Abstract

We demonstrate the improved second-harmonic Talbot self-imaging through the quasi-phase-matching technique in a 2D periodically-poled LiTaO3 crystal. The domain structure not only composes a nonlinear optical grating which is necessary to realize nonlinear Talbot self-imaging, but also provides reciprocal vectors to satisfy the phase-matching condition for second-harmonic generation. Our experimental results show that quasi-phase-matching can improve the intensity of the second-harmonic Talbot self-imaging by a factor of 21.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Patorski, “The self-imaging phenomenon and its applications,” Prog. Opt.27, 1–108 (1989).
    [CrossRef]
  2. J. M. Wen, Y. Zhang, and M. Xiao, “The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics,” Adv. Opt. Photon.5(1), 83–130 (2013).
    [CrossRef]
  3. R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Discrete Talbot effect in waveguide arrays,” Phys. Rev. Lett.95(5), 053902 (2005).
    [CrossRef] [PubMed]
  4. X. B. Song, H. B. Wang, J. Xiong, K. Wang, X. D. Zhang, K. H. Luo, and L. A. Wu, “Experimental observation of quantum Talbot effects,” Phys. Rev. Lett.107(3), 033902 (2011).
    [CrossRef] [PubMed]
  5. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
    [CrossRef] [PubMed]
  6. Y. Zhang, J. M. Wen, S. N. Zhu, and M. Xiao, “Nonlinear Talbot effect,” Phys. Rev. Lett.104(18), 183901 (2010).
    [CrossRef] [PubMed]
  7. Z. H. Chen, D. M. Liu, Y. Zhang, J. M. Wen, S. N. Zhu, and M. Xiao, “Fractional second-harmonic Talbot effect,” Opt. Lett.37(4), 689–691 (2012).
    [CrossRef] [PubMed]
  8. D. M. Liu, Y. Zhang, Z. H. Chen, J. M. Wen, and M. Xiao, “Acoustic-optic tunable second-harmonic Talbot effect based on peripdocally poled LiNbO3 crystals,” J. Opt. Soc. Am. B29(12), 3325–3329 (2012).
    [CrossRef]
  9. Z. D. Gao, S. N. Zhu, S. Tu, and A. H. Kuang, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalate,” Appl. Phys. Lett.89(18), 181101 (2006).
    [CrossRef]
  10. A. Jechow, M. Schedel, S. Stry, J. Sacher, and R. Menzel, “Highly efficient single-pass frequency doubling of a continuous-wave distributed feedback laser diode using a PPLN waveguide crystal at 488 nm,” Opt. Lett.32(20), 3035–3037 (2007).
    [CrossRef] [PubMed]
  11. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett.81(19), 4136–4139 (1998).
    [CrossRef]
  12. R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Yu. S. Kivshar, “Broadband femtosecond frequency doubling in random media,” Appl. Phys. Lett.89(19), 191105 (2006).
    [CrossRef]
  13. Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, “Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides,” Phys. Rev. Lett.100(16), 163904 (2008).
    [CrossRef] [PubMed]
  14. T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics3(7), 395–398 (2009).
    [CrossRef]
  15. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).
  16. P. Ni, B. Ma, X. Wang, B. Cheng, and D. Zhang, “Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching,” Appl. Phys. Lett.82(24), 4230–4232 (2003).
    [CrossRef]
  17. K. S. Abedin and H. Ito, “Temperature-dependent dispersion relation of ferroelectric lithium tantalite,” J. Appl. Phys.80(11), 6561–6563 (1996).
    [CrossRef]

2013

2012

2011

X. B. Song, H. B. Wang, J. Xiong, K. Wang, X. D. Zhang, K. H. Luo, and L. A. Wu, “Experimental observation of quantum Talbot effects,” Phys. Rev. Lett.107(3), 033902 (2011).
[CrossRef] [PubMed]

2010

Y. Zhang, J. M. Wen, S. N. Zhu, and M. Xiao, “Nonlinear Talbot effect,” Phys. Rev. Lett.104(18), 183901 (2010).
[CrossRef] [PubMed]

2009

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics3(7), 395–398 (2009).
[CrossRef]

2008

Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, “Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides,” Phys. Rev. Lett.100(16), 163904 (2008).
[CrossRef] [PubMed]

