Abstract

A high-gain optical waveguide amplifier has been realized in a channel waveguide platform of Nd:YAG ceramic produced by swift carbon ion irradiation with metal masking. The waveguide is single mode at wavelength of 810 and 1064 nm, and with the enhanced fluorescence intensity at around 1064 nm due to the Nd3+ ion emissions. In conjunction with the low propagation loss of the waveguide, about 26.3 dB/cm of the small signal gain at 1064 nm is achieved with an 18 ns pulse laser as the seeder under the 810-nm laser excitation. This work suggests the carbon ion irradiated Nd:YAG waveguides could serve as efficient integrated amplifiers for the signal amplification.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
    [CrossRef]
  2. Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett.71(20), 2922–2924 (1997).
    [CrossRef]
  3. R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultrasmall silicon-on-insulator wire waveguides,” Opt. Express12(16), 3713–3718 (2004).
    [CrossRef] [PubMed]
  4. J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev.5(3), 368–403 (2011).
    [CrossRef]
  5. J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron.17(3), 609–616 (2011).
    [CrossRef]
  6. A. Polman and F. C. J. M. van Veggel, “Broadband sensitizers for erbium-doped planar optical amplifiers: review,” J. Opt. Soc. Am. B21(5), 871–892 (2004).
    [CrossRef]
  7. M. George, R. Ricken, V. Quiring, and W. Sohler, “In-band pumped Ti:Tm:LiNbO3 waveguide amplifier and low threshold laser,” Laser Photonics Rev.7(1), 122–131 (2013).
    [CrossRef]
  8. L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys.91(7), 3955–3980 (2002).
    [CrossRef]
  9. G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett.68(14), 1886–1888 (1996).
    [CrossRef]
  10. R. R. Thomson, N. D. Psaila, S. J. Beecher, and A. K. Kar, “Ultrafast laser inscription of a high-gain Er-doped bismuthate glass waveguide amplifier,” Opt. Express18(12), 13212–13219 (2010).
    [CrossRef] [PubMed]
  11. C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev.6(4), 419–462 (2012).
    [CrossRef]
  12. R. Brinkmann, I. Baumann, M. Dinand, W. Sohler, and H. Suche, “Erbium-doped single- and double-pass Ti:LiNbO3 waveguide amplifiers,” J. Quant. Electron30(10), 2356–2360 (1994).
    [CrossRef]
  13. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
    [CrossRef]
  14. A. Ikesue, “Polycrystalline Nd:YAG ceramics lasers,” Opt. Mater.19(1), 183–187 (2002).
    [CrossRef]
  15. J. R. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compound341(1-2), 220–225 (2002).
    [CrossRef]
  16. X. Délen, Y. Zaouter, I. Martial, N. Aubry, J. Didierjean, C. Hönninger, E. Mottay, F. Balembois, and P. Georges, “Yb:YAG single crystal fiber power amplifier for femtosecond sources,” Opt. Lett.38(2), 109–111 (2013).
    [CrossRef] [PubMed]
  17. K. Y. Huang, K. Y. Hsu, D. Y. Jheng, W. J. Zhuo, P. Y. Chen, P. S. Yeh, and S. L. Huang, “Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique,” Opt. Express16(16), 12264–12271 (2008).
    [CrossRef] [PubMed]
  18. F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams fro photonic applications,” Laser Photonics Rev.6(5), 622–640 (2012).
    [CrossRef]
  19. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of ion implantation (Cambridge Univ. Press, 1994).
  20. E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Laser emission in proton-implanted Nd:YAG channel waveguides,” Opt. Express15(26), 17874–17880 (2007).
    [CrossRef] [PubMed]
  21. M. E. Sánchez Morales, G. V. Vázquez, E. B. Mejía, H. Márquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064 nm,” Appl. Phys. B94(2), 215–219 (2009).
    [CrossRef]
  22. I. Bányász, S. Berneschi, N. Q. Khanh, T. Lohner, K. Lengyel, M. Fried, Á. Péter, P. Petrik, Z. Zolnai, A. Watterich, G. Nunzi-Conti, S. Pelli, and G. C. Righini, “Formation of slab waveguides in eulytine and sillenite type BGO and CaF2 crystals by implantation of MeV nitrogen ions,” Nucl. Instrum. Meth. B286, 80–84 (2012).
    [CrossRef]
  23. S. Berneschi, M. Brenci, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Bettinelli, A. Speghini, I. Bányász, M. Fried, N. Q. Khanh, T. Lohner, P. Petrik, A. Watterich, and Z. Zolnai, “Slab optical waveguides in Er3+-doped tellurite glass by N+ ion implantation at 1.5 MeV,” Opt. Eng.50(7), 071110 (2011).
    [CrossRef]
  24. P. De Nicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of Smooth Ridge Optical Waveguides in LiNbO3 by Ion Implantation-Assisted Wet Etching,” J. Lightwave Technol.31(9), 1482–1487 (2013).
    [CrossRef]
  25. G. B. Montanari, P. De Nicola, S. Sugliani, A. Menin, A. Parini, A. Nubile, G. Bellanca, M. Chiarini, M. Bianconi, and G. G. Bentini, “Step-index optical waveguide produced by multi-step ion implantation in LiNbO3,” Opt. Express20(4), 4444–4453 (2012).
    [CrossRef] [PubMed]
  26. V. V. Atuchin, T. I. Grigorieva, I. E. Kalabin, V. G. Kesler, L. D. Pokrovsky, and D. I. Shevtsov, “Comparative analysis of electronic structure of Ti:LiNbO3 and LiNbO3 surfaces,” J. Cryst. Growth275(1-2), e1603–e1607 (2005).
    [CrossRef]
  27. F. Chen, Y. Tan, and D. Jaque, “Ion-implanted optical channel waveguides in neodymium-doped yttrium aluminum garnet transparent ceramics for integrated laser generation,” Opt. Lett.34(1), 28–30 (2009).
    [CrossRef] [PubMed]
  28. Y. Tan and F. Chen, “Proton-implanted optical channel waveguides in Nd:YAG laser ceramics,” J. Phys. D43(7), 075105 (2010).
    [CrossRef]
  29. Y. Tan, C. Zhang, F. Chen, F.-Q. Liu, D. Jaque, and Q.-M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B103(4), 837–840 (2011).
    [CrossRef]
  30. Y. Ren, Y. Jia, N. Dong, L. Pang, Z. Wang, Q. Lu, and F. Chen, “Guided-wave second harmonics in Nd:YCOB optical waveguides for integrated green lasers,” Opt. Lett.37(2), 244–246 (2012).
    [CrossRef] [PubMed]
  31. Y. Jia, N. Dong, F. Chen, J. R. Vázquez de Aldana, S. Akhmadaliev, and S. Zhou, “Continuous wave ridge waveguide lasers in femtosecond laser micromachined ion irradiated Nd:YAG single crystals,” Opt. Mater. Express2(5), 657–662 (2012).
    [CrossRef]
  32. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B36(3), 143–147 (1985).
    [CrossRef]
  33. A. E. Siegman, Lasers (University Science, 1986).
  34. A. Agnesi, L. Carrà, R. Piccoli, F. Pirzio, and G. Reali, “Nd:YVO4 amplifier for ultrafast low-power lasers,” Opt. Lett.37(17), 3612–3614 (2012).
    [CrossRef] [PubMed]

