Abstract

We present the design, fabrication and characterization of athermal nano-photonic silicon ring modulators. The athermalization method employs compensation of the silicon core thermo-optic contribution with that from the amorphous titanium dioxide (a-TiO2) overcladding with a negative thermo-optic coefficient. We developed a new CMOS-compatible fabrication process involving low temperature RF magnetron sputtering of high-density and low-loss a-TiO2 that can withstand subsequent elevated-temperature CMOS processes. Silicon ring resonators with 275 nm wide rib waveguide clad with a-TiO2 showed near complete athermalization and moderate optical losses. Small-signal testing of the micro-resonator modulators showed high extinction ratio and gigahertz bandwidth.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L.  Zhou, K.  Kashiwagi, K.  Okamoto, R.  Scott, N.  Fontaine, D.  Ding, V.  Akella, S. J.  Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys., A Mater. Sci. Process. 95(4), 1101–1109 (2009).
    [CrossRef]
  2. V.  Raghunathan, W. N.  Ye, J.  Hu, T.  Izuhara, J.  Michel, L.  Kimerling, “Athermal operation of silicon waveguides: spectral, second order and footprint dependencies,” Opt. Express 18(17), 17631–17639 (2010).
    [CrossRef] [PubMed]
  3. P.  Alipour, E. S.  Hosseini, A. A.  Eftekhar, B.  Momeni, A.  Adibi, “Athermal performance in high-Q polymer-clad silicon microdisk resonators,” Opt. Lett. 35(20), 3462–3464 (2010).
    [CrossRef] [PubMed]
  4. V. Raghunathan, J. Hu, W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal silicon ring resonators,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2010).
  5. C.  Decker, F.  Masson, R.  Schwalm, “Weathering resistance of waterbased UV-cured polyurethane-acrylate coatings,” Polym. Degrad. Stabil. 83(2), 309–320 (2004).
    [CrossRef]
  6. C.  Decker K.  Zahouily, “Photodegradation and photooxidation of thermoset and UV-cured acrylate polymers,” Polym. Degrad. Stabil. 64(2), 293–304 (1999).
    [CrossRef]
  7. I. M.  Hodge, “Physical aging in polymer glasses,” Science 267(5206), 1945–1947 (1995).
    [PubMed]
  8. B. Guha, B. B. Kyotoku, and M. Lipson, “CMOS compatible athermal silicon microring resonators,” arXiv preprint arXiv:0911.3444 (2009).
  9. B.  Guha, K.  Preston, M.  Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett. 37(12), 2253–2255 (2012).
    [CrossRef] [PubMed]
  10. K. Shang, S. S. Djordjevic, J. Li, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible Titanium Dioxide Deposition for Athermalization of Silicon Waveguides,” accepted for publication in Conference on Lasers and Electro-Optics (CLEO), Paper CF2I.5 (San Jose, 2013).
  11. S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, C. Qin, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “Athermal Silicon Ring Modulators Clad with Titanium Dioxide by RF Magnetron Sputtering,” Paper TuC4, Optical Interconnects Conference, 2012 IEEE (Santa Fe, 2013)
  12. O.  Powell, D.  Sweatman, H. B.  Harrison, “The use of titanium and titanium dioxide as masks for deep silicon etching,” Smart Mater. Struct. 15(1), S81–S86 (2006).
    [CrossRef]
  13. Y. Ma, Y. Ono, and S. T. Hsu, “Deposition and treatment of TiO2 as an alternative for ultrathin gate dielectrics,” in MRS Proceedings (Cambridge University Press, 1999).
    [CrossRef]
  14. H. Y.  Jeong, S. K.  Kim, J. Y.  Lee, S.-Y.  Choi, “Role of interface reaction on resistive switching of metal/amorphous TiO2/Al RRAM devices,” J. Electrochem. Soc. 158(10), H979–H982 (2011).
    [CrossRef]
  15. X.  Song C. G.  Takoudis, “Cyclic Chemical-Vapor-Deposited TiO2/ Al2O3 Film Using Trimethyl Aluminum, Tetrakis (diethylamino) titanium, and O2,” J. Electrochem. Soc. 154(8), G177–G182 (2007).
    [CrossRef]
  16. N.  Martin, C.  Rousselot, D.  Rondot, F.  Palmino, R.  Mercier, “Microstructure modification of amorphous titanium oxide thin films during annealing treatment,” Thin Solid Films 300(1-2), 113–121 (1997).
    [CrossRef]
  17. J.  Heller, “Reactive sputtering of metals in oxidizing atmospheres,” Thin Solid Films 17(2), 163–176 (1973).
    [CrossRef]
  18. C.  Ottermann K.  Bange, “Correlation between the density of TiO< sub> 2 films and their properties,” Thin Solid Films 286(1-2), 32–34 (1996).
    [CrossRef]
  19. D.  Wicaksana, A.  Kobayashi, A.  Kinbara, “Process effects on structural properties of TiO2 thin films by reactive sputtering,” J. Vac. Sci. Technol. A 10(4), 1479–1482 (1992).
    [CrossRef]
  20. S. T. Cheung, B. Guan, S. S. Djordjevic, K. Okamoto, and S. Yoo, “Low-loss and high contrast silicon-on-insulator (SOI) arrayed waveguide grating,” in CLEO: Science and Innovations(Optical Society of America, 2012).
  21. L.  Chen, C. R.  Doerr, Y.-K.  Chen, T.-Y.  Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” Photonics Technology Letters, IEEE 22(23), 1744–1746 (2010).
    [CrossRef]
  22. Q.  Xu, S.  Manipatruni, B.  Schmidt, J.  Shakya, M.  Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
    [CrossRef] [PubMed]
  23. B. K.  Garside, J. P.  Marton, T.  Tricker, “Measurement of distributed losses in optical waveguides: a new technique,” Appl. Opt. 30(6), 689–695 (1991).
    [CrossRef] [PubMed]
  24. B. R. Moss, S. Chen, M. Georgas, J. Shainline, J. S. Orcutt, J. C. Leu, M. Wade, C. Yu-Hsin, K. Nammari, W. Xiaoxi, L. Hanqing, R. Ram, M. A. Popovic, and V. Stojanovic, “A 1.23pJ/b 2.5Gb/s monolithically integrated optical carrier-injection ring modulator and all-digital driver circuit in commercial 45nm SOI,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International(2013), 126–127.
  25. A. C.  Turner-Foster, M. A.  Foster, J. S.  Levy, C. B.  Poitras, R.  Salem, A. L.  Gaeta, M.  Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
    [CrossRef] [PubMed]
  26. S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in Lasers and Electro-Optics Society,2007. LEOS 2007. The 20th Annual Meeting of the IEEE(IEEE, 2007), 537–538.
    [CrossRef]
  27. L.  Zhou, K.  Okamoto, S. J. B.  Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett. 21(17), 1175–1177 (2009).