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

2007

2006

R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Yu. S. Kivshar, “Broadband femtosecond frequency doubling in random media,” Appl. Phys. Lett.89(19), 191105 (2006).
[CrossRef]

Z. D. Gao, S. N. Zhu, S. Tu, and A. H. Kuang, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalate,” Appl. Phys. Lett.89(18), 181101 (2006).
[CrossRef]

2005

R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Discrete Talbot effect in waveguide arrays,” Phys. Rev. Lett.95(5), 053902 (2005).
[CrossRef] [PubMed]

2003

P. Ni, B. Ma, X. Wang, B. Cheng, and D. Zhang, “Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching,” Appl. Phys. Lett.82(24), 4230–4232 (2003).
[CrossRef]

1998

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett.81(19), 4136–4139 (1998).
[CrossRef]

1996

K. S. Abedin and H. Ito, “Temperature-dependent dispersion relation of ferroelectric lithium tantalite,” J. Appl. Phys.80(11), 6561–6563 (1996).
[CrossRef]

1989

K. Patorski, “The self-imaging phenomenon and its applications,” Prog. Opt.27, 1–108 (1989).
[CrossRef]

Abedin, K. S.

K. S. Abedin and H. Ito, “Temperature-dependent dispersion relation of ferroelectric lithium tantalite,” J. Appl. Phys.80(11), 6561–6563 (1996).
[CrossRef]

Arie, A.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics3(7), 395–398 (2009).
[CrossRef]

Bech, M.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

Berger, V.

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett.81(19), 4136–4139 (1998).
[CrossRef]

Brönnimann, Ch.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

Bunk, O.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

Chen, Z. H.

Cheng, B.

P. Ni, B. Ma, X. Wang, B. Cheng, and D. Zhang, “Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching,” Appl. Phys. Lett.82(24), 4230–4232 (2003).
[CrossRef]

Christodoulides, D. N.

R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Discrete Talbot effect in waveguide arrays,” Phys. Rev. Lett.95(5), 053902 (2005).
[CrossRef] [PubMed]

David, C.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

Eikenberry, E. F.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

Ellenbogen, T.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics3(7), 395–398 (2009).
[CrossRef]

Fischer, R.

R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Yu. S. Kivshar, “Broadband femtosecond frequency doubling in random media,” Appl. Phys. Lett.89(19), 191105 (2006).
[CrossRef]

Ganany-Padowicz, A.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics3(7), 395–398 (2009).
[CrossRef]

Gao, Z. D.

Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, “Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides,” Phys. Rev. Lett.100(16), 163904 (2008).
[CrossRef] [PubMed]

Z. D. Gao, S. N. Zhu, S. Tu, and A. H. Kuang, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalate,” Appl. Phys. Lett.89(18), 181101 (2006).
[CrossRef]

Grünzweig, C.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

Ito, H.

K. S. Abedin and H. Ito, “Temperature-dependent dispersion relation of ferroelectric lithium tantalite,” J. Appl. Phys.80(11), 6561–6563 (1996).
[CrossRef]

Iwanow, R.

R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Discrete Talbot effect in waveguide arrays,” Phys. Rev. Lett.95(5), 053902 (2005).
[CrossRef] [PubMed]

Jechow, A.

Kivshar, Yu. S.

R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Yu. S. Kivshar, “Broadband femtosecond frequency doubling in random media,” Appl. Phys. Lett.89(19), 191105 (2006).
[CrossRef]

Kraft, P.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

Krolikowski, W.

R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Yu. S. Kivshar, “Broadband femtosecond frequency doubling in random media,” Appl. Phys. Lett.89(19), 191105 (2006).
[CrossRef]

Kuang, A. H.

Z. D. Gao, S. N. Zhu, S. Tu, and A. H. Kuang, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalate,” Appl. Phys. Lett.89(18), 181101 (2006).
[CrossRef]

Liu, D. M.

Luo, K. H.

X. B. Song, H. B. Wang, J. Xiong, K. Wang, X. D. Zhang, K. H. Luo, and L. A. Wu, “Experimental observation of quantum Talbot effects,” Phys. Rev. Lett.107(3), 033902 (2011).
[CrossRef] [PubMed]

Ma, B.

P. Ni, B. Ma, X. Wang, B. Cheng, and D. Zhang, “Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching,” Appl. Phys. Lett.82(24), 4230–4232 (2003).
[CrossRef]

May-Arrioja, D. A.

