Abstract

Band gaps and exciton binding energies of undoped and Al-doped ZnO thin films were determined from optical absorption measurement based on the Elliott’s exciton absorption theory. As compared to the undoped films, the doped films exhibit a band gap expansion and a reduction in the exciton binding energies due to the free electron screening effect, which suppresses the excitonic absorption and results in a blue shift of the absorption edge. The undoped and doped films show the same quantum size dependence, i.e. both the exciton binding energies and band gap energies increase with decreasing grain size of the oxides.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Prog. Mater. Sci.50(3), 293–340 (2005).
    [CrossRef]
  2. U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301–041403 (2005).
    [CrossRef]
  3. T. Minami, “New n-type transparent conducting oxides,” MRS Bull.25(08), 38–44 (2000).
    [CrossRef]
  4. J. G. Gay, “Screening of excitons in semiconductors,” Phys. Rev. B4(8), 2567–2575 (1971).
    [CrossRef]
  5. D. C. Reynolds, D. C. Look, and B. Jogai, “Combined effects of screening and band gap renormalization on the energy of optical transitions in ZnO and GaN,” J. Appl. Phys.88(10), 5760–5763 (2000).
    [CrossRef]
  6. H. Fujiwara and M. Kondo, “Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3:Sn studied by spectroscopic ellipsometry: analysis of free-carrier and band-edge absorption,” Phys. Rev. B71(7), 075109–075118 (2005).
    [CrossRef]
  7. T. Makino, Y. Segawa, S. Yoshida, A. Tsukazaki, A. Ohtomo, M. Kawasaki, and H. Koinuma, “Free-carrier effects on zero- and one-phonon absorption onsets of n-type ZnO,” Jpn. J. Appl. Phys.44(10), 7275–7280 (2005).
    [CrossRef]
  8. B.-Z. Dong, G.-J. Fang, J.-F. Wang, W.-J. Guan, and X.-Z. Zhao, “Effect of thickness on structural, electrical, and optical properties of ZnO: Al films deposited by pulsed laser deposition,” J. Appl. Phys.101(3), 033713–033719 (2007).
    [CrossRef]
  9. J. C. Nie, J. Y. Yang, Y. Piao, H. Li, Y. Sun, Q. M. Xue, C. M. Xiong, R. F. Dou, and Q. Y. Tu, “Quantum confinement effect in ZnO thin films grown by pulsed laser deposition,” Appl. Phys. Lett.93(17), 173104 (2008).
    [CrossRef]
  10. L.-W. Wang and A. Zunger, “Dielectric constants of silicon quantum dots,” Phys. Rev. Lett.73(7), 1039–1042 (1994).
    [CrossRef] [PubMed]
  11. H. C. Weissker, J. Furthmuller, and F. Bechstedt, “Optical properties of Ge and Si nanocrystallites from ab initio calculations. II. hydrogenated nanocrystallites,” Phys. Rev. B65(15), 155328 (2002).
    [CrossRef]
  12. G. T. Einevoll, “Confinement of excitons in quantum dots,” Phys. Rev. B Condens. Matter45(7), 3410–3417 (1992).
    [CrossRef] [PubMed]
  13. S. Kishimoto, T. Yamada, K. Ikeda, H. Makino, and T. Yamamoto, “Effects of oxygen partial pressure on film growth and electrical properties of undoped ZnO films with thickness below 100 nm,” Surf. Coat. Tech.201(7), 4000–4003 (2006).
    [CrossRef]
  14. S. S. Kim and B.-T. Lee, “Effects of oxygen pressure on the growth of pulsed laser deposited ZnO films on Si(0 0 1),” Thin Solid Films446(2), 307–312 (2004).
    [CrossRef]
  15. S.-S. Lin and J.-L. Huang, “Effect of thickness on the structural and optical properties of ZnO films by r.f. magnetron sputtering,” Surf. Coat. Tech.185(2-3), 222–227 (2004).
    [CrossRef]
  16. S. Adachi, Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles (Kluwer Academic Publishers, 1999), Chap. 1.
  17. R. J. Elliott, “Intensity of optical absorption by excitons,” Phys. Rev.108(6), 1384–1389 (1957).
    [CrossRef]
  18. S. Ninomiya and S. Adachi, “Optical properties of cubic and hexagonal CdSe,” J. Appl. Phys.78(7), 4681–4689 (1995).
    [CrossRef]
  19. H. Yoshikawa and S. Adachi, “Optical constants of ZnO,” Jpn. J. Appl. Phys.36(Part 1, No. 10), 6237–6243 (1997).
    [CrossRef]
  20. I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows,” J. Appl. Phys.60(11), R123–R160 (1986).
    [CrossRef]
  21. R. Fausto, G. Guido, M. Oskar, and M. Elisa, “Theory of excitonic confinement in semiconductor quantum wires,” J. Phys. Condens. Matter11(31), 5969–5988 (1999).
    [CrossRef]
  22. H. Gotoh and H. Ando, “Excitonic quantum confinement effects and exciton electroabsorption in semiconductor thin quantum boxes,” J. Appl. Phys.82(4), 1667–1677 (1997).
    [CrossRef]