2012 (1)

2011 (1)

H. Y.  Jeong, S. K.  Kim, J. Y.  Lee, S.-Y.  Choi, “Role of interface reaction on resistive switching of metal/amorphous TiO2/Al RRAM devices,” J. Electrochem. Soc. 158(10), H979–H982 (2011).
[CrossRef]

2010 (4)

2009 (2)

L.  Zhou, K.  Okamoto, S. J. B.  Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett. 21(17), 1175–1177 (2009).

L.  Zhou, K.  Kashiwagi, K.  Okamoto, R.  Scott, N.  Fontaine, D.  Ding, V.  Akella, S. J.  Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys., A Mater. Sci. Process. 95(4), 1101–1109 (2009).
[CrossRef]

2007 (2)

Q.  Xu, S.  Manipatruni, B.  Schmidt, J.  Shakya, M.  Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[CrossRef] [PubMed]

X.  Song C. G.  Takoudis, “Cyclic Chemical-Vapor-Deposited TiO2/ Al2O3 Film Using Trimethyl Aluminum, Tetrakis (diethylamino) titanium, and O2,” J. Electrochem. Soc. 154(8), G177–G182 (2007).
[CrossRef]

2006 (1)

O.  Powell, D.  Sweatman, H. B.  Harrison, “The use of titanium and titanium dioxide as masks for deep silicon etching,” Smart Mater. Struct. 15(1), S81–S86 (2006).
[CrossRef]

2004 (1)