R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Discrete Talbot effect in waveguide arrays,” Phys. Rev. Lett.95(5), 053902 (2005).
[CrossRef] [PubMed]

Menzel, R.

Min, Y.

R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Discrete Talbot effect in waveguide arrays,” Phys. Rev. Lett.95(5), 053902 (2005).
[CrossRef] [PubMed]

Ming, N. B.

Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, “Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides,” Phys. Rev. Lett.100(16), 163904 (2008).
[CrossRef] [PubMed]

Neshev, D. N.

R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Yu. S. Kivshar, “Broadband femtosecond frequency doubling in random media,” Appl. Phys. Lett.89(19), 191105 (2006).
[CrossRef]

Ni, P.

P. Ni, B. Ma, X. Wang, B. Cheng, and D. Zhang, “Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching,” Appl. Phys. Lett.82(24), 4230–4232 (2003).
[CrossRef]

Patorski, K.

K. Patorski, “The self-imaging phenomenon and its applications,” Prog. Opt.27, 1–108 (1989).
[CrossRef]

Pfeiffer, F.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

Qi, Z.

Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, “Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides,” Phys. Rev. Lett.100(16), 163904 (2008).
[CrossRef] [PubMed]

Sacher, J.

Saltiel, S. M.

R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Yu. S. Kivshar, “Broadband femtosecond frequency doubling in random media,” Appl. Phys. Lett.89(19), 191105 (2006).
[CrossRef]

Schedel, M.

Sohler, W.

R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Discrete Talbot effect in waveguide arrays,” Phys. Rev. Lett.95(5), 053902 (2005).
[CrossRef] [PubMed]

Song, X. B.

X. B. Song, H. B. Wang, J. Xiong, K. Wang, X. D. Zhang, K. H. Luo, and L. A. Wu, “Experimental observation of quantum Talbot effects,” Phys. Rev. Lett.107(3), 033902 (2011).
[CrossRef] [PubMed]

Stegeman, G. I.

R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Discrete Talbot effect in waveguide arrays,” Phys. Rev. Lett.95(5), 053902 (2005).
[CrossRef] [PubMed]

Stry, S.

Tu, S.

Z. D. Gao, S. N. Zhu, S. Tu, and A. H. Kuang, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalate,” Appl. Phys. Lett.89(18), 181101 (2006).
[CrossRef]

Voloch-Bloch, N.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics3(7), 395–398 (2009).
[CrossRef]

Wang, H. B.

X. B. Song, H. B. Wang, J. Xiong, K. Wang, X. D. Zhang, K. H. Luo, and L. A. Wu, “Experimental observation of quantum Talbot effects,” Phys. Rev. Lett.107(3), 033902 (2011).
[CrossRef] [PubMed]

Wang, K.

X. B. Song, H. B. Wang, J. Xiong, K. Wang, X. D. Zhang, K. H. Luo, and L. A. Wu, “Experimental observation of quantum Talbot effects,” Phys. Rev. Lett.107(3), 033902 (2011).
[CrossRef] [PubMed]

Wang, X.

P. Ni, B. Ma, X. Wang, B. Cheng, and D. Zhang, “Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching,” Appl. Phys. Lett.82(24), 4230–4232 (2003).
[CrossRef]

Wen, J. M.

Wu, L. A.

X. B. Song, H. B. Wang, J. Xiong, K. Wang, X. D. Zhang, K. H. Luo, and L. A. Wu, “Experimental observation of quantum Talbot effects,” Phys. Rev. Lett.107(3), 033902 (2011).
[CrossRef] [PubMed]

Xiao, M.

Xiong, J.

X. B. Song, H. B. Wang, J. Xiong, K. Wang, X. D. Zhang, K. H. Luo, and L. A. Wu, “Experimental observation of quantum Talbot effects,” Phys. Rev. Lett.107(3), 033902 (2011).
[CrossRef] [PubMed]

Zhang, D.

P. Ni, B. Ma, X. Wang, B. Cheng, and D. Zhang, “Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching,” Appl. Phys. Lett.82(24), 4230–4232 (2003).
[CrossRef]

Zhang, X. D.

X. B. Song, H. B. Wang, J. Xiong, K. Wang, X. D. Zhang, K. H. Luo, and L. A. Wu, “Experimental observation of quantum Talbot effects,” Phys. Rev. Lett.107(3), 033902 (2011).
[CrossRef] [PubMed]

Zhang, Y.