2008 (1)

J. C. Nie, J. Y. Yang, Y. Piao, H. Li, Y. Sun, Q. M. Xue, C. M. Xiong, R. F. Dou, and Q. Y. Tu, “Quantum confinement effect in ZnO thin films grown by pulsed laser deposition,” Appl. Phys. Lett.93(17), 173104 (2008).
[CrossRef]

2007 (1)

B.-Z. Dong, G.-J. Fang, J.-F. Wang, W.-J. Guan, and X.-Z. Zhao, “Effect of thickness on structural, electrical, and optical properties of ZnO: Al films deposited by pulsed laser deposition,” J. Appl. Phys.101(3), 033713–033719 (2007).
[CrossRef]

2006 (1)

S. Kishimoto, T. Yamada, K. Ikeda, H. Makino, and T. Yamamoto, “Effects of oxygen partial pressure on film growth and electrical properties of undoped ZnO films with thickness below 100 nm,” Surf. Coat. Tech.201(7), 4000–4003 (2006).
[CrossRef]

2005 (4)

H. Fujiwara and M. Kondo, “Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3:Sn studied by spectroscopic ellipsometry: analysis of free-carrier and band-edge absorption,” Phys. Rev. B71(7), 075109–075118 (2005).
[CrossRef]

T. Makino, Y. Segawa, S. Yoshida, A. Tsukazaki, A. Ohtomo, M. Kawasaki, and H. Koinuma, “Free-carrier effects on zero- and one-phonon absorption onsets of n-type ZnO,” Jpn. J. Appl. Phys.44(10), 7275–7280 (2005).
[CrossRef]

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Prog. Mater. Sci.50(3), 293–340 (2005).
[CrossRef]

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301–041403 (2005).
[CrossRef]

2004 (2)

S. S. Kim and B.-T. Lee, “Effects of oxygen pressure on the growth of pulsed laser deposited ZnO films on Si(0 0 1),” Thin Solid Films446(2), 307–312 (2004).
[CrossRef]

S.-S. Lin and J.-L. Huang, “Effect of thickness on the structural and optical properties of ZnO films by r.f. magnetron sputtering,” Surf. Coat. Tech.185(2-3), 222–227 (2004).
[CrossRef]

2002 (1)

H. C. Weissker, J. Furthmuller, and F. Bechstedt, “Optical properties of Ge and Si nanocrystallites from ab initio calculations. II. hydrogenated nanocrystallites,” Phys. Rev. B65(15), 155328 (2002).
[CrossRef]

2000 (2)

T. Minami, “New n-type transparent conducting oxides,” MRS Bull.25(08), 38–44 (2000).
[CrossRef]

D. C. Reynolds, D. C. Look, and B. Jogai, “Combined effects of screening and band gap renormalization on the energy of optical transitions in ZnO and GaN,” J. Appl. Phys.88(10), 5760–5763 (2000).
[CrossRef]

1999 (1)

R. Fausto, G. Guido, M. Oskar, and M. Elisa, “Theory of excitonic confinement in semiconductor quantum wires,” J. Phys. Condens. Matter11(31), 5969–5988 (1999).
[CrossRef]

