Abstract

An in-line chemical gas sensor was proposed and experimentally demonstrated using a new C-type fiber and a Ge-doped ring defect photonic crystal fiber (PCF). The C-type fiber segment served as a compact gas inlet/outlet directly spliced to PCF, which overcame previous limitations in packaging and dynamic responses. C-type fiber was prepared by optimizing drawing process for a silica tube with an open slot. Splicing conditions for SMF/C-type fiber and PCF/C-type fiber were experimentally established to provide an all-fiber sensor unit. To enhance the sensitivity and light coupling efficiency we used a special PCF with Ge-doped ring defect to further enhance the sensitivity and gas flow rate. Sensing capability of the proposed sensor was investigated experimentally by detecting acetylene absorption lines.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Kim, H. K. Kim, U. C. Paek, B. H. Lee, and J.-B. Eom, “The Fabrication of a Photonic Crystal Fiber and Measurement of its Properties,” J. Opt. Soc. Korea7(2), 79–83 (2003).
    [CrossRef]
  2. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol.12(7), 854–858 (2001).
    [CrossRef]
  3. V. P. Minkovich, D. Monzón-Hernández, J. Villatoro, and G. Badenes, “Microstructured optical fiber coated with thin films for gas and chemical sensing,” Opt. Express14(18), 8413–8418 (2006).
    [CrossRef] [PubMed]
  4. V. Matejec, J. Mrázek, M. Hayer, I. Kašík, P. Peterka, J. Kaňka, P. Honzátko, and D. Berková, “Microstructure fibers for gas detection,” Mater. Sci. Eng. C26(2–3), 317–321 (2006).
    [CrossRef]
  5. T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett.35(14), 1188–1189 (1999).
    [CrossRef]
  6. J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol.15(6), 1120–1128 (2004).
    [CrossRef]
  7. T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-Guiding Photonic Bandgap Fibers: Spectral Properties, Macrobending Loss, and practical handling,” J. Lightwave Technol.22(1), 11–15 (2004).
    [CrossRef]
  8. I. Dicaire, J. C. Beugnot, and L. Thévenaz, “Analytical modeling of the gas-filling dynamics in photonic crystal fibers,” Appl. Opt.49(24), 4604–4609 (2010).
    [CrossRef] [PubMed]
  9. K. Nielsen, D. Noordegraaf, and T. Sørense, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt.7(13), 1464–4258 (2005).
  10. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express12(17), 4080–4087 (2004).
    [CrossRef] [PubMed]
  11. Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt.42(18), 3509–3515 (2003).
    [CrossRef] [PubMed]
  12. C. J. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, “Photonic band-gap fiber gas cell fabricated using femtosecond micromachining,” Opt. Express15(11), 6690–6695 (2007).
    [CrossRef] [PubMed]
  13. F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, “Opening up optical fibres,” Opt. Express15(19), 11843–11848 (2007).
    [CrossRef] [PubMed]
  14. C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, “Microstructured-core optical fibre for evanescent sensing applications,” Opt. Express14(26), 13056–13066 (2006).
    [CrossRef] [PubMed]
  15. Z. Zhi-guo, Z. Fang-di, Z. Min, and Y. Pei-da, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol.40(1), 167–174 (2008).
    [CrossRef]
  16. J. Park, S. Lee, S. Kim, and K. Oh, “Enhancement of chemical sensing capability in a photonic crystal fiber with a hollow high index ring defect at the center,” Opt. Express19(3), 1921–1929 (2011).
    [CrossRef] [PubMed]
  17. L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C. L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol.25(11), 3563–3574 (2007).
    [CrossRef]
  18. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,” J. Quantum Electron.38(7), 927–933 (2002).
    [CrossRef]
  19. K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology, 4 (Kluwer Academic, 1999), Chapter 2.
  20. W. C. Swann and S. L. Gilbert, “Pressure-induced shift and broadening of 1510–1540-nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B17(7), 1263–1270 (2000).
    [CrossRef]
  21. S. L. Gilbert, W. C. Swann, Acetylene 12C2H2 absorption reference for 1510 nm to 1540 nm wavelength (NIST special publication, 2001).

2011 (1)

2010 (1)

2008 (1)

Z. Zhi-guo, Z. Fang-di, Z. Min, and Y. Pei-da, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol.40(1), 167–174 (2008).
[CrossRef]

2007 (3)

2006 (3)

2005 (1)

K. Nielsen, D. Noordegraaf, and T. Sørense, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt.7(13), 1464–4258 (2005).

2004 (3)

2003 (2)

2002 (1)

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,” J. Quantum Electron.38(7), 927–933 (2002).
[CrossRef]

2001 (1)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol.12(7), 854–858 (2001).
[CrossRef]

2000 (1)

1999 (1)

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett.35(14), 1188–1189 (1999).
[CrossRef]

Badenes, G.