2013 (3)

2012 (7)

G. B. Montanari, P. De Nicola, S. Sugliani, A. Menin, A. Parini, A. Nubile, G. Bellanca, M. Chiarini, M. Bianconi, and G. G. Bentini, “Step-index optical waveguide produced by multi-step ion implantation in LiNbO3,” Opt. Express20(4), 4444–4453 (2012).
[CrossRef] [PubMed]

I. Bányász, S. Berneschi, N. Q. Khanh, T. Lohner, K. Lengyel, M. Fried, Á. Péter, P. Petrik, Z. Zolnai, A. Watterich, G. Nunzi-Conti, S. Pelli, and G. C. Righini, “Formation of slab waveguides in eulytine and sillenite type BGO and CaF2 crystals by implantation of MeV nitrogen ions,” Nucl. Instrum. Meth. B286, 80–84 (2012).
[CrossRef]

Y. Ren, Y. Jia, N. Dong, L. Pang, Z. Wang, Q. Lu, and F. Chen, “Guided-wave second harmonics in Nd:YCOB optical waveguides for integrated green lasers,” Opt. Lett.37(2), 244–246 (2012).
[CrossRef] [PubMed]

Y. Jia, N. Dong, F. Chen, J. R. Vázquez de Aldana, S. Akhmadaliev, and S. Zhou, “Continuous wave ridge waveguide lasers in femtosecond laser micromachined ion irradiated Nd:YAG single crystals,” Opt. Mater. Express2(5), 657–662 (2012).
[CrossRef]

A. Agnesi, L. Carrà, R. Piccoli, F. Pirzio, and G. Reali, “Nd:YVO4 amplifier for ultrafast low-power lasers,” Opt. Lett.37(17), 3612–3614 (2012).
[CrossRef] [PubMed]

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams fro photonic applications,” Laser Photonics Rev.6(5), 622–640 (2012).
[CrossRef]

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev.6(4), 419–462 (2012).
[CrossRef]

2011 (4)

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev.5(3), 368–403 (2011).
[CrossRef]

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron.17(3), 609–616 (2011).
[CrossRef]

S. Berneschi, M. Brenci, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Bettinelli, A. Speghini, I. Bányász, M. Fried, N. Q. Khanh, T. Lohner, P. Petrik, A. Watterich, and Z. Zolnai, “Slab optical waveguides in Er3+-doped tellurite glass by N+ ion implantation at 1.5 MeV,” Opt. Eng.50(7), 071110 (2011).
[CrossRef]

Y. Tan, C. Zhang, F. Chen, F.-Q. Liu, D. Jaque, and Q.-M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B103(4), 837–840 (2011).
[CrossRef]

2010 (2)

2009 (2)

M. E. Sánchez Morales, G. V. Vázquez, E. B. Mejía, H. Márquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064 nm,” Appl. Phys. B94(2), 215–219 (2009).
[CrossRef]

F. Chen, Y. Tan, and D. Jaque, “Ion-implanted optical channel waveguides in neodymium-doped yttrium aluminum garnet transparent ceramics for integrated laser generation,” Opt. Lett.34(1), 28–30 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (1)

2005 (1)

V. V. Atuchin, T. I. Grigorieva, I. E. Kalabin, V. G. Kesler, L. D. Pokrovsky, and D. I. Shevtsov, “Comparative analysis of electronic structure of Ti:LiNbO3 and LiNbO3 surfaces,” J. Cryst. Growth275(1-2), e1603–e1607 (2005).
[CrossRef]

2004 (2)

2002 (3)

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys.91(7), 3955–3980 (2002).
[CrossRef]

A. Ikesue, “Polycrystalline Nd:YAG ceramics lasers,” Opt. Mater.19(1), 183–187 (2002).
[CrossRef]

J. R. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compound341(1-2), 220–225 (2002).
[CrossRef]

2000 (1)

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

1997 (1)

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett.71(20), 2922–2924 (1997).
[CrossRef]

1996 (1)

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett.68(14), 1886–1888 (1996).
[CrossRef]

1994 (1)

R. Brinkmann, I. Baumann, M. Dinand, W. Sohler, and H. Suche, “Erbium-doped single- and double-pass Ti:LiNbO3 waveguide amplifiers,” J. Quant. Electron30(10), 2356–2360 (1994).
[CrossRef]

1985 (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B36(3), 143–147 (1985).
[CrossRef]

Agnesi, A.