C.  Decker, F.  Masson, R.  Schwalm, “Weathering resistance of waterbased UV-cured polyurethane-acrylate coatings,” Polym. Degrad. Stabil. 83(2), 309–320 (2004).
[CrossRef]

1999 (1)

C.  Decker K.  Zahouily, “Photodegradation and photooxidation of thermoset and UV-cured acrylate polymers,” Polym. Degrad. Stabil. 64(2), 293–304 (1999).
[CrossRef]

1997 (1)

N.  Martin, C.  Rousselot, D.  Rondot, F.  Palmino, R.  Mercier, “Microstructure modification of amorphous titanium oxide thin films during annealing treatment,” Thin Solid Films 300(1-2), 113–121 (1997).
[CrossRef]

1996 (1)

C.  Ottermann K.  Bange, “Correlation between the density of TiO< sub> 2 films and their properties,” Thin Solid Films 286(1-2), 32–34 (1996).
[CrossRef]

1995 (1)

I. M.  Hodge, “Physical aging in polymer glasses,” Science 267(5206), 1945–1947 (1995).
[PubMed]

1992 (1)

D.  Wicaksana, A.  Kobayashi, A.  Kinbara, “Process effects on structural properties of TiO2 thin films by reactive sputtering,” J. Vac. Sci. Technol. A 10(4), 1479–1482 (1992).
[CrossRef]

1991 (1)

1973 (1)

J.  Heller, “Reactive sputtering of metals in oxidizing atmospheres,” Thin Solid Films 17(2), 163–176 (1973).
[CrossRef]

Adibi, A.

Akella, V.

L.  Zhou, K.  Kashiwagi, K.  Okamoto, R.  Scott, N.  Fontaine, D.  Ding, V.  Akella, S. J.  Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys., A Mater. Sci. Process. 95(4), 1101–1109 (2009).
[CrossRef]

Alipour, P.

Bange, K.

C.  Ottermann K.  Bange, “Correlation between the density of TiO< sub> 2 films and their properties,” Thin Solid Films 286(1-2), 32–34 (1996).
[CrossRef]

Chen, L.

L.  Chen, C. R.  Doerr, Y.-K.  Chen, T.-Y.  Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” Photonics Technology Letters, IEEE 22(23), 1744–1746 (2010).
[CrossRef]

Chen, Y.-K.

L.  Chen, C. R.  Doerr, Y.-K.  Chen, T.-Y.  Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” Photonics Technology Letters, IEEE 22(23), 1744–1746 (2010).
[CrossRef]

Choi, S.-Y.

H. Y.  Jeong, S. K.  Kim, J. Y.  Lee, S.-Y.  Choi, “Role of interface reaction on resistive switching of metal/amorphous TiO2/Al RRAM devices,” J. Electrochem. Soc. 158(10), H979–H982 (2011).
[CrossRef]

Decker, C.

C.  Decker, F.  Masson, R.  Schwalm, “Weathering resistance of waterbased UV-cured polyurethane-acrylate coatings,” Polym. Degrad. Stabil. 83(2), 309–320 (2004).
[CrossRef]

C.  Decker K.  Zahouily, “Photodegradation and photooxidation of thermoset and UV-cured acrylate polymers,” Polym. Degrad. Stabil. 64(2), 293–304 (1999).
[CrossRef]

Ding, D.

L.  Zhou, K.  Kashiwagi, K.  Okamoto, R.  Scott, N.  Fontaine, D.  Ding, V.  Akella, S. J.  Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys., A Mater. Sci. Process. 95(4), 1101–1109 (2009).
[CrossRef]

Doerr, C. R.

L.  Chen, C. R.  Doerr, Y.-K.  Chen, T.-Y.  Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” Photonics Technology Letters, IEEE 22(23), 1744–1746 (2010).
[CrossRef]

Eftekhar, A. A.

Fontaine, N.

L.  Zhou, K.  Kashiwagi, K.  Okamoto, R.  Scott, N.  Fontaine, D.  Ding, V.  Akella, S. J.  Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys., A Mater. Sci. Process. 95(4), 1101–1109 (2009).
[CrossRef]

Foster, M. A.

Gaeta, A. L.

Garside, B. K.

Guha, B.

Harrison, H. B.