1997 (2)

H. Gotoh and H. Ando, “Excitonic quantum confinement effects and exciton electroabsorption in semiconductor thin quantum boxes,” J. Appl. Phys.82(4), 1667–1677 (1997).
[CrossRef]

H. Yoshikawa and S. Adachi, “Optical constants of ZnO,” Jpn. J. Appl. Phys.36(Part 1, No. 10), 6237–6243 (1997).
[CrossRef]

1995 (1)

S. Ninomiya and S. Adachi, “Optical properties of cubic and hexagonal CdSe,” J. Appl. Phys.78(7), 4681–4689 (1995).
[CrossRef]

1994 (1)

L.-W. Wang and A. Zunger, “Dielectric constants of silicon quantum dots,” Phys. Rev. Lett.73(7), 1039–1042 (1994).
[CrossRef] [PubMed]

1992 (1)

G. T. Einevoll, “Confinement of excitons in quantum dots,” Phys. Rev. B Condens. Matter45(7), 3410–3417 (1992).
[CrossRef] [PubMed]

1986 (1)

I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows,” J. Appl. Phys.60(11), R123–R160 (1986).
[CrossRef]

1971 (1)

J. G. Gay, “Screening of excitons in semiconductors,” Phys. Rev. B4(8), 2567–2575 (1971).
[CrossRef]

1957 (1)

R. J. Elliott, “Intensity of optical absorption by excitons,” Phys. Rev.108(6), 1384–1389 (1957).
[CrossRef]

Adachi, S.

H. Yoshikawa and S. Adachi, “Optical constants of ZnO,” Jpn. J. Appl. Phys.36(Part 1, No. 10), 6237–6243 (1997).
[CrossRef]

S. Ninomiya and S. Adachi, “Optical properties of cubic and hexagonal CdSe,” J. Appl. Phys.78(7), 4681–4689 (1995).
[CrossRef]

Alivov, Y. I.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301–041403 (2005).
[CrossRef]

Ando, H.

H. Gotoh and H. Ando, “Excitonic quantum confinement effects and exciton electroabsorption in semiconductor thin quantum boxes,” J. Appl. Phys.82(4), 1667–1677 (1997).
[CrossRef]

Avrutin, V.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301–041403 (2005).
[CrossRef]

Bechstedt, F.

H. C. Weissker, J. Furthmuller, and F. Bechstedt, “Optical properties of Ge and Si nanocrystallites from ab initio calculations. II. hydrogenated nanocrystallites,” Phys. Rev. B65(15), 155328 (2002).
[CrossRef]

Cho, S.-J.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301–041403 (2005).
[CrossRef]

Dogan, S.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301–041403 (2005).
[CrossRef]

Dong, B.-Z.

B.-Z. Dong, G.-J. Fang, J.-F. Wang, W.-J. Guan, and X.-Z. Zhao, “Effect of thickness on structural, electrical, and optical properties of ZnO: Al films deposited by pulsed laser deposition,” J. Appl. Phys.101(3), 033713–033719 (2007).
[CrossRef]

Dou, R. F.

J. C. Nie, J. Y. Yang, Y. Piao, H. Li, Y. Sun, Q. M. Xue, C. M. Xiong, R. F. Dou, and Q. Y. Tu, “Quantum confinement effect in ZnO thin films grown by pulsed laser deposition,” Appl. Phys. Lett.93(17), 173104 (2008).
[CrossRef]

Einevoll, G. T.

G. T. Einevoll, “Confinement of excitons in quantum dots,” Phys. Rev. B Condens. Matter45(7), 3410–3417 (1992).
[CrossRef] [PubMed]

Elisa, M.

R. Fausto, G. Guido, M. Oskar, and M. Elisa, “Theory of excitonic confinement in semiconductor quantum wires,” J. Phys. Condens. Matter11(31), 5969–5988 (1999).
[CrossRef]

Elliott, R. J.

R. J. Elliott, “Intensity of optical absorption by excitons,” Phys. Rev.108(6), 1384–1389 (1957).
[CrossRef]

Fang, G.-J.