Akhmadaliev, S.

Akiyama, Y.

J. R. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compound341(1-2), 220–225 (2002).
[CrossRef]

Astolfi, M.

Atuchin, V. V.

V. V. Atuchin, T. I. Grigorieva, I. E. Kalabin, V. G. Kesler, L. D. Pokrovsky, and D. I. Shevtsov, “Comparative analysis of electronic structure of Ti:LiNbO3 and LiNbO3 surfaces,” J. Cryst. Growth275(1-2), e1603–e1607 (2005).
[CrossRef]

Aubry, N.

Aung, Y. L.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
[CrossRef]

Ay, F.

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron.17(3), 609–616 (2011).
[CrossRef]

Bado, P.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

Balembois, F.

Bányász, I.

I. Bányász, S. Berneschi, N. Q. Khanh, T. Lohner, K. Lengyel, M. Fried, Á. Péter, P. Petrik, Z. Zolnai, A. Watterich, G. Nunzi-Conti, S. Pelli, and G. C. Righini, “Formation of slab waveguides in eulytine and sillenite type BGO and CaF2 crystals by implantation of MeV nitrogen ions,” Nucl. Instrum. Meth. B286, 80–84 (2012).
[CrossRef]

S. Berneschi, M. Brenci, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Bettinelli, A. Speghini, I. Bányász, M. Fried, N. Q. Khanh, T. Lohner, P. Petrik, A. Watterich, and Z. Zolnai, “Slab optical waveguides in Er3+-doped tellurite glass by N+ ion implantation at 1.5 MeV,” Opt. Eng.50(7), 071110 (2011).
[CrossRef]

Baumann, I.

R. Brinkmann, I. Baumann, M. Dinand, W. Sohler, and H. Suche, “Erbium-doped single- and double-pass Ti:LiNbO3 waveguide amplifiers,” J. Quant. Electron30(10), 2356–2360 (1994).
[CrossRef]

Beecher, S. J.

Bellanca, G.

Bentini, G. G.

Berneschi, S.

I. Bányász, S. Berneschi, N. Q. Khanh, T. Lohner, K. Lengyel, M. Fried, Á. Péter, P. Petrik, Z. Zolnai, A. Watterich, G. Nunzi-Conti, S. Pelli, and G. C. Righini, “Formation of slab waveguides in eulytine and sillenite type BGO and CaF2 crystals by implantation of MeV nitrogen ions,” Nucl. Instrum. Meth. B286, 80–84 (2012).
[CrossRef]

S. Berneschi, M. Brenci, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Bettinelli, A. Speghini, I. Bányász, M. Fried, N. Q. Khanh, T. Lohner, P. Petrik, A. Watterich, and Z. Zolnai, “Slab optical waveguides in Er3+-doped tellurite glass by N+ ion implantation at 1.5 MeV,” Opt. Eng.50(7), 071110 (2011).
[CrossRef]

Bettinelli, M.

S. Berneschi, M. Brenci, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Bettinelli, A. Speghini, I. Bányász, M. Fried, N. Q. Khanh, T. Lohner, P. Petrik, A. Watterich, and Z. Zolnai, “Slab optical waveguides in Er3+-doped tellurite glass by N+ ion implantation at 1.5 MeV,” Opt. Eng.50(7), 071110 (2011).
[CrossRef]

Bianconi, M.

Borsetto, M.

Bradley, J. D. B.

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev.5(3), 368–403 (2011).
[CrossRef]

Brenci, M.

S. Berneschi, M. Brenci, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Bettinelli, A. Speghini, I. Bányász, M. Fried, N. Q. Khanh, T. Lohner, P. Petrik, A. Watterich, and Z. Zolnai, “Slab optical waveguides in Er3+-doped tellurite glass by N+ ion implantation at 1.5 MeV,” Opt. Eng.50(7), 071110 (2011).
[CrossRef]

Brinkmann, R.

R. Brinkmann, I. Baumann, M. Dinand, W. Sohler, and H. Suche, “Erbium-doped single- and double-pass Ti:LiNbO3 waveguide amplifiers,” J. Quant. Electron30(10), 2356–2360 (1994).
[CrossRef]

Carrà, L.

Chen, F.

