Abstract

We propose and demonstrate a pressure sensor based on a micro air bubble at the end facet of a single mode fiber fusion spliced with a silica tube. When immersed into the liquid such as water, the air bubble essentially acts as a Fabry-Pérot interferometer cavity. Such a cavity can be compressed by the environmental pressure and the sensitivity obtained is >1000 nm/kPa, at least one order of magnitude higher than that of the diaphragm-based fiber-tip sensors reported so far. The compressible Fabry-Pérot interferometer cavity developed is expected to have potential applications in highly sensitive pressure and/or acoustic sensing.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “optical in-fibre grating high pressure sensor,” Electron. Lett.29(4), 398–399 (1993).
    [CrossRef]
  2. D. Chen, G. Hu, and L. Chen, “Dual-core photonic crystal fiber for hydrostatic pressure sensing,” IEEE Photon. Technol. Lett.23(24), 1851–1853 (2011).
    [CrossRef]
  3. C. Wu, H. Y. Fu, K. K. Qureshi, B.-O. Guan, and H. Y. Tam, “High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber,” Opt. Lett.36(3), 412–414 (2011).
    [CrossRef] [PubMed]
  4. Z. Liu, M.-L. V. Tse, C. Wu, D. Chen, C. Lu, and H. Y. Tam, “Intermodal coupling of supermodes in a twin-core photonic crystal fiber and its application as a pressure sensor,” Opt. Express20(19), 21749–21757 (2012).
    [CrossRef] [PubMed]
  5. T. W. Kao and H. F. Taylor, “High-sensitivity intrinsic fiber-optic Fabry-Perot pressure sensor,” Opt. Lett.21(8), 615–617 (1996).
    [CrossRef] [PubMed]
  6. S. Avino, J. A. Barnes, G. Gagliardi, X. Gu, D. Gutstein, J. R. Mester, C. Nicholaou, and H.-P. Loock, “Musical instrument pickup based on a laser locked to an optical fiber resonator,” Opt. Express19(25), 25057–25065 (2011).
    [CrossRef] [PubMed]
  7. H. Y. Choi, K. S. Park, S. J. Park, U.-C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett.33(21), 2455–2457 (2008).
    [CrossRef] [PubMed]
  8. G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science330(6007), 1081–1084 (2010).
    [CrossRef] [PubMed]
  9. J. H. Chow, D. E. McClelland, M. B. Gray, and I. C. M. Littler, “Demonstration of a passive subpicostrain fiber strain sensor,” Opt. Lett.30(15), 1923–1925 (2005).
    [CrossRef] [PubMed]
  10. Y. Wang, D. N. Wang, C. R. Liao, T. Hu, J. Guo, and H. Wei, “Temperature-insensitive refractive index sensing by use of micro Fabry-Pérot cavity based on simplified hollow-core photonic crystal fiber,” Opt. Lett.38(3), 269–271 (2013).
    [CrossRef] [PubMed]
  11. A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol.19(10), 1495–1501 (2001).
    [CrossRef]
  12. Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett.17(2), 447–449 (2005).
    [CrossRef]
  13. D. Donlagic and E. Cibula, “All-fiber high-sensitivity pressure sensor with SiO2 diaphragm,” Opt. Lett.30(16), 2071–2073 (2005).
    [CrossRef] [PubMed]
  14. X. Wang, J. Xu, Y. Zhu, K. L. Cooper, and A. Wang, “All-fused-silica miniature optical fiber tip pressure sensor,” Opt. Lett.31(7), 885–887 (2006).
    [CrossRef] [PubMed]
  15. W. Wang, N. Wu, Y. Tian, C. Niezrecki, and X. Wang, “Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm,” Opt. Express18(9), 9006–9014 (2010).
    [CrossRef] [PubMed]
  16. E. Cibula, S. Pevec, B. Lenardič, É. Pinet, and D. Donlagic, “Miniature all-glass robust pressure sensor,” Opt. Express17(7), 5098–5106 (2009).
    [CrossRef] [PubMed]
  17. H. Bae and M. Yu, “Miniature Fabry-Perot pressure sensor created by using UV-molding process with an optical fiber based mold,” Opt. Express20(13), 14573–14583 (2012).
    [CrossRef] [PubMed]
  18. F. Guo, T. Fink, M. Han, L. Koester, J. Turner, and J. Huang, “High-sensitivity, high-frequency extrinsic Fabry-Perot interferometric fiber-tip sensor based on a thin silver diaphragm,” Opt. Lett.37(9), 1505–1507 (2012).
    [CrossRef] [PubMed]
  19. F. Xu, D. Ren, X. Shi, C. Li, W. Lu, L. Lu, L. Lu, and B. Yu, “High-sensitivity Fabry-Perot interferometric pressure sensor based on a nanothick silver diaphragm,” Opt. Lett.37(2), 133–135 (2012).
    [CrossRef] [PubMed]
  20. J. Ma, W. Jin, H. L. Ho, and J. Y. Dai, “High-sensitivity fiber-tip pressure sensor with graphene diaphragm,” Opt. Lett.37(13), 2493–2495 (2012).
    [CrossRef] [PubMed]

