Abstract

Silicon nitride is demonstrated as a high performance and cost-effective solution for dense integrated photonic circuits in the visible spectrum. Experimental results for nanophotonic waveguides fabricated in a standard CMOS pilot line with losses below 0.71dB/cm in an aqueous environment and 0.51dB/cm with silicon dioxide cladding are reported. Design and characterization of waveguide bends, grating couplers and multimode interference couplers (MMI) at a wavelength of 660 nm are presented. The index contrast of this technology enables high integration densities with insertion losses below 0.05 dB per 90° bend for radii as small as 35 µm. By a proper design of the buried oxide layer thickness, grating couplers with efficiencies above 38% for the TE polarization have been obtained.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Masini, G. Capellini, J. Witzens, and C. Gunn, “High-speed, monolithic CMOS receivers at 1550 nm with Ge on Si waveguide photodetectors,” Proc. 20th Lasers and Electro-Optics Soc.(LEOS), 848-849 (2007).
  2. D. Feng, B. J. Luff, and M. Asghari, “Recent advances in manufactured silicon photonics integrated circuits,” Proc. SPIE8265, 826507, 826507-9 (2012).
    [CrossRef]
  3. N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, and L. Pavesi, “Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line,” J. Lightwave Technol.22(7), 1734–1740 (2004).
    [CrossRef]
  4. A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties,” Opt. Express16(18), 13509–13516 (2008).
    [CrossRef] [PubMed]
  5. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express17(14), 11366–11370 (2009).
    [CrossRef] [PubMed]
  6. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
    [CrossRef]
  7. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
    [CrossRef]
  8. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
    [CrossRef]
  9. J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
    [CrossRef]
  10. R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett.37(10), 1685–1687 (2012).
    [CrossRef] [PubMed]
  11. I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett.97(8), 081108 (2010).
    [CrossRef]
  12. G. Voirin, D. Gehringer, O. M. Parriaux, and B. A. Usievich, “Si3N4/SiO2/Si waveguide grating for fluorescent biosensors,” Proc. SPIE3620, 109–116 (1999).
    [CrossRef]
  13. H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip12(19), 3803–3809 (2012).
    [CrossRef] [PubMed]
  14. J. Witzens and M. Hochberg, “Optical detection of target molecule induced aggregation of nanoparticles by means of high-Q resonators,” Opt. Express19(8), 7034–7061 (2011).
    [CrossRef] [PubMed]
  15. C. R. Doerr, L. Cheng, Y. K. Chen, and L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett.22(19), 1461 (2010).
    [CrossRef]
  16. G. Maire, L. Vivien, G. Sattler, A. Kaźmierczak, B. Sanchez, K. B. Gylfason, A. Griol, D. Marris-Morini, E. Cassan, D. Giannone, H. Sohlström, and D. Hill, “High efficiency silicon nitride surface grating couplers,” Opt. Express16(1), 328–333 (2008).
    [CrossRef] [PubMed]
  17. A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett.24(19), 1700–1703 (2012).
    [CrossRef]
  18. J. Witzens, A. Scherer, G. Pickrell, D. Louderback, and P. Guilfoyle, “Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides,” Appl. Phys. Lett.86(10), 101105 (2005).
    [CrossRef]
  19. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers,” Opt. Lett.32(11), 1495–1497 (2007).
    [CrossRef] [PubMed]
  20. T. Tamir and S. T. Peng, “Analysis and Design of Grating Couplers,” Appl. Phys. (Berl.)14(3), 235–254 (1977).
    [CrossRef]
  21. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform,” Opt. Express18(17), 18278–18283 (2010).
    [CrossRef] [PubMed]
  22. C. Alonso-Ramos, A. Ortega-Moñux, I. Molina-Fernández, P. Cheben, L. Zavargo-Peche, and R. Halir, “Efficient fiber-to-chip grating coupler for micrometric SOI rib waveguides,” Opt. Express18(14), 15189–15200 (2010).
    [CrossRef] [PubMed]
  23. F. V. Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. V. Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol.25(1), 151–156 (2007).
    [CrossRef]
  24. W. Sfar Zaoui, M. Félix Rosa, W. Vogel, M. Berroth, J. Butschke, and F. Letzkus, “High-Efficient CMOS-compatible grating couplers with backside metal mirror,” Europ. Conf. Opt. Comm. (ECOC), Amsterdam, Netherlands, Sept. 16-20 (2012).
  25. R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and Í. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett.35(19), 3243–3245 (2010).
    [CrossRef] [PubMed]
  26. P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12(6), 1004–1009 (1994).
    [CrossRef]

2012 (4)

D. Feng, B. J. Luff, and M. Asghari, “Recent advances in manufactured silicon photonics integrated circuits,” Proc. SPIE8265, 826507, 826507-9 (2012).
[CrossRef]