Y. Jia, N. Dong, F. Chen, J. R. Vázquez de Aldana, S. Akhmadaliev, and S. Zhou, “Continuous wave ridge waveguide lasers in femtosecond laser micromachined ion irradiated Nd:YAG single crystals,” Opt. Mater. Express2(5), 657–662 (2012).
[CrossRef]

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams fro photonic applications,” Laser Photonics Rev.6(5), 622–640 (2012).
[CrossRef]

Y. Ren, Y. Jia, N. Dong, L. Pang, Z. Wang, Q. Lu, and F. Chen, “Guided-wave second harmonics in Nd:YCOB optical waveguides for integrated green lasers,” Opt. Lett.37(2), 244–246 (2012).
[CrossRef] [PubMed]

Y. Tan, C. Zhang, F. Chen, F.-Q. Liu, D. Jaque, and Q.-M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B103(4), 837–840 (2011).
[CrossRef]

Y. Tan and F. Chen, “Proton-implanted optical channel waveguides in Nd:YAG laser ceramics,” J. Phys. D43(7), 075105 (2010).
[CrossRef]

F. Chen, Y. Tan, and D. Jaque, “Ion-implanted optical channel waveguides in neodymium-doped yttrium aluminum garnet transparent ceramics for integrated laser generation,” Opt. Lett.34(1), 28–30 (2009).
[CrossRef] [PubMed]

Chen, P. Y.

Chiarini, M.

Consonni, G.

Dadap, J. I.

De Nicola, P.

de Waal, H.

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett.71(20), 2922–2924 (1997).
[CrossRef]

Délen, X.

Didierjean, J.

Dinand, M.

R. Brinkmann, I. Baumann, M. Dinand, W. Sohler, and H. Suche, “Erbium-doped single- and double-pass Ti:LiNbO3 waveguide amplifiers,” J. Quant. Electron30(10), 2356–2360 (1994).
[CrossRef]

Dong, N.

Driessen, A.

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron.17(3), 609–616 (2011).
[CrossRef]

Espinola, R. L.

Faber, A. J.

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett.71(20), 2922–2924 (1997).
[CrossRef]

Florea, C.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

Flores-Romero, E.

Fried, M.

I. Bányász, S. Berneschi, N. Q. Khanh, T. Lohner, K. Lengyel, M. Fried, Á. Péter, P. Petrik, Z. Zolnai, A. Watterich, G. Nunzi-Conti, S. Pelli, and G. C. Righini, “Formation of slab waveguides in eulytine and sillenite type BGO and CaF2 crystals by implantation of MeV nitrogen ions,” Nucl. Instrum. Meth. B286, 80–84 (2012).
[CrossRef]

S. Berneschi, M. Brenci, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Bettinelli, A. Speghini, I. Bányász, M. Fried, N. Q. Khanh, T. Lohner, P. Petrik, A. Watterich, and Z. Zolnai, “Slab optical waveguides in Er3+-doped tellurite glass by N+ ion implantation at 1.5 MeV,” Opt. Eng.50(7), 071110 (2011).
[CrossRef]

George, M.

M. George, R. Ricken, V. Quiring, and W. Sohler, “In-band pumped Ti:Tm:LiNbO3 waveguide amplifier and low threshold laser,” Laser Photonics Rev.7(1), 122–131 (2013).
[CrossRef]

Georges, P.

Grigorieva, T. I.

V. V. Atuchin, T. I. Grigorieva, I. E. Kalabin, V. G. Kesler, L. D. Pokrovsky, and D. I. Shevtsov, “Comparative analysis of electronic structure of Ti:LiNbO3 and LiNbO3 surfaces,” J. Cryst. Growth275(1-2), e1603–e1607 (2005).
[CrossRef]

Grivas, C.

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev.6(4), 419–462 (2012).
[CrossRef]

Hebbink, G. A.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys.91(7), 3955–3980 (2002).
[CrossRef]

Hofstraat, J. W.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys.91(7), 3955–3980 (2002).
[CrossRef]

Hönninger, C.

Horst, F.

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron.17(3), 609–616 (2011).
[CrossRef]

Hsu, K. Y.

Huang, K. Y.

Huang, S. L.

Ikesue, A.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
[CrossRef]

A. Ikesue, “Polycrystalline Nd:YAG ceramics lasers,” Opt. Mater.19(1), 183–187 (2002).
[CrossRef]

Jaque, D.

Y. Tan, C. Zhang, F. Chen, F.-Q. Liu, D. Jaque, and Q.-M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B103(4), 837–840 (2011).
[CrossRef]

F. Chen, Y. Tan, and D. Jaque, “Ion-implanted optical channel waveguides in neodymium-doped yttrium aluminum garnet transparent ceramics for integrated laser generation,” Opt. Lett.34(1), 28–30 (2009).
[CrossRef] [PubMed]

Jheng, D. Y.

Jia, Y.

Kalabin, I. E.

V. V. Atuchin, T. I. Grigorieva, I. E. Kalabin, V. G. Kesler, L. D. Pokrovsky, and D. I. Shevtsov, “Comparative analysis of electronic structure of Ti:LiNbO3 and LiNbO3 surfaces,” J. Cryst. Growth275(1-2), e1603–e1607 (2005).
[CrossRef]

Kaminskii, A. A.

J. R. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compound341(1-2), 220–225 (2002).
[CrossRef]

Kar, A. K.

Kesler, V. G.

V. V. Atuchin, T. I. Grigorieva, I. E. Kalabin, V. G. Kesler, L. D. Pokrovsky, and D. I. Shevtsov, “Comparative analysis of electronic structure of Ti:LiNbO3 and LiNbO3 surfaces,” J. Cryst. Growth275(1-2), e1603–e1607 (2005).
[CrossRef]

Khanh, N. Q.