2013 (1)

2012 (5)

2011 (3)

2010 (2)

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

W. Wang, N. Wu, Y. Tian, C. Niezrecki, and X. Wang, “Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm,” Opt. Express18(9), 9006–9014 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

2006 (1)

2005 (3)

2001 (1)

1996 (1)

1993 (1)

M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “optical in-fibre grating high pressure sensor,” Electron. Lett.29(4), 398–399 (1993).
[CrossRef]

Avino, S.

Bae, H.

Barnes, J. A.

Chen, D.

Chen, L.

D. Chen, G. Hu, and L. Chen, “Dual-core photonic crystal fiber for hydrostatic pressure sensing,” IEEE Photon. Technol. Lett.23(24), 1851–1853 (2011).
[CrossRef]

Choi, E. S.

Choi, H. Y.

Chow, J. H.

Chow, Y.

M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “optical in-fibre grating high pressure sensor,” Electron. Lett.29(4), 398–399 (1993).
[CrossRef]

Cibula, E.

Cooper, K. L.

Dai, J. Y.

Dakin, J. P.

M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “optical in-fibre grating high pressure sensor,” Electron. Lett.29(4), 398–399 (1993).
[CrossRef]

De Natale, P.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

Donlagic, D.

Ferraro, P.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

Fink, T.

Fu, H. Y.

Gagliardi, G.

Gray, M. B.

Gu, X.

Guan, B.-O.

Guo, F.

Guo, J.

Gutstein, D.

Han, M.

Ho, H. L.

Hu, G.

D. Chen, G. Hu, and L. Chen, “Dual-core photonic crystal fiber for hydrostatic pressure sensing,” IEEE Photon. Technol. Lett.23(24), 1851–1853 (2011).
[CrossRef]

Hu, T.

Huang, J.

Jin, W.

Kao, T. W.

Koester, L.

Lee, B. H.

Lenardic, B.

Li, C.

Liao, C. R.

Littler, I. C. M.

Liu, Z.

Loock, H.-P.

Lu, C.

Lu, L.

Lu, W.

Ma, J.

May, R. G.

McClelland, D. E.

Mester, J. R.

Nicholaou, C.

Niezrecki, C.

Paek, U.-C.

Park, K. S.

Park, S. J.

Pevec, S.

Pinet, É.

Qureshi, K. K.

Reekie, L.

M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “optical in-fibre grating high pressure sensor,” Electron. Lett.29(4), 398–399 (1993).
[CrossRef]

Ren, D.

Salza, M.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

Shi, X.

Tam, H. Y.

Taylor, H. F.

Tian, Y.

Tse, M.-L. V.

Turner, J.

Wang, A.

Wang, D. N.

Wang, J.

Wang, W.

Wang, X.

Wang, Y.

Wang, Z.

Wei, H.

Wu, C.

Wu, N.

Xiao, H.

Xu, F.

Xu, J.

Xu, M.