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip12(19), 3803–3809 (2012).
[CrossRef] [PubMed]

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett.24(19), 1700–1703 (2012).
[CrossRef]

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett.37(10), 1685–1687 (2012).
[CrossRef] [PubMed]

2011 (2)

J. Witzens and M. Hochberg, “Optical detection of target molecule induced aggregation of nanoparticles by means of high-Q resonators,” Opt. Express19(8), 7034–7061 (2011).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

2010 (7)

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett.97(8), 081108 (2010).
[CrossRef]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
[CrossRef]

C. R. Doerr, L. Cheng, Y. K. Chen, and L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett.22(19), 1461 (2010).
[CrossRef]

C. Alonso-Ramos, A. Ortega-Moñux, I. Molina-Fernández, P. Cheben, L. Zavargo-Peche, and R. Halir, “Efficient fiber-to-chip grating coupler for micrometric SOI rib waveguides,” Opt. Express18(14), 15189–15200 (2010).
[CrossRef] [PubMed]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform,” Opt. Express18(17), 18278–18283 (2010).
[CrossRef] [PubMed]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and Í. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett.35(19), 3243–3245 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (2)

2007 (2)

2005 (1)

J. Witzens, A. Scherer, G. Pickrell, D. Louderback, and P. Guilfoyle, “Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides,” Appl. Phys. Lett.86(10), 101105 (2005).
[CrossRef]

2004 (1)

1999 (1)

G. Voirin, D. Gehringer, O. M. Parriaux, and B. A. Usievich, “Si3N4/SiO2/Si waveguide grating for fluorescent biosensors,” Proc. SPIE3620, 109–116 (1999).
[CrossRef]

1994 (1)

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12(6), 1004–1009 (1994).
[CrossRef]

1977 (1)

T. Tamir and S. T. Peng, “Analysis and Design of Grating Couplers,” Appl. Phys. (Berl.)14(3), 235–254 (1977).
[CrossRef]

Absil, P.

Aimez, V.

Alonso-Ramos, C.

Asghari, M.

D. Feng, B. J. Luff, and M. Asghari, “Recent advances in manufactured silicon photonics integrated circuits,” Proc. SPIE8265, 826507, 826507-9 (2012).
[CrossRef]

Ayre, M.

Bach, F.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
[CrossRef]

Bachmann, M.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12(6), 1004–1009 (1994).
[CrossRef]

Baets, R.

Bedard, D.

Bellutti, P.

Besse, P. A.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12(6), 1004–1009 (1994).
[CrossRef]

Bogaerts, W.

Buhl, L.

C. R. Doerr, L. Cheng, Y. K. Chen, and L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett.22(19), 1461 (2010).
[CrossRef]

Cai, H.

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip12(19), 3803–3809 (2012).
[CrossRef] [PubMed]

Cassan, E.

Charette, P.

Cheben, P.

Chen, L.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

Chen, Y. K.

C. R. Doerr, L. Cheng, Y. K. Chen, and L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett.22(19), 1461 (2010).
[CrossRef]

Cheng, L.

C. R. Doerr, L. Cheng, Y. K. Chen, and L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett.22(19), 1461 (2010).
[CrossRef]

Chu, S.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
[CrossRef]

Crivellari, M.

Daldosso, N.

Densmore, A.

Desiatov, B.

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett.97(8), 081108 (2010).
[CrossRef]

Dhakal, A.

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett.24(19), 1700–1703 (2012).
[CrossRef]

Doerr, C. R.

C. R. Doerr, L. Cheng, Y. K. Chen, and L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett.22(19), 1461 (2010).
[CrossRef]

Duchesne, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
[CrossRef]

Feng, D.

D. Feng, B. J. Luff, and M. Asghari, “Recent advances in manufactured silicon photonics integrated circuits,” Proc. SPIE8265, 826507, 826507-9 (2012).
[CrossRef]

Ferdous, F.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

Ferrera, M.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
[CrossRef]

Foster, M. A.

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett.37(10), 1685–1687 (2012).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

Freude, W.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
[CrossRef]

Gaeta, A. L.

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett.37(10), 1685–1687 (2012).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

Gehringer, D.

G. Voirin, D. Gehringer, O. M. Parriaux, and B. A. Usievich, “Si3N4/SiO2/Si waveguide grating for fluorescent biosensors,” Proc. SPIE3620, 109–116 (1999).
[CrossRef]

Giannone, D.

Girardini, M.

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express17(14), 11366–11370 (2009).
[CrossRef] [PubMed]

Gorin, A.

Goykhman, I.

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett.97(8), 081108 (2010).
[CrossRef]

Griol, A.

Grondin, E.

Guilfoyle, P.

J. Witzens, A. Scherer, G. Pickrell, D. Louderback, and P. Guilfoyle, “Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides,” Appl. Phys. Lett.86(10), 101105 (2005).
[CrossRef]

Gylfason, K. B.