I. Bányász, S. Berneschi, N. Q. Khanh, T. Lohner, K. Lengyel, M. Fried, Á. Péter, P. Petrik, Z. Zolnai, A. Watterich, G. Nunzi-Conti, S. Pelli, and G. C. Righini, “Formation of slab waveguides in eulytine and sillenite type BGO and CaF2 crystals by implantation of MeV nitrogen ions,” Nucl. Instrum. Meth. B286, 80–84 (2012).
[CrossRef]

S. Berneschi, M. Brenci, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Bettinelli, A. Speghini, I. Bányász, M. Fried, N. Q. Khanh, T. Lohner, P. Petrik, A. Watterich, and Z. Zolnai, “Slab optical waveguides in Er3+-doped tellurite glass by N+ ion implantation at 1.5 MeV,” Opt. Eng.50(7), 071110 (2011).
[CrossRef]

Kik, P. G.

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett.71(20), 2922–2924 (1997).
[CrossRef]

Klink, S. I.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys.91(7), 3955–3980 (2002).
[CrossRef]

Koper, R. J. I. M.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett.68(14), 1886–1888 (1996).
[CrossRef]

Lamprecht, T.

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron.17(3), 609–616 (2011).
[CrossRef]

Lengyel, K.

I. Bányász, S. Berneschi, N. Q. Khanh, T. Lohner, K. Lengyel, M. Fried, Á. Péter, P. Petrik, Z. Zolnai, A. Watterich, G. Nunzi-Conti, S. Pelli, and G. C. Righini, “Formation of slab waveguides in eulytine and sillenite type BGO and CaF2 crystals by implantation of MeV nitrogen ions,” Nucl. Instrum. Meth. B286, 80–84 (2012).
[CrossRef]

Liu, F.-Q.

Y. Tan, C. Zhang, F. Chen, F.-Q. Liu, D. Jaque, and Q.-M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B103(4), 837–840 (2011).
[CrossRef]

Lohner, T.

I. Bányász, S. Berneschi, N. Q. Khanh, T. Lohner, K. Lengyel, M. Fried, Á. Péter, P. Petrik, Z. Zolnai, A. Watterich, G. Nunzi-Conti, S. Pelli, and G. C. Righini, “Formation of slab waveguides in eulytine and sillenite type BGO and CaF2 crystals by implantation of MeV nitrogen ions,” Nucl. Instrum. Meth. B286, 80–84 (2012).
[CrossRef]

S. Berneschi, M. Brenci, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Bettinelli, A. Speghini, I. Bányász, M. Fried, N. Q. Khanh, T. Lohner, P. Petrik, A. Watterich, and Z. Zolnai, “Slab optical waveguides in Er3+-doped tellurite glass by N+ ion implantation at 1.5 MeV,” Opt. Eng.50(7), 071110 (2011).
[CrossRef]

Longone, R.

Lu, J. R.

J. R. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compound341(1-2), 220–225 (2002).
[CrossRef]

Lu, Q.

Lu, Q.-M.

Y. Tan, C. Zhang, F. Chen, F.-Q. Liu, D. Jaque, and Q.-M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B103(4), 837–840 (2011).
[CrossRef]

Márquez, H.

M. E. Sánchez Morales, G. V. Vázquez, E. B. Mejía, H. Márquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064 nm,” Appl. Phys. B94(2), 215–219 (2009).
[CrossRef]

E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Laser emission in proton-implanted Nd:YAG channel waveguides,” Opt. Express15(26), 17874–17880 (2007).
[CrossRef] [PubMed]

Martial, I.

Maynard, R.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

McNab, S. J.

Mejía, E. B.

M. E. Sánchez Morales, G. V. Vázquez, E. B. Mejía, H. Márquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064 nm,” Appl. Phys. B94(2), 215–219 (2009).
[CrossRef]

Menin, A.

Meroni, A.

Montanari, G. B.

Mottay, E.

Nubile, A.

Nunzi Conti, G.

S. Berneschi, M. Brenci, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Bettinelli, A. Speghini, I. Bányász, M. Fried, N. Q. Khanh, T. Lohner, P. Petrik, A. Watterich, and Z. Zolnai, “Slab optical waveguides in Er3+-doped tellurite glass by N+ ion implantation at 1.5 MeV,” Opt. Eng.50(7), 071110 (2011).
[CrossRef]

Nunzi-Conti, G.

I. Bányász, S. Berneschi, N. Q. Khanh, T. Lohner, K. Lengyel, M. Fried, Á. Péter, P. Petrik, Z. Zolnai, A. Watterich, G. Nunzi-Conti, S. Pelli, and G. C. Righini, “Formation of slab waveguides in eulytine and sillenite type BGO and CaF2 crystals by implantation of MeV nitrogen ions,” Nucl. Instrum. Meth. B286, 80–84 (2012).
[CrossRef]

Offrein, B. J.

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron.17(3), 609–616 (2011).
[CrossRef]

Osgood, R. M.

Pang, L.

Parini, A.

Pelli, S.

I. Bányász, S. Berneschi, N. Q. Khanh, T. Lohner, K. Lengyel, M. Fried, Á. Péter, P. Petrik, Z. Zolnai, A. Watterich, G. Nunzi-Conti, S. Pelli, and G. C. Righini, “Formation of slab waveguides in eulytine and sillenite type BGO and CaF2 crystals by implantation of MeV nitrogen ions,” Nucl. Instrum. Meth. B286, 80–84 (2012).
[CrossRef]

S. Berneschi, M. Brenci, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Bettinelli, A. Speghini, I. Bányász, M. Fried, N. Q. Khanh, T. Lohner, P. Petrik, A. Watterich, and Z. Zolnai, “Slab optical waveguides in Er3+-doped tellurite glass by N+ ion implantation at 1.5 MeV,” Opt. Eng.50(7), 071110 (2011).
[CrossRef]

Péter, Á.