B.-Z. Dong, G.-J. Fang, J.-F. Wang, W.-J. Guan, and X.-Z. Zhao, “Effect of thickness on structural, electrical, and optical properties of ZnO: Al films deposited by pulsed laser deposition,” J. Appl. Phys.101(3), 033713–033719 (2007).
[CrossRef]

Fausto, R.

R. Fausto, G. Guido, M. Oskar, and M. Elisa, “Theory of excitonic confinement in semiconductor quantum wires,” J. Phys. Condens. Matter11(31), 5969–5988 (1999).
[CrossRef]

Fujiwara, H.

H. Fujiwara and M. Kondo, “Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3:Sn studied by spectroscopic ellipsometry: analysis of free-carrier and band-edge absorption,” Phys. Rev. B71(7), 075109–075118 (2005).
[CrossRef]

Furthmuller, J.

H. C. Weissker, J. Furthmuller, and F. Bechstedt, “Optical properties of Ge and Si nanocrystallites from ab initio calculations. II. hydrogenated nanocrystallites,” Phys. Rev. B65(15), 155328 (2002).
[CrossRef]

Gay, J. G.

J. G. Gay, “Screening of excitons in semiconductors,” Phys. Rev. B4(8), 2567–2575 (1971).
[CrossRef]

Gotoh, H.

H. Gotoh and H. Ando, “Excitonic quantum confinement effects and exciton electroabsorption in semiconductor thin quantum boxes,” J. Appl. Phys.82(4), 1667–1677 (1997).
[CrossRef]

Granqvist, C. G.

I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows,” J. Appl. Phys.60(11), R123–R160 (1986).
[CrossRef]

Guan, W.-J.

B.-Z. Dong, G.-J. Fang, J.-F. Wang, W.-J. Guan, and X.-Z. Zhao, “Effect of thickness on structural, electrical, and optical properties of ZnO: Al films deposited by pulsed laser deposition,” J. Appl. Phys.101(3), 033713–033719 (2007).
[CrossRef]

Guido, G.

R. Fausto, G. Guido, M. Oskar, and M. Elisa, “Theory of excitonic confinement in semiconductor quantum wires,” J. Phys. Condens. Matter11(31), 5969–5988 (1999).
[CrossRef]

Hamberg, I.

I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows,” J. Appl. Phys.60(11), R123–R160 (1986).
[CrossRef]

Heo, Y. W.

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Prog. Mater. Sci.50(3), 293–340 (2005).
[CrossRef]

Huang, J.-L.

S.-S. Lin and J.-L. Huang, “Effect of thickness on the structural and optical properties of ZnO films by r.f. magnetron sputtering,” Surf. Coat. Tech.185(2-3), 222–227 (2004).
[CrossRef]

Ikeda, K.

S. Kishimoto, T. Yamada, K. Ikeda, H. Makino, and T. Yamamoto, “Effects of oxygen partial pressure on film growth and electrical properties of undoped ZnO films with thickness below 100 nm,” Surf. Coat. Tech.201(7), 4000–4003 (2006).
[CrossRef]

Ip, K.

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Prog. Mater. Sci.50(3), 293–340 (2005).
[CrossRef]

Jogai, B.

D. C. Reynolds, D. C. Look, and B. Jogai, “Combined effects of screening and band gap renormalization on the energy of optical transitions in ZnO and GaN,” J. Appl. Phys.88(10), 5760–5763 (2000).
[CrossRef]

Kawasaki, M.

T. Makino, Y. Segawa, S. Yoshida, A. Tsukazaki, A. Ohtomo, M. Kawasaki, and H. Koinuma, “Free-carrier effects on zero- and one-phonon absorption onsets of n-type ZnO,” Jpn. J. Appl. Phys.44(10), 7275–7280 (2005).
[CrossRef]

Kim, S. S.

S. S. Kim and B.-T. Lee, “Effects of oxygen pressure on the growth of pulsed laser deposited ZnO films on Si(0 0 1),” Thin Solid Films446(2), 307–312 (2004).
[CrossRef]

Kishimoto, S.