Zhu, S. N.

Z. H. Chen, D. M. Liu, Y. Zhang, J. M. Wen, S. N. Zhu, and M. Xiao, “Fractional second-harmonic Talbot effect,” Opt. Lett.37(4), 689–691 (2012).
[CrossRef] [PubMed]

Y. Zhang, J. M. Wen, S. N. Zhu, and M. Xiao, “Nonlinear Talbot effect,” Phys. Rev. Lett.104(18), 183901 (2010).
[CrossRef] [PubMed]

Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, “Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides,” Phys. Rev. Lett.100(16), 163904 (2008).
[CrossRef] [PubMed]

Z. D. Gao, S. N. Zhu, S. Tu, and A. H. Kuang, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalate,” Appl. Phys. Lett.89(18), 181101 (2006).
[CrossRef]

Adv. Opt. Photon.

Appl. Phys. Lett.

Z. D. Gao, S. N. Zhu, S. Tu, and A. H. Kuang, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalate,” Appl. Phys. Lett.89(18), 181101 (2006).
[CrossRef]

R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Yu. S. Kivshar, “Broadband femtosecond frequency doubling in random media,” Appl. Phys. Lett.89(19), 191105 (2006).
[CrossRef]

P. Ni, B. Ma, X. Wang, B. Cheng, and D. Zhang, “Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching,” Appl. Phys. Lett.82(24), 4230–4232 (2003).
[CrossRef]

J. Appl. Phys.

K. S. Abedin and H. Ito, “Temperature-dependent dispersion relation of ferroelectric lithium tantalite,” J. Appl. Phys.80(11), 6561–6563 (1996).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Mater.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

Nat. Photonics

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics3(7), 395–398 (2009).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett.81(19), 4136–4139 (1998).
[CrossRef]

Y. Zhang, J. M. Wen, S. N. Zhu, and M. Xiao, “Nonlinear Talbot effect,” Phys. Rev. Lett.104(18), 183901 (2010).
[CrossRef] [PubMed]

R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Discrete Talbot effect in waveguide arrays,” Phys. Rev. Lett.95(5), 053902 (2005).
[CrossRef] [PubMed]

X. B. Song, H. B. Wang, J. Xiong, K. Wang, X. D. Zhang, K. H. Luo, and L. A. Wu, “Experimental observation of quantum Talbot effects,” Phys. Rev. Lett.107(3), 033902 (2011).
[CrossRef] [PubMed]

Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, “Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides,” Phys. Rev. Lett.100(16), 163904 (2008).
[CrossRef] [PubMed]

Prog. Opt.

K. Patorski, “The self-imaging phenomenon and its applications,” Prog. Opt.27, 1–108 (1989).
[CrossRef]

Other

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental setup. The fundamental beam propagates along the y-axis of the crystal. The near-field images are collected by a CCD camera and the far-field images are projected on a screen. (b) The schematic diagram of QPM SH Talbot self-images. At the end face of the LiTaO3 crystal, the fundamental lights that travel through the negative domains (dashed arrows in red) produce bright SH stripes while the fundamental waves that do not pass the inverted domains (dashed arrow in black) generate dark stripes. In the far-field, five SH spots (A, B1, B1', B2, and B2') are generated due to QPM. The collinear (c) and noncollinear (d) phase-matching schemes in the 2D PPLT crystal are also shown.

Fig. 2
Fig. 2

The SH self-images at the first Talbot plane with different input wavelengths. The phase-matching condition is satisfied at 958 nm with the involvement of G01.

Fig. 3
Fig. 3

(a) The far-field SH spot of the collinear SHG with different input wavelengths. (b) The dependence of the SH intensity on the incident wavelength. The SH intensity is normalized to the peak intensity.

Fig. 4
Fig. 4

Integer and fractional QPM SH Talbot self-imaging. (a) is the SH pattern at the end face of the sample. The marked area is a defect in the sample. (b) and (c) are the SH self-images at the first and second Talbot planes, respectively. The marked areas corresponds to the same position of the defects in (a). (d)-(f) are the fractional SH self-image at a distance of 29.1um, 63um, and 84um away from the sample, respectively. The marked area in (d) present a fine structure due to the defect in (a).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2 k ω + G m,n = k 2ω

Metrics