I. Bányász, S. Berneschi, N. Q. Khanh, T. Lohner, K. Lengyel, M. Fried, Á. Péter, P. Petrik, Z. Zolnai, A. Watterich, G. Nunzi-Conti, S. Pelli, and G. C. Righini, “Formation of slab waveguides in eulytine and sillenite type BGO and CaF2 crystals by implantation of MeV nitrogen ions,” Nucl. Instrum. Meth. B286, 80–84 (2012).
[CrossRef]

Petrik, P.

I. Bányász, S. Berneschi, N. Q. Khanh, T. Lohner, K. Lengyel, M. Fried, Á. Péter, P. Petrik, Z. Zolnai, A. Watterich, G. Nunzi-Conti, S. Pelli, and G. C. Righini, “Formation of slab waveguides in eulytine and sillenite type BGO and CaF2 crystals by implantation of MeV nitrogen ions,” Nucl. Instrum. Meth. B286, 80–84 (2012).
[CrossRef]

S. Berneschi, M. Brenci, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Bettinelli, A. Speghini, I. Bányász, M. Fried, N. Q. Khanh, T. Lohner, P. Petrik, A. Watterich, and Z. Zolnai, “Slab optical waveguides in Er3+-doped tellurite glass by N+ ion implantation at 1.5 MeV,” Opt. Eng.50(7), 071110 (2011).
[CrossRef]

Piccoli, R.

Pirzio, F.

Pokrovsky, L. D.

V. V. Atuchin, T. I. Grigorieva, I. E. Kalabin, V. G. Kesler, L. D. Pokrovsky, and D. I. Shevtsov, “Comparative analysis of electronic structure of Ti:LiNbO3 and LiNbO3 surfaces,” J. Cryst. Growth275(1-2), e1603–e1607 (2005).
[CrossRef]

Pollnau, M.

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev.6(4), 419–462 (2012).
[CrossRef]

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron.17(3), 609–616 (2011).
[CrossRef]

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev.5(3), 368–403 (2011).
[CrossRef]

Polman, A.

A. Polman and F. C. J. M. van Veggel, “Broadband sensitizers for erbium-doped planar optical amplifiers: review,” J. Opt. Soc. Am. B21(5), 871–892 (2004).
[CrossRef]

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys.91(7), 3955–3980 (2002).
[CrossRef]

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett.71(20), 2922–2924 (1997).
[CrossRef]

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett.68(14), 1886–1888 (1996).
[CrossRef]

Psaila, N. D.

Quiring, V.

M. George, R. Ricken, V. Quiring, and W. Sohler, “In-band pumped Ti:Tm:LiNbO3 waveguide amplifier and low threshold laser,” Laser Photonics Rev.7(1), 122–131 (2013).
[CrossRef]

Rangel-Rojo, R.

Reali, G.

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B36(3), 143–147 (1985).
[CrossRef]

Reinhoudt, D. N.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys.91(7), 3955–3980 (2002).
[CrossRef]

Ren, Y.

Rickards, J.

M. E. Sánchez Morales, G. V. Vázquez, E. B. Mejía, H. Márquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064 nm,” Appl. Phys. B94(2), 215–219 (2009).
[CrossRef]

E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Laser emission in proton-implanted Nd:YAG channel waveguides,” Opt. Express15(26), 17874–17880 (2007).
[CrossRef] [PubMed]

Ricken, R.

M. George, R. Ricken, V. Quiring, and W. Sohler, “In-band pumped Ti:Tm:LiNbO3 waveguide amplifier and low threshold laser,” Laser Photonics Rev.7(1), 122–131 (2013).
[CrossRef]

Righini, G. C.

I. Bányász, S. Berneschi, N. Q. Khanh, T. Lohner, K. Lengyel, M. Fried, Á. Péter, P. Petrik, Z. Zolnai, A. Watterich, G. Nunzi-Conti, S. Pelli, and G. C. Righini, “Formation of slab waveguides in eulytine and sillenite type BGO and CaF2 crystals by implantation of MeV nitrogen ions,” Nucl. Instrum. Meth. B286, 80–84 (2012).
[CrossRef]

S. Berneschi, M. Brenci, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Bettinelli, A. Speghini, I. Bányász, M. Fried, N. Q. Khanh, T. Lohner, P. Petrik, A. Watterich, and Z. Zolnai, “Slab optical waveguides in Er3+-doped tellurite glass by N+ ion implantation at 1.5 MeV,” Opt. Eng.50(7), 071110 (2011).
[CrossRef]

Said, A. A.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

Sánchez Morales, M. E.

M. E. Sánchez Morales, G. V. Vázquez, E. B. Mejía, H. Márquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064 nm,” Appl. Phys. B94(2), 215–219 (2009).
[CrossRef]

Shevtsov, D. I.

V. V. Atuchin, T. I. Grigorieva, I. E. Kalabin, V. G. Kesler, L. D. Pokrovsky, and D. I. Shevtsov, “Comparative analysis of electronic structure of Ti:LiNbO3 and LiNbO3 surfaces,” J. Cryst. Growth275(1-2), e1603–e1607 (2005).
[CrossRef]

Sikorski, Y.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

Slooff, L. H.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys.91(7), 3955–3980 (2002).
[CrossRef]

Smit, M. K.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett.68(14), 1886–1888 (1996).
[CrossRef]

Sohler, W.