Halir, R.

Hartinger, K.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
[CrossRef]

Hill, D.

Hillerkuss, D.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
[CrossRef]

Hochberg, M.

Holtzwarth, R.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
[CrossRef]

Janz, S.

Jaouad, A.

Jordan, M.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
[CrossRef]

Kazmierczak, A.

Kippenberg, T. J.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
[CrossRef]

Komorowska, K.

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett.24(19), 1700–1703 (2012).
[CrossRef]

Koos, C.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
[CrossRef]

Krauss, T. F.

Laere, F. V.

Lapointe, J.

Leaird, D. E.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

Lepage, G.

Leuthold, J.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
[CrossRef]

Levy, J. S.

Levy, U.

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett.97(8), 081108 (2010).
[CrossRef]

Lipson, M.

Little, B. E.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
[CrossRef]

Louderback, D.

J. Witzens, A. Scherer, G. Pickrell, D. Louderback, and P. Guilfoyle, “Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides,” Appl. Phys. Lett.86(10), 101105 (2005).
[CrossRef]

Luff, B. J.

D. Feng, B. J. Luff, and M. Asghari, “Recent advances in manufactured silicon photonics integrated circuits,” Proc. SPIE8265, 826507, 826507-9 (2012).
[CrossRef]

Lui, A.

Ma, R.

Maire, G.

Marris-Morini, D.

Melchior, H.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12(6), 1004–1009 (1994).
[CrossRef]

Melchiorri, M.

Miao, H.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

Molina-Fernández, I.

Molina-Fernández, Í.

Morandotti, R.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
[CrossRef]

Moss, D. J.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
[CrossRef]

Okawachi, Y.

Ortega-Moñux, A.

Parriaux, O. M.

G. Voirin, D. Gehringer, O. M. Parriaux, and B. A. Usievich, “Si3N4/SiO2/Si waveguide grating for fluorescent biosensors,” Proc. SPIE3620, 109–116 (1999).
[CrossRef]

Pavesi, L.

Peng, S. T.

T. Tamir and S. T. Peng, “Analysis and Design of Grating Couplers,” Appl. Phys. (Berl.)14(3), 235–254 (1977).
[CrossRef]

Pfeifle, J.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
[CrossRef]

Pickrell, G.

J. Witzens, A. Scherer, G. Pickrell, D. Louderback, and P. Guilfoyle, “Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides,” Appl. Phys. Lett.86(10), 101105 (2005).
[CrossRef]

Poon, A. W.

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip12(19), 3803–3809 (2012).
[CrossRef] [PubMed]

Pucker, G.

Razzari, L.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
[CrossRef]

Riboli, F.

Riemensberger, J.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
[CrossRef]

Roelkens, G.

Sanchez, B.

Sattler, G.

Scherer, A.

J. Witzens, A. Scherer, G. Pickrell, D. Louderback, and P. Guilfoyle, “Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides,” Appl. Phys. Lett.86(10), 101105 (2005).
[CrossRef]

Schmid, J. H.

Schrauwen, J.

Selvaraja, S.

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett.24(19), 1700–1703 (2012).
[CrossRef]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform,” Opt. Express18(17), 18278–18283 (2010).
[CrossRef] [PubMed]

Smit, M. K.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12(6), 1004–1009 (1994).
[CrossRef]

Sohlström, H.

Soldano, L. B.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12(6), 1004–1009 (1994).
[CrossRef]

Srinivasan, K.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

Subramanian, A. Z.

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett.24(19), 1700–1703 (2012).
[CrossRef]

Taillaert, D.

Tamir, T.

T. Tamir and S. T. Peng, “Analysis and Design of Grating Couplers,” Appl. Phys. (Berl.)14(3), 235–254 (1977).
[CrossRef]

Thourhout, D. V.

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

Usievich, B. A.

G. Voirin, D. Gehringer, O. M. Parriaux, and B. A. Usievich, “Si3N4/SiO2/Si waveguide grating for fluorescent biosensors,” Proc. SPIE3620, 109–116 (1999).
[CrossRef]

Van Thourhout, D.

Varghese, L. T.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

Verheyen, P.

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett.24(19), 1700–1703 (2012).
[CrossRef]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform,” Opt. Express18(17), 18278–18283 (2010).
[CrossRef] [PubMed]

Vermeulen, D.

Vivien, L.

Voirin, G.

G. Voirin, D. Gehringer, O. M. Parriaux, and B. A. Usievich, “Si3N4/SiO2/Si waveguide grating for fluorescent biosensors,” Proc. SPIE3620, 109–116 (1999).
[CrossRef]

Wang, J.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

Weimann, C.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
[CrossRef]

Weiner, A. M.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

Witzens, J.

