatation effects in fused silica from 2 to 18-Kev electron-irradiation,” J. Appl. Phys.45(9), 3876–3882 (1974).
[CrossRef]

Adibi, A.

Agarwal, A.

Baets, R.

Beeckman, J.

Canciamilla, A.

Chamanzar, M.

De Cort, W.

Eernisse, E. P.

C. B. Norris and E. P. Eernisse, “Ionization dilatation effects in fused silica from 2 to 18-Kev electron-irradiation,” J. Appl. Phys.45(9), 3876–3882 (1974).
[CrossRef]

Eftekhar, A. A.

Eich, M.

Gleason, K. K.

Grillanda, S.

Haeiwa, H.

H. Haeiwa, T. Naganawa, and Y. Kokubun, “Wide range center wavelength trimming of vertically coupled microring resonator filter by direct UV irradiation to SiN ring core,” IEEE Photon. Technol. Lett.16(1), 135–137 (2004).
[CrossRef]

Hong, C. Y.

Jen, A. K.

Kimerling, L. C.

Kokubun, Y.

H. Haeiwa, T. Naganawa, and Y. Kokubun, “Wide range center wavelength trimming of vertically coupled microring resonator filter by direct UV irradiation to SiN ring core,” IEEE Photon. Technol. Lett.16(1), 135–137 (2004).
[CrossRef]

Lambert, S.

Lentine, A. L.

Li, Q.

Lock, J. P.

Luo, J.

Melloni, A.

Michel, J.

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009).
[CrossRef]

Momeni, B.

Morichetti, F.

Naganawa, T.

H. Haeiwa, T. Naganawa, and Y. Kokubun, “Wide range center wavelength trimming of vertically coupled microring resonator filter by direct UV irradiation to SiN ring core,” IEEE Photon. Technol. Lett.16(1), 135–137 (2004).
[CrossRef]

Neyts, K.

Norris, C. B.

C. B. Norris and E. P. Eernisse, “Ionization dilatation effects in fused silica from 2 to 18-Kev electron-irradiation,” J. Appl. Phys.45(9), 3876–3882 (1974).
[CrossRef]

Okamoto, K.

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and Trimming of Slotted Silicon Microring Resonators With UV-Sensitive PMMA Upper-Cladding,” IEEE Photon. Technol. Lett.21(17), 1175–1177 (2009).
[CrossRef]

Petrov, A. Y.

Prorok, S.

Robertson, C. G.

C. G. Robertson and G. L. Wilkes, “Refractive index: A probe for monitoring volume relaxation during physical aging of glassy polymers,” Polymer (Guildf.)39(11), 2129–2133 (1998).
[CrossRef]

Schrauwen, J.

Singh, V.

Soltani, M.

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

Sorel, M.

Sparacin, D. K.

Trotter, D. C.

Van Thourhout, D.

Velha, P.

Watts, M. R.

Wilkes, G. L.

C. G. Robertson and G. L. Wilkes, “Refractive index: A probe for monitoring volume relaxation during physical aging of glassy polymers,” Polymer (Guildf.)39(11), 2129–2133 (1998).
[CrossRef]

Xia, Z.

Yegnanarayanan, S.

Yoo, S. J. B.

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and Trimming of Slotted Silicon Microring Resonators With UV-Sensitive PMMA Upper-Cladding,” IEEE Photon. Technol. Lett.21(17), 1175–1177 (2009).
[CrossRef]

Young, R. W.

Zhou, L.

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and Trimming of Slotted Silicon Microring Resonators With UV-Sensitive PMMA Upper-Cladding,” IEEE Photon. Technol. Lett.21(17), 1175–1177 (2009).
[CrossRef]

Zortman, W. A.

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

H. Haeiwa, T. Naganawa, and Y. Kokubun, “Wide range center wavelength trimming of vertically coupled microring resonator filter by direct UV irradiation to SiN ring core,” IEEE Photon. Technol. Lett.16(1), 135–137 (2004).
[CrossRef]

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and Trimming of Slotted Silicon Microring Resonators With UV-Sensitive PMMA Upper-Cladding,” IEEE Photon. Technol. Lett.21(17), 1175–1177 (2009).
[CrossRef]

J. Appl. Phys. (1)

C. B. Norris and E. P. Eernisse, “Ionization dilatation effects in fused silica from 2 to 18-Kev electron-irradiation,” J. Appl. Phys.45(9), 3876–3882 (1974).
[CrossRef]

Opt. Express (7)

Opt. Lett. (3)

Polymer (Guildf.) (1)

C. G. Robertson and G. L. Wilkes, “Refractive index: A probe for monitoring volume relaxation during physical aging of glassy polymers,” Polymer (Guildf.)39(11), 2129–2133 (1998).
[CrossRef]

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009).
[CrossRef]

Other (3)

Y. Shen, I. Divliansky, D. Basov, and S. Mookherjea, “Perfect set-and-forget alignment of silicon photonic resonators and interferometers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPC3.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic Resonant Microrings (ARMs) with Directly Integrated Thermal Microphotonics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.
[CrossRef]

A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Novel Micro-Heater Structure for Low-Power and Fast Photonic Reconfiguration,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JThE44.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The schematic of the cross-section of a ridge waveguide with the trimming SiN film (a) before, and (b) after PFT. (c) Hz mode profile of the TE mode of a 4 µm diameter microring resonator with films of SiO2 (40 nm) and SiN (30 nm) for resonance wavelength trimming. (d) 3D schematic of the microring after trimming. The inner radius of the SiN ring after trimming is rt.

Fig. 2
Fig. 2

(a) SEM of a 4 µm diameter microring after the trimming step. The narrow ring in the outer edge of the microring is the SiN film. (b) Simulation and experimental results of the resonance wavelength shift as a function of the inner radius of the SiN ring (rt).

Fig. 3
Fig. 3

(a) Optical micrograph of a 19-element add-drop array composed of 4 µm diameter microring resonators. (b) Blue and red curves show the overlay of the transmission spectra of 18 resonators in one of the add-drop arrays before and after PFT, respectively. Here, wavelength detuning of each resonator from its designed resonance wavelength is plotted. (c) Shows a similar plot as in (b) for 18 resonators in a single-bus (critical coupling) array configuration.

Fig. 4
Fig. 4

(a) The standard deviation of the resonance wavelength variation of 18 resonators in each array before (blue triangles) and after (red triangles) PFT. The horizontal axis represents the index of the array on the die. (b) The histograms of the resonance wavelength variation before (blue) and after (red) PFT for the 144 tested resonators.

Fig. 5
Fig. 5

Schematic of an 18th order coupled-resonator add-drop filter designed to have a 3dB bandwidth of 25 GHz with a flat-top response. (b) Drop-port response of the device shown in (a). The blue curve shows the response in the ideal case when there is no resonance wavelength variation; the gray and red curves show the response of the same device when the resonance wavelength variations measured in Section 3 before and after PFT are assigned to the resonators in the device. Gray and red shaded areas show the regions covered by the corresponding curves.

Metrics