M. George, R. Ricken, V. Quiring, and W. Sohler, “In-band pumped Ti:Tm:LiNbO3 waveguide amplifier and low threshold laser,” Laser Photonics Rev.7(1), 122–131 (2013).
[CrossRef]

R. Brinkmann, I. Baumann, M. Dinand, W. Sohler, and H. Suche, “Erbium-doped single- and double-pass Ti:LiNbO3 waveguide amplifiers,” J. Quant. Electron30(10), 2356–2360 (1994).
[CrossRef]

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B36(3), 143–147 (1985).
[CrossRef]

Speghini, A.

S. Berneschi, M. Brenci, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Bettinelli, A. Speghini, I. Bányász, M. Fried, N. Q. Khanh, T. Lohner, P. Petrik, A. Watterich, and Z. Zolnai, “Slab optical waveguides in Er3+-doped tellurite glass by N+ ion implantation at 1.5 MeV,” Opt. Eng.50(7), 071110 (2011).
[CrossRef]

Suche, H.

R. Brinkmann, I. Baumann, M. Dinand, W. Sohler, and H. Suche, “Erbium-doped single- and double-pass Ti:LiNbO3 waveguide amplifiers,” J. Quant. Electron30(10), 2356–2360 (1994).
[CrossRef]

Sugliani, S.

Tan, Y.

Y. Tan, C. Zhang, F. Chen, F.-Q. Liu, D. Jaque, and Q.-M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B103(4), 837–840 (2011).
[CrossRef]

Y. Tan and F. Chen, “Proton-implanted optical channel waveguides in Nd:YAG laser ceramics,” J. Phys. D43(7), 075105 (2010).
[CrossRef]

F. Chen, Y. Tan, and D. Jaque, “Ion-implanted optical channel waveguides in neodymium-doped yttrium aluminum garnet transparent ceramics for integrated laser generation,” Opt. Lett.34(1), 28–30 (2009).
[CrossRef] [PubMed]

Thomson, R. R.

Trejo-Luna, R.

M. E. Sánchez Morales, G. V. Vázquez, E. B. Mejía, H. Márquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064 nm,” Appl. Phys. B94(2), 215–219 (2009).
[CrossRef]

E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Laser emission in proton-implanted Nd:YAG channel waveguides,” Opt. Express15(26), 17874–17880 (2007).
[CrossRef] [PubMed]

Ueda, K.

J. R. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compound341(1-2), 220–225 (2002).
[CrossRef]

van Blaaderen, A.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys.91(7), 3955–3980 (2002).
[CrossRef]

van Dam, C.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett.68(14), 1886–1888 (1996).
[CrossRef]

van den Hoven, G. N.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett.68(14), 1886–1888 (1996).
[CrossRef]

van Uffelen, J. W. M.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett.68(14), 1886–1888 (1996).
[CrossRef]

van Veggel, F. C. J. M.

A. Polman and F. C. J. M. van Veggel, “Broadband sensitizers for erbium-doped planar optical amplifiers: review,” J. Opt. Soc. Am. B21(5), 871–892 (2004).
[CrossRef]

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys.91(7), 3955–3980 (2002).
[CrossRef]

Vázquez, G. V.

M. E. Sánchez Morales, G. V. Vázquez, E. B. Mejía, H. Márquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064 nm,” Appl. Phys. B94(2), 215–219 (2009).
[CrossRef]

E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Laser emission in proton-implanted Nd:YAG channel waveguides,” Opt. Express15(26), 17874–17880 (2007).
[CrossRef] [PubMed]

Vázquez de Aldana, J. R.

Vergani, P.

Vlasov, Y. A.

Wang, Z.

Watterich, A.

I. Bányász, S. Berneschi, N. Q. Khanh, T. Lohner, K. Lengyel, M. Fried, Á. Péter, P. Petrik, Z. Zolnai, A. Watterich, G. Nunzi-Conti, S. Pelli, and G. C. Righini, “Formation of slab waveguides in eulytine and sillenite type BGO and CaF2 crystals by implantation of MeV nitrogen ions,” Nucl. Instrum. Meth. B286, 80–84 (2012).
[CrossRef]

S. Berneschi, M. Brenci, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Bettinelli, A. Speghini, I. Bányász, M. Fried, N. Q. Khanh, T. Lohner, P. Petrik, A. Watterich, and Z. Zolnai, “Slab optical waveguides in Er3+-doped tellurite glass by N+ ion implantation at 1.5 MeV,” Opt. Eng.50(7), 071110 (2011).
[CrossRef]

Winick, K. A.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

Wörhoff, K.

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron.17(3), 609–616 (2011).
[CrossRef]

Yagi, H.

J. R. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compound341(1-2), 220–225 (2002).
[CrossRef]

Yan, Y. C.

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett.71(20), 2922–2924 (1997).
[CrossRef]

Yanagitani, T.

J. R. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compound341(1-2), 220–225 (2002).
[CrossRef]

Yang, J.

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron.17(3), 609–616 (2011).
[CrossRef]

Yeh, P. S.

Zaouter, Y.

Zhang, C.

Y. Tan, C. Zhang, F. Chen, F.-Q. Liu, D. Jaque, and Q.-M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B103(4), 837–840 (2011).
[CrossRef]

Zhou, S.

Zhuo, W. J.

Zolnai, Z.

