Abstract

A multiple thin metal-film subwavelength grating is proposed for polarizers in the infrared wavelength region of 10–20 μm. The dependence of the transmission characteristics of the polarizers on structural parameters was obtained numerically, and the potential for high performance was confirmed experimentally. The measured TE-wave losses in a polarizer comprising a triangular triple Al-film grating are more than 45 and 35 dB for the wavelength ranges of 10–16 and 16–20 μm, respectively, while the net TM-wave losses are lower than 1.5 dB in the wavelength rage of 15–20 μm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Bennett, “Polarizers,” in Handbook of Optics, Volume II, Chapter 3, M. Bass, ed. (McGraw-Hill, 1995).
  2. S. D. Stookey and R. J. Araujo, “Selective polarization of light due to absorption by small elongated silver particles in glass,” Appl. Opt.7(5), 777–779 (1968).
    [CrossRef] [PubMed]
  3. in catalogue of CODIXX Corp., http://www.codixx.de/cms/polarizers/codixx.html .
  4. K. Baba, K. Yamaki, and M. Miyagi, “Optical characteristics of stretched silver island multilayers for submicrometer-thick optical polarizing films,” Appl. Opt.38(12), 2564–2569 (1999).
    [CrossRef] [PubMed]
  5. S. Kawakami, “Light propagation along periodic metal-dielectric layers,” Appl. Opt.22(16), 2426–2428 (1983).
    [CrossRef] [PubMed]
  6. K. Shiraishi, H. Hatakeyama, H. Matsumoto, and K. Matsumura, “Laminated polarizers exhibiting high performance over a wide range of wavelength,” J. Lightwave Technol.15(6), 1042–1050 (1997).
    [CrossRef]
  7. A. E. Cosley, K. H. Hursey, G. F. Neill, and J. M. Ward, “Free-standing fine-wire grids: Their manufacture, performance, and use at millimeter and submillimeter wavelengths,” J. Opt. Soc. Am.67(7), 979–981 (1977).
    [CrossRef]
  8. J. B. Young, H. A. Graham, and E. W. Peterson, “Wire grid infrared polarizer,” Appl. Opt.4(4), 1023–1026 (1965).
    [CrossRef]
  9. M. Hass and M. O’Hara, “Sheet infrared transmission polarizers,” Appl. Opt.4(8), 1027–1031 (1965).
    [CrossRef]
  10. J. P. Auton, “Infrared transmission polarizers by photolithography,” Appl. Opt.6(6), 1023–1027 (1967).
    [CrossRef] [PubMed]
  11. J. J. Wang, W. Zhang, X. Deng, J. Deng, F. Liu, P. Sciortino, and L. Chen, “High-performance nanowire-grid polarizers,” Opt. Lett.30(2), 195–197 (2005).
    [CrossRef] [PubMed]
  12. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A16(5), 1168–1174 (1999).
    [CrossRef]
  13. A. A. Cruz-Cabrera, S. A. Kemme, J. R. Wendt, R. R. Boye, T. R. Carter, and S. Samora, “Fabrication and testing of finite aperture polarizers for determination of edge termination effects on polarimetric imaging applications at midwave infrared,” J. Micro/Nanolith. MEMS MOEMS7(1), 013013 (2008).
  14. I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers with micrometer-pitch Al gratings,” Opt. Lett.34(3), 274–276 (2009).
    [CrossRef] [PubMed]
  15. K. Shiraishi and S. Oyama, “A polarizer, its fabrication method, and an optical module,” Japanese patent 5137084 (22 Nov. 2012).
  16. K. Shiraishi, S. Oyama, and C. S. Tsai, “A polarizer using thin metallic-film subwavelength grating for infrared to terahertz region,” J. Lightwave Technol.29(5), 670–676 (2011).
    [CrossRef]
  17. K. Shiraishi, M. Kofuji, Y. Inagawa, H. Yoda, and C. S. Tsai, “Fabrication of Thin Metallic-film Subwavelength-Grating Polarizers for Terahertz Region by the Imprinting Method,” Conference on Lasers and Electro-Optics Quantum Electronics and Laser Science Conference (CLEO/QELS), San Jose, CA, May 2012, paper JW2A45.
    [CrossRef]
  18. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am.72(10), 1385–1392 (1982).
    [CrossRef]
  19. D. Y. Smith, E. Shiles, and M. Inokuti, “The optical properties of metallic aluminum,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985).
  20. D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985).
  21. S. Kuroo, S. Oyama, K. Shiraishi, H. Sasho, and K. Fukushima, “Reduction of light reflection at silicon-plate surfaces by means of subwavelength gratings in terahertz region,” Appl. Opt. 49(15), 2806–2812 (2010),” Appl. Opt.50(15), 2255 (2011) (erratum).
  22. K. Baba, K. Shiraishi, K. Obi, T. Kataoka, and S. Kawakami, “Optical properties of very thin metal films for laminated polarizers,” Appl. Opt.27(12), 2554–2560 (1988).
    [CrossRef] [PubMed]