Baggett, J. C.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol.12(7), 854–858 (2001).
[CrossRef]

Barretto, E. C. S.

Belardi, W.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol.12(7), 854–858 (2001).
[CrossRef]

Bennett, P. J.

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett.35(14), 1188–1189 (1999).
[CrossRef]

Berková, D.

V. Matejec, J. Mrázek, M. Hayer, I. Kašík, P. Peterka, J. Kaňka, P. Honzátko, and D. Berková, “Microstructure fibers for gas detection,” Mater. Sci. Eng. C26(2–3), 317–321 (2006).
[CrossRef]

Beugnot, J. C.

Bjarklev, A.

Brito Cruz, C. H.

Broaddus, D. H.

Broderick, N. G. R.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol.12(7), 854–858 (2001).
[CrossRef]

Broeng, J.

Chesini, G.

Cordeiro, C. M. B.

Cox, F. M.

Demokan, M. S.

Dicaire, I.

Eom, J.-B.

Fang-di, Z.

Z. Zhi-guo, Z. Fang-di, Z. Min, and Y. Pei-da, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol.40(1), 167–174 (2008).
[CrossRef]

Fini, J. M.

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol.15(6), 1120–1128 (2004).
[CrossRef]

Folkenberg, J. R.

Franco, M. A. R.

Furusawa, K.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol.12(7), 854–858 (2001).
[CrossRef]

Gaeta, A. L.

Gilbert, S. L.

Hansen, T.

Hansen, T. P.

Hayer, M.

V. Matejec, J. Mrázek, M. Hayer, I. Kašík, P. Peterka, J. Kaňka, P. Honzátko, and D. Berková, “Microstructure fibers for gas detection,” Mater. Sci. Eng. C26(2–3), 317–321 (2006).
[CrossRef]

Hensley, C. J.

Ho, H. L.

Honzátko, P.

V. Matejec, J. Mrázek, M. Hayer, I. Kašík, P. Peterka, J. Kaňka, P. Honzátko, and D. Berková, “Microstructure fibers for gas detection,” Mater. Sci. Eng. C26(2–3), 317–321 (2006).
[CrossRef]

Hoo, Y. L.

Jakobsen, C.

Jin, W.

Kanka, J.

V. Matejec, J. Mrázek, M. Hayer, I. Kašík, P. Peterka, J. Kaňka, P. Honzátko, and D. Berková, “Microstructure fibers for gas detection,” Mater. Sci. Eng. C26(2–3), 317–321 (2006).
[CrossRef]

Kašík, I.

V. Matejec, J. Mrázek, M. Hayer, I. Kašík, P. Peterka, J. Kaňka, P. Honzátko, and D. Berková, “Microstructure fibers for gas detection,” Mater. Sci. Eng. C26(2–3), 317–321 (2006).
[CrossRef]

Kim, H. K.

Kim, J. C.

Kim, S.

Koshiba, M.

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,” J. Quantum Electron.38(7), 927–933 (2002).
[CrossRef]

Large, M. C. J.

Lee, B. H.

Lee, S.

Ludvigsen, H.

Lwin, R.

Matejec, V.

V. Matejec, J. Mrázek, M. Hayer, I. Kašík, P. Peterka, J. Kaňka, P. Honzátko, and D. Berková, “Microstructure fibers for gas detection,” Mater. Sci. Eng. C26(2–3), 317–321 (2006).
[CrossRef]

Min, Z.

Z. Zhi-guo, Z. Fang-di, Z. Min, and Y. Pei-da, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol.40(1), 167–174 (2008).
[CrossRef]

Minkovich, V. P.

Monro, T. M.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol.12(7), 854–858 (2001).
[CrossRef]

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett.35(14), 1188–1189 (1999).
[CrossRef]

Monzón-Hernández, D.

Mrázek, J.

V. Matejec, J. Mrázek, M. Hayer, I. Kašík, P. Peterka, J. Kaňka, P. Honzátko, and D. Berková, “Microstructure fibers for gas detection,” Mater. Sci. Eng. C26(2–3), 317–321 (2006).
[CrossRef]

Nielsen, K.

K. Nielsen, D. Noordegraaf, and T. Sørense, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt.7(13), 1464–4258 (2005).

Nielsen, M. D.

Noordegraaf, D.

K. Nielsen, D. Noordegraaf, and T. Sørense, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt.7(13), 1464–4258 (2005).

Oh, K.

Paek, U. C.

Park, J.

Pei-da, Y.

Z. Zhi-guo, Z. Fang-di, Z. Min, and Y. Pei-da, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol.40(1), 167–174 (2008).
[CrossRef]

Peterka, P.

V. Matejec, J. Mrázek, M. Hayer, I. Kašík, P. Peterka, J. Kaňka, P. Honzátko, and D. Berková, “Microstructure fibers for gas detection,” Mater. Sci. Eng. C26(2–3), 317–321 (2006).
[CrossRef]

Petersen, J.