S. Kishimoto, T. Yamada, K. Ikeda, H. Makino, and T. Yamamoto, “Effects of oxygen partial pressure on film growth and electrical properties of undoped ZnO films with thickness below 100 nm,” Surf. Coat. Tech.201(7), 4000–4003 (2006).
[CrossRef]

Koinuma, H.

T. Makino, Y. Segawa, S. Yoshida, A. Tsukazaki, A. Ohtomo, M. Kawasaki, and H. Koinuma, “Free-carrier effects on zero- and one-phonon absorption onsets of n-type ZnO,” Jpn. J. Appl. Phys.44(10), 7275–7280 (2005).
[CrossRef]

Kondo, M.

H. Fujiwara and M. Kondo, “Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3:Sn studied by spectroscopic ellipsometry: analysis of free-carrier and band-edge absorption,” Phys. Rev. B71(7), 075109–075118 (2005).
[CrossRef]

Lee, B.-T.

S. S. Kim and B.-T. Lee, “Effects of oxygen pressure on the growth of pulsed laser deposited ZnO films on Si(0 0 1),” Thin Solid Films446(2), 307–312 (2004).
[CrossRef]

Li, H.

J. C. Nie, J. Y. Yang, Y. Piao, H. Li, Y. Sun, Q. M. Xue, C. M. Xiong, R. F. Dou, and Q. Y. Tu, “Quantum confinement effect in ZnO thin films grown by pulsed laser deposition,” Appl. Phys. Lett.93(17), 173104 (2008).
[CrossRef]

Lin, S.-S.

S.-S. Lin and J.-L. Huang, “Effect of thickness on the structural and optical properties of ZnO films by r.f. magnetron sputtering,” Surf. Coat. Tech.185(2-3), 222–227 (2004).
[CrossRef]

Liu, C.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301–041403 (2005).
[CrossRef]

Look, D. C.

D. C. Reynolds, D. C. Look, and B. Jogai, “Combined effects of screening and band gap renormalization on the energy of optical transitions in ZnO and GaN,” J. Appl. Phys.88(10), 5760–5763 (2000).
[CrossRef]

Makino, H.

S. Kishimoto, T. Yamada, K. Ikeda, H. Makino, and T. Yamamoto, “Effects of oxygen partial pressure on film growth and electrical properties of undoped ZnO films with thickness below 100 nm,” Surf. Coat. Tech.201(7), 4000–4003 (2006).
[CrossRef]

Makino, T.

T. Makino, Y. Segawa, S. Yoshida, A. Tsukazaki, A. Ohtomo, M. Kawasaki, and H. Koinuma, “Free-carrier effects on zero- and one-phonon absorption onsets of n-type ZnO,” Jpn. J. Appl. Phys.44(10), 7275–7280 (2005).
[CrossRef]

Minami, T.

T. Minami, “New n-type transparent conducting oxides,” MRS Bull.25(08), 38–44 (2000).
[CrossRef]

Morkoc, H.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301–041403 (2005).
[CrossRef]

Nie, J. C.

J. C. Nie, J. Y. Yang, Y. Piao, H. Li, Y. Sun, Q. M. Xue, C. M. Xiong, R. F. Dou, and Q. Y. Tu, “Quantum confinement effect in ZnO thin films grown by pulsed laser deposition,” Appl. Phys. Lett.93(17), 173104 (2008).
[CrossRef]

Ninomiya, S.

S. Ninomiya and S. Adachi, “Optical properties of cubic and hexagonal CdSe,” J. Appl. Phys.78(7), 4681–4689 (1995).
[CrossRef]

Norton, D. P.

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Prog. Mater. Sci.50(3), 293–340 (2005).
[CrossRef]

Ohtomo, A.

T. Makino, Y. Segawa, S. Yoshida, A. Tsukazaki, A. Ohtomo, M. Kawasaki, and H. Koinuma, “Free-carrier effects on zero- and one-phonon absorption onsets of n-type ZnO,” Jpn. J. Appl. Phys.44(10), 7275–7280 (2005).
[CrossRef]

Oskar, M.

R. Fausto, G. Guido, M. Oskar, and M. Elisa, “Theory of excitonic confinement in semiconductor quantum wires,” J. Phys. Condens. Matter11(31), 5969–5988 (1999).
[CrossRef]

Özgür, U.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301–041403 (2005).
[CrossRef]

Pearton, S. J.