2011 (2)

2009 (1)

2008 (1)

A. A. Cruz-Cabrera, S. A. Kemme, J. R. Wendt, R. R. Boye, T. R. Carter, and S. Samora, “Fabrication and testing of finite aperture polarizers for determination of edge termination effects on polarimetric imaging applications at midwave infrared,” J. Micro/Nanolith. MEMS MOEMS7(1), 013013 (2008).

2005 (1)

1999 (2)

1997 (1)

K. Shiraishi, H. Hatakeyama, H. Matsumoto, and K. Matsumura, “Laminated polarizers exhibiting high performance over a wide range of wavelength,” J. Lightwave Technol.15(6), 1042–1050 (1997).
[CrossRef]

1988 (1)

1983 (1)

1982 (1)

1977 (1)

1968 (1)

1967 (1)

1965 (2)

Araujo, R. J.

Auton, J. P.

Baba, K.

Boye, R. R.

A. A. Cruz-Cabrera, S. A. Kemme, J. R. Wendt, R. R. Boye, T. R. Carter, and S. Samora, “Fabrication and testing of finite aperture polarizers for determination of edge termination effects on polarimetric imaging applications at midwave infrared,” J. Micro/Nanolith. MEMS MOEMS7(1), 013013 (2008).

Carter, T. R.

A. A. Cruz-Cabrera, S. A. Kemme, J. R. Wendt, R. R. Boye, T. R. Carter, and S. Samora, “Fabrication and testing of finite aperture polarizers for determination of edge termination effects on polarimetric imaging applications at midwave infrared,” J. Micro/Nanolith. MEMS MOEMS7(1), 013013 (2008).

Chen, L.

Cosley, A. E.

Cruz-Cabrera, A. A.

A. A. Cruz-Cabrera, S. A. Kemme, J. R. Wendt, R. R. Boye, T. R. Carter, and S. Samora, “Fabrication and testing of finite aperture polarizers for determination of edge termination effects on polarimetric imaging applications at midwave infrared,” J. Micro/Nanolith. MEMS MOEMS7(1), 013013 (2008).

Deguzman, P. C.

Deng, J.

Deng, X.

Fukushima, K.

Gaylord, T. K.

Graham, H. A.

Hangyo, M.

Hass, M.

Hatakeyama, H.

K. Shiraishi, H. Hatakeyama, H. Matsumoto, and K. Matsumura, “Laminated polarizers exhibiting high performance over a wide range of wavelength,” J. Lightwave Technol.15(6), 1042–1050 (1997).
[CrossRef]

Hursey, K. H.

Jones, M. W.

Kataoka, T.

Kawakami, S.

Kemme, S. A.

A. A. Cruz-Cabrera, S. A. Kemme, J. R. Wendt, R. R. Boye, T. R. Carter, and S. Samora, “Fabrication and testing of finite aperture polarizers for determination of edge termination effects on polarimetric imaging applications at midwave infrared,” J. Micro/Nanolith. MEMS MOEMS7(1), 013013 (2008).

Kuroo, S.

Liu, F.

Matsumoto, H.

K. Shiraishi, H. Hatakeyama, H. Matsumoto, and K. Matsumura, “Laminated polarizers exhibiting high performance over a wide range of wavelength,” J. Lightwave Technol.15(6), 1042–1050 (1997).
[CrossRef]

Matsumura, K.

K. Shiraishi, H. Hatakeyama, H. Matsumoto, and K. Matsumura, “Laminated polarizers exhibiting high performance over a wide range of wavelength,” J. Lightwave Technol.15(6), 1042–1050 (1997).
[CrossRef]

Meier, J. T.

Miyagi, M.

Moharam, M. G.

Neill, G. F.

Nordin, G. P.

O’Hara, M.

Obi, K.

Oyama, S.

Peterson, E. W.

Saito, M.

Samora, S.

A. A. Cruz-Cabrera, S. A. Kemme, J. R. Wendt, R. R. Boye, T. R. Carter, and S. Samora, “Fabrication and testing of finite aperture polarizers for determination of edge termination effects on polarimetric imaging applications at midwave infrared,” J. Micro/Nanolith. MEMS MOEMS7(1), 013013 (2008).