Richardson, D. J.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol.12(7), 854–858 (2001).
[CrossRef]

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett.35(14), 1188–1189 (1999).
[CrossRef]

Ritari, T.

Ruan, S. C.

Saitoh, K.

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,” J. Quantum Electron.38(7), 927–933 (2002).
[CrossRef]

Schaffer, C. B.

Shi, C.

Simonsen, H.

Simonsen, H. R.

Skovgaard, P. M. W.

Sørense, T.

K. Nielsen, D. Noordegraaf, and T. Sørense, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt.7(13), 1464–4258 (2005).

Sørensen, T.

Swann, W. C.

Thévenaz, L.

Tuominen, J.

Vienne, G.

Villatoro, J.

Wang, D. N.

Wang, Y.

Xiao, L.

Zhao, C. L.

Zhi-guo, Z.

Z. Zhi-guo, Z. Fang-di, Z. Min, and Y. Pei-da, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol.40(1), 167–174 (2008).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (1)

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett.35(14), 1188–1189 (1999).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. A, Pure Appl. Opt. (1)

K. Nielsen, D. Noordegraaf, and T. Sørense, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt.7(13), 1464–4258 (2005).

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Korea (1)

J. Quantum Electron. (1)

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,” J. Quantum Electron.38(7), 927–933 (2002).
[CrossRef]

Mater. Sci. Eng. C (1)

V. Matejec, J. Mrázek, M. Hayer, I. Kašík, P. Peterka, J. Kaňka, P. Honzátko, and D. Berková, “Microstructure fibers for gas detection,” Mater. Sci. Eng. C26(2–3), 317–321 (2006).
[CrossRef]

Meas. Sci. Technol. (2)

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol.15(6), 1120–1128 (2004).
[CrossRef]

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol.12(7), 854–858 (2001).
[CrossRef]

Opt. Express (6)

Opt. Laser Technol. (1)

Z. Zhi-guo, Z. Fang-di, Z. Min, and Y. Pei-da, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol.40(1), 167–174 (2008).
[CrossRef]

Other (2)

K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology, 4 (Kluwer Academic, 1999), Chapter 2.

S. L. Gilbert, W. C. Swann, Acetylene 12C2H2 absorption reference for 1510 nm to 1540 nm wavelength (NIST special publication, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic diagram of the proposed gas sensor device including single mode fibers (SMF) connected to the light source and the detector, photonic crystal fiber (PCF) as a sensing medium, and C-type fibers as inlet/outlet components. (b) Fabrication process of the C-type fiber. (c) Cross section of the C-type fiber. Material: fused silica, D = 125µm, dhole = 36.5µm and open angle θ = 65°.(d) Cross section of the PCF used in experiment

Fig. 2
Fig. 2

Effect of C-type length on optical transmission compared with the free space guiding.

Fig. 3
Fig. 3

Fabrication of the composite sensor unit by using a single mode fiber (SMF) spliced to the C-type fiber (CF) and then spliced to the photonic crystal fiber (PCF) on one side.

Fig. 4
Fig. 4

(a) Conventional PCF, (b) proposed PCF with a hollow high index ring defect, (c) sensitivity calculation of proposed PCF. The core holes and cladding holes are dcore = 3.4 μm, and dcladding = 4.6 μm, respectively. The ratio of dcladding/ Λ and dcore/ Λ are 0.64 and 0.52, where Λ is pitch size.

Fig. 5
Fig. 5

Experimental set up for investigating sensing capability of the proposed fiber optic sensor unit. A tunable optical filter (TOF) was used to narrow the light bandwidth before coupling light into the fiber. The transmission spectrum was monitored using an optical spectrum analyzer (OSA)

Fig. 6
Fig. 6

Optical transmission through the fabricated gas sensor. Background spectrum and spectrum in presence of acetylene gas in the 25-cm long PCF.

Fig. 7
Fig. 7

P9, P10 and P11 absorption lines for mixture of acetylene and nitrogen gases

Fig. 8
Fig. 8

Transmission near the P9 absorption line for different concentrations of the acetylene gas while keeping the total pressure at 1 atm.

Fig. 9
Fig. 9

(a) Dynamic response of the fabricated sensor device for different concentrations of the acetylene gas while keeping the total pressure at 1 atm with adding nitrogen gas (b) Dynamic response of the fabricated sensor in different pressures; gas injection to the chamber stopped at 10, 100, 400 and 760 Torr.

Fig. 10
Fig. 10

(a) Proposed PCF with a hollow high index ring defect, (b) its enlarged view with structural parameters: core hole diameter dc, ring width wring, and the relative index difference of the ring Δ ring. The cladding air holes are characterized by their diameter, dcladding, and pitch, Λ .

Tables (1)

Tables Icon

Table1 Optimized parameters of splicing different fibers

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f= sample Re( E x H y * E y H x * ) / total Re( E x H y * E y H x * ) dxdy

Metrics