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Prog. Mater. Sci.50(3), 293–340 (2005).
[CrossRef]

Piao, Y.

J. C. Nie, J. Y. Yang, Y. Piao, H. Li, Y. Sun, Q. M. Xue, C. M. Xiong, R. F. Dou, and Q. Y. Tu, “Quantum confinement effect in ZnO thin films grown by pulsed laser deposition,” Appl. Phys. Lett.93(17), 173104 (2008).
[CrossRef]

Reshchikov, M. A.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301–041403 (2005).
[CrossRef]

Reynolds, D. C.

D. C. Reynolds, D. C. Look, and B. Jogai, “Combined effects of screening and band gap renormalization on the energy of optical transitions in ZnO and GaN,” J. Appl. Phys.88(10), 5760–5763 (2000).
[CrossRef]

Segawa, Y.

T. Makino, Y. Segawa, S. Yoshida, A. Tsukazaki, A. Ohtomo, M. Kawasaki, and H. Koinuma, “Free-carrier effects on zero- and one-phonon absorption onsets of n-type ZnO,” Jpn. J. Appl. Phys.44(10), 7275–7280 (2005).
[CrossRef]

Steiner, T.

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Prog. Mater. Sci.50(3), 293–340 (2005).
[CrossRef]

Sun, Y.

J. C. Nie, J. Y. Yang, Y. Piao, H. Li, Y. Sun, Q. M. Xue, C. M. Xiong, R. F. Dou, and Q. Y. Tu, “Quantum confinement effect in ZnO thin films grown by pulsed laser deposition,” Appl. Phys. Lett.93(17), 173104 (2008).
[CrossRef]

Teke, A.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301–041403 (2005).
[CrossRef]

Tsukazaki, A.

T. Makino, Y. Segawa, S. Yoshida, A. Tsukazaki, A. Ohtomo, M. Kawasaki, and H. Koinuma, “Free-carrier effects on zero- and one-phonon absorption onsets of n-type ZnO,” Jpn. J. Appl. Phys.44(10), 7275–7280 (2005).
[CrossRef]

Tu, Q. Y.

J. C. Nie, J. Y. Yang, Y. Piao, H. Li, Y. Sun, Q. M. Xue, C. M. Xiong, R. F. Dou, and Q. Y. Tu, “Quantum confinement effect in ZnO thin films grown by pulsed laser deposition,” Appl. Phys. Lett.93(17), 173104 (2008).
[CrossRef]

Wang, J.-F.

B.-Z. Dong, G.-J. Fang, J.-F. Wang, W.-J. Guan, and X.-Z. Zhao, “Effect of thickness on structural, electrical, and optical properties of ZnO: Al films deposited by pulsed laser deposition,” J. Appl. Phys.101(3), 033713–033719 (2007).
[CrossRef]

Wang, L.-W.

L.-W. Wang and A. Zunger, “Dielectric constants of silicon quantum dots,” Phys. Rev. Lett.73(7), 1039–1042 (1994).
[CrossRef] [PubMed]

Weissker, H. C.

H. C. Weissker, J. Furthmuller, and F. Bechstedt, “Optical properties of Ge and Si nanocrystallites from ab initio calculations. II. hydrogenated nanocrystallites,” Phys. Rev. B65(15), 155328 (2002).
[CrossRef]

Xiong, C. M.

J. C. Nie, J. Y. Yang, Y. Piao, H. Li, Y. Sun, Q. M. Xue, C. M. Xiong, R. F. Dou, and Q. Y. Tu, “Quantum confinement effect in ZnO thin films grown by pulsed laser deposition,” Appl. Phys. Lett.93(17), 173104 (2008).
[CrossRef]

Xue, Q. M.

J. C. Nie, J. Y. Yang, Y. Piao, H. Li, Y. Sun, Q. M. Xue, C. M. Xiong, R. F. Dou, and Q. Y. Tu, “Quantum confinement effect in ZnO thin films grown by pulsed laser deposition,” Appl. Phys. Lett.93(17), 173104 (2008).
[CrossRef]

Yamada, T.