Sasho, H.

Sciortino, P.

Shiraishi, K.

Stookey, S. D.

Takano, K.

Tsai, C. S.

Wang, J. J.

Ward, J. M.

Watanabe, W.

Wendt, J. R.

A. A. Cruz-Cabrera, S. A. Kemme, J. R. Wendt, R. R. Boye, T. R. Carter, and S. Samora, “Fabrication and testing of finite aperture polarizers for determination of edge termination effects on polarimetric imaging applications at midwave infrared,” J. Micro/Nanolith. MEMS MOEMS7(1), 013013 (2008).

Yamada, I.

Yamaki, K.

Young, J. B.

Zhang, W.

Appl. Opt. (8)

J. Lightwave Technol. (2)

K. Shiraishi, S. Oyama, and C. S. Tsai, “A polarizer using thin metallic-film subwavelength grating for infrared to terahertz region,” J. Lightwave Technol.29(5), 670–676 (2011).
[CrossRef]

K. Shiraishi, H. Hatakeyama, H. Matsumoto, and K. Matsumura, “Laminated polarizers exhibiting high performance over a wide range of wavelength,” J. Lightwave Technol.15(6), 1042–1050 (1997).
[CrossRef]

J. Micro/Nanolith. MEMS MOEMS (1)

A. A. Cruz-Cabrera, S. A. Kemme, J. R. Wendt, R. R. Boye, T. R. Carter, and S. Samora, “Fabrication and testing of finite aperture polarizers for determination of edge termination effects on polarimetric imaging applications at midwave infrared,” J. Micro/Nanolith. MEMS MOEMS7(1), 013013 (2008).

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

Opt. Lett. (2)

Other (6)

K. Shiraishi and S. Oyama, “A polarizer, its fabrication method, and an optical module,” Japanese patent 5137084 (22 Nov. 2012).

K. Shiraishi, M. Kofuji, Y. Inagawa, H. Yoda, and C. S. Tsai, “Fabrication of Thin Metallic-film Subwavelength-Grating Polarizers for Terahertz Region by the Imprinting Method,” Conference on Lasers and Electro-Optics Quantum Electronics and Laser Science Conference (CLEO/QELS), San Jose, CA, May 2012, paper JW2A45.
[CrossRef]

J. M. Bennett, “Polarizers,” in Handbook of Optics, Volume II, Chapter 3, M. Bass, ed. (McGraw-Hill, 1995).

in catalogue of CODIXX Corp., http://www.codixx.de/cms/polarizers/codixx.html .

D. Y. Smith, E. Shiles, and M. Inokuti, “The optical properties of metallic aluminum,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985).

D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of the polarizer comprised of the double triangular metallic-film subwavelength grating on silicon substrate.

Fig. 2
Fig. 2

Calculated transmission losses as a function of the Al-film thickness for the polarizer comprised of a single Al-film subwavelength grating.

Fig. 3
Fig. 3

Calculated transmission losses as a function of the intermediate (a-Si)-layer thickness for the polarizer comprised of the double Al-film subwavelength grating.

Fig. 4
Fig. 4

Calculated transmission losses of the polarizers with single, double, and triple triangular Al-film gratings as a function of the aspect ratio of the grating.

Fig. 5
Fig. 5

Calculated wavelength dependence of transmission losses of the polarizers composed of single, double, and triple triangular Al-film gratings.

Fig. 6
Fig. 6

Transmission-loss spectra of the non-doped single-crystal Si substrate with the thickness of 0.5 mm.

Fig. 7
Fig. 7

SEM photomicrograph of the sub-wavelength grating fabricated on the Si wafer.

Fig. 8
Fig. 8

Measured complex refractive index (n - jκ) of the deposited Al film as a function of the wavelength. The dashed lines represent indices of bulk Al (after Ref. 19).

Fig. 9
Fig. 9

The fabricated polarizer comprised of a double Al-film subwavelength grating.

Fig. 10
Fig. 10

Measured and calculated transmission losses for the TE- and TM-waves for the polarizer comprised of a single Al-film grating as a function of wavelength. The dynamic range of the measurement system is shown by the dotted line.

Fig. 11
Fig. 11

Measured and calculated transmission losses for the TE- and TM-waves for the polarizer comprised of the double Al-film grating as a function of wavelength.

Fig. 12
Fig. 12

Measured and calculated transmission losses for the TE- and TM-waves for the polarizer comprised of the triple Al-film grating as a function of wavelength.

Metrics