I. Bányász, S. Berneschi, N. Q. Khanh, T. Lohner, K. Lengyel, M. Fried, Á. Péter, P. Petrik, Z. Zolnai, A. Watterich, G. Nunzi-Conti, S. Pelli, and G. C. Righini, “Formation of slab waveguides in eulytine and sillenite type BGO and CaF2 crystals by implantation of MeV nitrogen ions,” Nucl. Instrum. Meth. B286, 80–84 (2012).
[CrossRef]

S. Berneschi, M. Brenci, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Bettinelli, A. Speghini, I. Bányász, M. Fried, N. Q. Khanh, T. Lohner, P. Petrik, A. Watterich, and Z. Zolnai, “Slab optical waveguides in Er3+-doped tellurite glass by N+ ion implantation at 1.5 MeV,” Opt. Eng.50(7), 071110 (2011).
[CrossRef]

Appl. Phys. B (3)

M. E. Sánchez Morales, G. V. Vázquez, E. B. Mejía, H. Márquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064 nm,” Appl. Phys. B94(2), 215–219 (2009).
[CrossRef]

Y. Tan, C. Zhang, F. Chen, F.-Q. Liu, D. Jaque, and Q.-M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B103(4), 837–840 (2011).
[CrossRef]

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B36(3), 143–147 (1985).
[CrossRef]

Appl. Phys. Lett. (2)

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett.71(20), 2922–2924 (1997).
[CrossRef]

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett.68(14), 1886–1888 (1996).
[CrossRef]

Electron. Lett. (1)

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Yang, T. Lamprecht, K. Wörhoff, A. Driessen, F. Horst, B. J. Offrein, F. Ay, and M. Pollnau, “Integrated optical backplane amplifier,” IEEE J. Sel. Top. Quantum Electron.17(3), 609–616 (2011).
[CrossRef]

J. Alloys Compound (1)

J. R. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compound341(1-2), 220–225 (2002).
[CrossRef]

J. Appl. Phys. (1)

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys.91(7), 3955–3980 (2002).
[CrossRef]

J. Cryst. Growth (1)

V. V. Atuchin, T. I. Grigorieva, I. E. Kalabin, V. G. Kesler, L. D. Pokrovsky, and D. I. Shevtsov, “Comparative analysis of electronic structure of Ti:LiNbO3 and LiNbO3 surfaces,” J. Cryst. Growth275(1-2), e1603–e1607 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

Y. Tan and F. Chen, “Proton-implanted optical channel waveguides in Nd:YAG laser ceramics,” J. Phys. D43(7), 075105 (2010).
[CrossRef]

J. Quant. Electron (1)

R. Brinkmann, I. Baumann, M. Dinand, W. Sohler, and H. Suche, “Erbium-doped single- and double-pass Ti:LiNbO3 waveguide amplifiers,” J. Quant. Electron30(10), 2356–2360 (1994).
[CrossRef]

Laser Photonics Rev. (4)

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev.6(4), 419–462 (2012).
[CrossRef]

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams fro photonic applications,” Laser Photonics Rev.6(5), 622–640 (2012).
[CrossRef]

M. George, R. Ricken, V. Quiring, and W. Sohler, “In-band pumped Ti:Tm:LiNbO3 waveguide amplifier and low threshold laser,” Laser Photonics Rev.7(1), 122–131 (2013).
[CrossRef]

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev.5(3), 368–403 (2011).
[CrossRef]

Nat. Photonics (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
[CrossRef]

Nucl. Instrum. Meth. B (1)

I. Bányász, S. Berneschi, N. Q. Khanh, T. Lohner, K. Lengyel, M. Fried, Á. Péter, P. Petrik, Z. Zolnai, A. Watterich, G. Nunzi-Conti, S. Pelli, and G. C. Righini, “Formation of slab waveguides in eulytine and sillenite type BGO and CaF2 crystals by implantation of MeV nitrogen ions,” Nucl. Instrum. Meth. B286, 80–84 (2012).
[CrossRef]

Opt. Eng. (1)

S. Berneschi, M. Brenci, G. Nunzi Conti, S. Pelli, G. C. Righini, M. Bettinelli, A. Speghini, I. Bányász, M. Fried, N. Q. Khanh, T. Lohner, P. Petrik, A. Watterich, and Z. Zolnai, “Slab optical waveguides in Er3+-doped tellurite glass by N+ ion implantation at 1.5 MeV,” Opt. Eng.50(7), 071110 (2011).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Opt. Mater. (1)

A. Ikesue, “Polycrystalline Nd:YAG ceramics lasers,” Opt. Mater.19(1), 183–187 (2002).
[CrossRef]

Opt. Mater. Express (1)

Other (2)

A. E. Siegman, Lasers (University Science, 1986).

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of ion implantation (Cambridge Univ. Press, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The schematic plot of the experimental setup for (a) the heavy swift ion irradiation and (b) the signal amplification in the waveguide.

Fig. 2
Fig. 2

(a) The reconstructed cross sectional refractive index distribution of the waveguide; (b) the calculated modal profile (TM00) of the waveguide at wavelength of 810 nm, the measured intensity distribution of the TM00 mode at wavelength of (c) 810 nm and (d) 1064 nm.

Fig. 3
Fig. 3

The luminescence emission spectra of Nd3+ ions at 4F3/24I11/2 transition obtained from the waveguide (red dash line) and the bulk (blue solid line).

Fig. 4
Fig. 4

(a) Gain measurements as the ratio of input power (Red dots) and the fitting result (solid line); (b) the input (solid line) and amplified (dash line) 1064 nm signal pulse.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I i I s = ln( G 0 /G) G1
g=4.34× ln( G 0 ) L

Metrics