S. Kishimoto, T. Yamada, K. Ikeda, H. Makino, and T. Yamamoto, “Effects of oxygen partial pressure on film growth and electrical properties of undoped ZnO films with thickness below 100 nm,” Surf. Coat. Tech.201(7), 4000–4003 (2006).
[CrossRef]

Yamamoto, T.

S. Kishimoto, T. Yamada, K. Ikeda, H. Makino, and T. Yamamoto, “Effects of oxygen partial pressure on film growth and electrical properties of undoped ZnO films with thickness below 100 nm,” Surf. Coat. Tech.201(7), 4000–4003 (2006).
[CrossRef]

Yang, J. Y.

J. C. Nie, J. Y. Yang, Y. Piao, H. Li, Y. Sun, Q. M. Xue, C. M. Xiong, R. F. Dou, and Q. Y. Tu, “Quantum confinement effect in ZnO thin films grown by pulsed laser deposition,” Appl. Phys. Lett.93(17), 173104 (2008).
[CrossRef]

Yoshida, S.

T. Makino, Y. Segawa, S. Yoshida, A. Tsukazaki, A. Ohtomo, M. Kawasaki, and H. Koinuma, “Free-carrier effects on zero- and one-phonon absorption onsets of n-type ZnO,” Jpn. J. Appl. Phys.44(10), 7275–7280 (2005).
[CrossRef]

Yoshikawa, H.

H. Yoshikawa and S. Adachi, “Optical constants of ZnO,” Jpn. J. Appl. Phys.36(Part 1, No. 10), 6237–6243 (1997).
[CrossRef]

Zhao, X.-Z.

B.-Z. Dong, G.-J. Fang, J.-F. Wang, W.-J. Guan, and X.-Z. Zhao, “Effect of thickness on structural, electrical, and optical properties of ZnO: Al films deposited by pulsed laser deposition,” J. Appl. Phys.101(3), 033713–033719 (2007).
[CrossRef]

Zunger, A.

L.-W. Wang and A. Zunger, “Dielectric constants of silicon quantum dots,” Phys. Rev. Lett.73(7), 1039–1042 (1994).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

J. C. Nie, J. Y. Yang, Y. Piao, H. Li, Y. Sun, Q. M. Xue, C. M. Xiong, R. F. Dou, and Q. Y. Tu, “Quantum confinement effect in ZnO thin films grown by pulsed laser deposition,” Appl. Phys. Lett.93(17), 173104 (2008).
[CrossRef]

J. Appl. Phys. (6)

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301–041403 (2005).
[CrossRef]

D. C. Reynolds, D. C. Look, and B. Jogai, “Combined effects of screening and band gap renormalization on the energy of optical transitions in ZnO and GaN,” J. Appl. Phys.88(10), 5760–5763 (2000).
[CrossRef]

B.-Z. Dong, G.-J. Fang, J.-F. Wang, W.-J. Guan, and X.-Z. Zhao, “Effect of thickness on structural, electrical, and optical properties of ZnO: Al films deposited by pulsed laser deposition,” J. Appl. Phys.101(3), 033713–033719 (2007).
[CrossRef]

S. Ninomiya and S. Adachi, “Optical properties of cubic and hexagonal CdSe,” J. Appl. Phys.78(7), 4681–4689 (1995).
[CrossRef]

I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows,” J. Appl. Phys.60(11), R123–R160 (1986).
[CrossRef]

H. Gotoh and H. Ando, “Excitonic quantum confinement effects and exciton electroabsorption in semiconductor thin quantum boxes,” J. Appl. Phys.82(4), 1667–1677 (1997).
[CrossRef]

J. Phys. Condens. Matter (1)

R. Fausto, G. Guido, M. Oskar, and M. Elisa, “Theory of excitonic confinement in semiconductor quantum wires,” J. Phys. Condens. Matter11(31), 5969–5988 (1999).
[CrossRef]

Jpn. J. Appl. Phys. (2)

H. Yoshikawa and S. Adachi, “Optical constants of ZnO,” Jpn. J. Appl. Phys.36(Part 1, No. 10), 6237–6243 (1997).
[CrossRef]