M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “optical in-fibre grating high pressure sensor,” Electron. Lett.29(4), 398–399 (1993).
[CrossRef]

Yu, B.

Yu, M.

Zhao, W.

Zhu, Y.

Electron. Lett. (1)

M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “optical in-fibre grating high pressure sensor,” Electron. Lett.29(4), 398–399 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

D. Chen, G. Hu, and L. Chen, “Dual-core photonic crystal fiber for hydrostatic pressure sensing,” IEEE Photon. Technol. Lett.23(24), 1851–1853 (2011).
[CrossRef]

Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett.17(2), 447–449 (2005).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (5)

Opt. Lett. (10)

H. Y. Choi, K. S. Park, S. J. Park, U.-C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett.33(21), 2455–2457 (2008).
[CrossRef] [PubMed]

J. H. Chow, D. E. McClelland, M. B. Gray, and I. C. M. Littler, “Demonstration of a passive subpicostrain fiber strain sensor,” Opt. Lett.30(15), 1923–1925 (2005).
[CrossRef] [PubMed]

Y. Wang, D. N. Wang, C. R. Liao, T. Hu, J. Guo, and H. Wei, “Temperature-insensitive refractive index sensing by use of micro Fabry-Pérot cavity based on simplified hollow-core photonic crystal fiber,” Opt. Lett.38(3), 269–271 (2013).
[CrossRef] [PubMed]

T. W. Kao and H. F. Taylor, “High-sensitivity intrinsic fiber-optic Fabry-Perot pressure sensor,” Opt. Lett.21(8), 615–617 (1996).
[CrossRef] [PubMed]

C. Wu, H. Y. Fu, K. K. Qureshi, B.-O. Guan, and H. Y. Tam, “High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber,” Opt. Lett.36(3), 412–414 (2011).
[CrossRef] [PubMed]

F. Guo, T. Fink, M. Han, L. Koester, J. Turner, and J. Huang, “High-sensitivity, high-frequency extrinsic Fabry-Perot interferometric fiber-tip sensor based on a thin silver diaphragm,” Opt. Lett.37(9), 1505–1507 (2012).
[CrossRef] [PubMed]

F. Xu, D. Ren, X. Shi, C. Li, W. Lu, L. Lu, L. Lu, and B. Yu, “High-sensitivity Fabry-Perot interferometric pressure sensor based on a nanothick silver diaphragm,” Opt. Lett.37(2), 133–135 (2012).
[CrossRef] [PubMed]

J. Ma, W. Jin, H. L. Ho, and J. Y. Dai, “High-sensitivity fiber-tip pressure sensor with graphene diaphragm,” Opt. Lett.37(13), 2493–2495 (2012).
[CrossRef] [PubMed]

D. Donlagic and E. Cibula, “All-fiber high-sensitivity pressure sensor with SiO2 diaphragm,” Opt. Lett.30(16), 2071–2073 (2005).
[CrossRef] [PubMed]

X. Wang, J. Xu, Y. Zhu, K. L. Cooper, and A. Wang, “All-fused-silica miniature optical fiber tip pressure sensor,” Opt. Lett.31(7), 885–887 (2006).
[CrossRef] [PubMed]

Science (1)

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram and (b) microscopic image of the compressible micro FP cavity. The lengths of the silica tube and air cavity in (b) are 114 and ~90 μm, respectively.

Fig. 2
Fig. 2

Reflection spectra of the compressible FP cavities with different initial cavity lengths at normal pressure.

Fig. 3
Fig. 3

(a) Reflection spectra and (b) cavity length and FSR of a compressible FP cavity with L 0 =411 μm under different pressures. The spectra are offset with 2 dB in (a).

Fig. 4
Fig. 4

Dip wavelength shift with pressure change for an air cavity with L 0 = 113.3 μm. The labeled values show the pressure sensitivity in nm/kPa obtained by linear fitting.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

PV = nRT
dL dP = P 0 L 0 P 2
d( FSR ) dP = λ 2 2 P 0 L 0
dλ dP = λ P
dL dT = P 0 L 0 P T 0
S TP = P T 0

Metrics