J. Witzens and M. Hochberg, “Optical detection of target molecule induced aggregation of nanoparticles by means of high-Q resonators,” Opt. Express19(8), 7034–7061 (2011).
[CrossRef] [PubMed]

J. Witzens, A. Scherer, G. Pickrell, D. Louderback, and P. Guilfoyle, “Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides,” Appl. Phys. Lett.86(10), 101105 (2005).
[CrossRef]

Xu, D.-X.

Zavargo-Peche, L.

Appl. Phys. (Berl.) (1)

T. Tamir and S. T. Peng, “Analysis and Design of Grating Couplers,” Appl. Phys. (Berl.)14(3), 235–254 (1977).
[CrossRef]

Appl. Phys. Lett. (2)

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett.97(8), 081108 (2010).
[CrossRef]

J. Witzens, A. Scherer, G. Pickrell, D. Louderback, and P. Guilfoyle, “Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides,” Appl. Phys. Lett.86(10), 101105 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

C. R. Doerr, L. Cheng, Y. K. Chen, and L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett.22(19), 1461 (2010).
[CrossRef]

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett.24(19), 1700–1703 (2012).
[CrossRef]

J. Lightwave Technol. (3)

Lab Chip (1)

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip12(19), 3803–3809 (2012).
[CrossRef] [PubMed]

Nat. Photonics (3)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
[CrossRef]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Proc. SPIE (2)

G. Voirin, D. Gehringer, O. M. Parriaux, and B. A. Usievich, “Si3N4/SiO2/Si waveguide grating for fluorescent biosensors,” Proc. SPIE3620, 109–116 (1999).
[CrossRef]

D. Feng, B. J. Luff, and M. Asghari, “Recent advances in manufactured silicon photonics integrated circuits,” Proc. SPIE8265, 826507, 826507-9 (2012).
[CrossRef]

Other (3)

G. Masini, G. Capellini, J. Witzens, and C. Gunn, “High-speed, monolithic CMOS receivers at 1550 nm with Ge on Si waveguide photodetectors,” Proc. 20th Lasers and Electro-Optics Soc.(LEOS), 848-849 (2007).

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
[CrossRef]

W. Sfar Zaoui, M. Félix Rosa, W. Vogel, M. Berroth, J. Butschke, and F. Letzkus, “High-Efficient CMOS-compatible grating couplers with backside metal mirror,” Europ. Conf. Opt. Comm. (ECOC), Amsterdam, Netherlands, Sept. 16-20 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Power contained in the top H2O cladding as a function of the waveguide thickness for a width of 700 nm and a wavelength of 660 nm.

Fig. 2
Fig. 2

2D schematic side view of the grating coupler.

Fig. 3
Fig. 3

Simulation results for decay length (a) and directionality (b) as a function of the bottom and top SiO2 layer thicknesses. (c) Grating coupling efficiency for a Gaussian input with FWHM = 11.5 µm. (d) Diffraction angle and grating coupler efficiency for different wavelengths.

Fig. 4
Fig. 4

Anti-correlation between decay length and directionality as a function of the bottom SiO2 thickness (left). Correlation between decay length and directionality as a function of the top SiO2 thickness (right)

Fig. 5
Fig. 5

Layout of the 1x4 multimode interference coupler

Fig. 6
Fig. 6

Bend loss as a function of the number of bends for different curvature radii. Grating coupler insertion loss obtained from a reference loop has been subtracted.

Fig. 7
Fig. 7

a) Dark field image of the fabricated gratings loop. b) Power at the output grating normalized to the input power as a function of the incident angle (relative to the optimum coupling angle).

Fig. 8
Fig. 8

(a) CCD camera image of the diffracted power at the output grating coupler (left) and reflected power at the input grating coupler (right), b) Power distribution along the x axis (z = 0) and c) along the z axis (propagation direction, x = 0).

Fig. 9
Fig. 9

(a) Fluorescence image of light propagating inside an MMI. Water with fluorescent dies was used as a top cladding. (b) Measurement results of efficiency and imbalance.

Tables (3)

Tables Icon

Table 1 Spatial (Δx) and angular (Δθ) alignment tolerances for gratings with different decay lengths

Tables Icon

Table 2 Efficiency and Imbalance for maximum expected fabrication deviations

Tables Icon

Table 3 Propagation loss (dB/cm) for SiO2 clad and H2O clad waveguides with different width

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n eff λ 1 Λ = n c λ sin( θ c )
ρ= η ov η dir
η ov = | 1 2 ( E × H gauss * + E gauss * × H )d S | 2
Efficiency=( P 1 + P 2 + P 3 + P 4 )/ P in
Imbalance=(Max( P 1 , P 2 , P 3 , P 4 )Min( P 1 , P 2 , P 3 , P 4 ))/mean( P 1 , P 2 , P 3 , P 4 )

Metrics