T. Makino, Y. Segawa, S. Yoshida, A. Tsukazaki, A. Ohtomo, M. Kawasaki, and H. Koinuma, “Free-carrier effects on zero- and one-phonon absorption onsets of n-type ZnO,” Jpn. J. Appl. Phys.44(10), 7275–7280 (2005).
[CrossRef]

MRS Bull. (1)

T. Minami, “New n-type transparent conducting oxides,” MRS Bull.25(08), 38–44 (2000).
[CrossRef]

Phys. Rev. (1)

R. J. Elliott, “Intensity of optical absorption by excitons,” Phys. Rev.108(6), 1384–1389 (1957).
[CrossRef]

Phys. Rev. B (3)

H. C. Weissker, J. Furthmuller, and F. Bechstedt, “Optical properties of Ge and Si nanocrystallites from ab initio calculations. II. hydrogenated nanocrystallites,” Phys. Rev. B65(15), 155328 (2002).
[CrossRef]

J. G. Gay, “Screening of excitons in semiconductors,” Phys. Rev. B4(8), 2567–2575 (1971).
[CrossRef]

H. Fujiwara and M. Kondo, “Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3:Sn studied by spectroscopic ellipsometry: analysis of free-carrier and band-edge absorption,” Phys. Rev. B71(7), 075109–075118 (2005).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

G. T. Einevoll, “Confinement of excitons in quantum dots,” Phys. Rev. B Condens. Matter45(7), 3410–3417 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

L.-W. Wang and A. Zunger, “Dielectric constants of silicon quantum dots,” Phys. Rev. Lett.73(7), 1039–1042 (1994).
[CrossRef] [PubMed]

Prog. Mater. Sci. (1)

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Prog. Mater. Sci.50(3), 293–340 (2005).
[CrossRef]

Surf. Coat. Tech. (2)

S. Kishimoto, T. Yamada, K. Ikeda, H. Makino, and T. Yamamoto, “Effects of oxygen partial pressure on film growth and electrical properties of undoped ZnO films with thickness below 100 nm,” Surf. Coat. Tech.201(7), 4000–4003 (2006).
[CrossRef]

S.-S. Lin and J.-L. Huang, “Effect of thickness on the structural and optical properties of ZnO films by r.f. magnetron sputtering,” Surf. Coat. Tech.185(2-3), 222–227 (2004).
[CrossRef]

Thin Solid Films (1)

S. S. Kim and B.-T. Lee, “Effects of oxygen pressure on the growth of pulsed laser deposited ZnO films on Si(0 0 1),” Thin Solid Films446(2), 307–312 (2004).
[CrossRef]

Other (1)

S. Adachi, Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles (Kluwer Academic Publishers, 1999), Chap. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

XRD measurements and SEM images of the undoped ZnO (a) and AZO films (b) with the thicknesses of 20 nm and 90 nm; and c) average grain sizes of the undoped ZnO and AZO films estimated from the XRD and SEM measurements as a function of film thickness.

Fig. 2
Fig. 2

Absorption spectra of the undoped ZnO (a) and AZO films (b) with the thicknesses of 20 nm and 90 nm; and (c) comparison of the absorption between the undoped ZnO and AZO for the thickness of 20 nm. The modeling based on Eqs. (1) and (2) for the undoped ZnO and AZO films is shown in the figure also.

Fig. 3
Fig. 3

Exciton binding energies of the undoped ZnO films (a) and the AZO films (b) as a function of the average grain size D (D is determined from the SEM images). The trend lines of the size dependence are for guiding the eyes only.

Fig. 4
Fig. 4

Band gap energies of the undoped ZnO and AZO films as a function of the average grain size D (D is determined from the SEM images). The trend lines of the size dependence are for guiding the eyes only.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε(E)= β=A,B,C [ n=1 A 0β d n 3 1 E gβ R β n 2 Ei Γ n,β d ] .
ε(E)= β=A,B,C A 0β c ( E gβ R β ) 4 R β (E+i Γ β c ) 2 ln ( E gβ ) 2 ( E gβ ) 2 (E+i Γ β c ) 2 .

Metrics