O.  Powell, D.  Sweatman, H. B.  Harrison, “The use of titanium and titanium dioxide as masks for deep silicon etching,” Smart Mater. Struct. 15(1), S81–S86 (2006).
[CrossRef]

Heller, J.

J.  Heller, “Reactive sputtering of metals in oxidizing atmospheres,” Thin Solid Films 17(2), 163–176 (1973).
[CrossRef]

Hodge, I. M.

I. M.  Hodge, “Physical aging in polymer glasses,” Science 267(5206), 1945–1947 (1995).
[PubMed]

Hosseini, E. S.

Hu, J.

Izuhara, T.

Jeong, H. Y.

H. Y.  Jeong, S. K.  Kim, J. Y.  Lee, S.-Y.  Choi, “Role of interface reaction on resistive switching of metal/amorphous TiO2/Al RRAM devices,” J. Electrochem. Soc. 158(10), H979–H982 (2011).
[CrossRef]

Kashiwagi, K.

L.  Zhou, K.  Kashiwagi, K.  Okamoto, R.  Scott, N.  Fontaine, D.  Ding, V.  Akella, S. J.  Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys., A Mater. Sci. Process. 95(4), 1101–1109 (2009).
[CrossRef]

Kim, S. K.

H. Y.  Jeong, S. K.  Kim, J. Y.  Lee, S.-Y.  Choi, “Role of interface reaction on resistive switching of metal/amorphous TiO2/Al RRAM devices,” J. Electrochem. Soc. 158(10), H979–H982 (2011).
[CrossRef]

Kimerling, L.

Kinbara, A.

D.  Wicaksana, A.  Kobayashi, A.  Kinbara, “Process effects on structural properties of TiO2 thin films by reactive sputtering,” J. Vac. Sci. Technol. A 10(4), 1479–1482 (1992).
[CrossRef]

Kobayashi, A.

D.  Wicaksana, A.  Kobayashi, A.  Kinbara, “Process effects on structural properties of TiO2 thin films by reactive sputtering,” J. Vac. Sci. Technol. A 10(4), 1479–1482 (1992).
[CrossRef]

Lee, J. Y.

H. Y.  Jeong, S. K.  Kim, J. Y.  Lee, S.-Y.  Choi, “Role of interface reaction on resistive switching of metal/amorphous TiO2/Al RRAM devices,” J. Electrochem. Soc. 158(10), H979–H982 (2011).
[CrossRef]

Levy, J. S.

Liow, T.-Y.

L.  Chen, C. R.  Doerr, Y.-K.  Chen, T.-Y.  Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” Photonics Technology Letters, IEEE 22(23), 1744–1746 (2010).
[CrossRef]

Lipson, M.

Manipatruni, S.

Martin, N.

N.  Martin, C.  Rousselot, D.  Rondot, F.  Palmino, R.  Mercier, “Microstructure modification of amorphous titanium oxide thin films during annealing treatment,” Thin Solid Films 300(1-2), 113–121 (1997).
[CrossRef]

Marton, J. P.

Masson, F.

C.  Decker, F.  Masson, R.  Schwalm, “Weathering resistance of waterbased UV-cured polyurethane-acrylate coatings,” Polym. Degrad. Stabil. 83(2), 309–320 (2004).
[CrossRef]

Mercier, R.

N.  Martin, C.  Rousselot, D.  Rondot, F.  Palmino, R.  Mercier, “Microstructure modification of amorphous titanium oxide thin films during annealing treatment,” Thin Solid Films 300(1-2), 113–121 (1997).
[CrossRef]

Michel, J.

Momeni, B.

Okamoto, K.

L.  Zhou, K.  Okamoto, S. J. B.  Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett. 21(17), 1175–1177 (2009).

L.  Zhou, K.  Kashiwagi, K.  Okamoto, R.  Scott, N.  Fontaine, D.  Ding, V.  Akella, S. J.  Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys., A Mater. Sci. Process. 95(4), 1101–1109 (2009).
[CrossRef]

Ottermann, C.

C.  Ottermann K.  Bange, “Correlation between the density of TiO< sub> 2 films and their properties,” Thin Solid Films 286(1-2), 32–34 (1996).
[CrossRef]

Palmino, F.

N.  Martin, C.  Rousselot, D.  Rondot, F.  Palmino, R.  Mercier, “Microstructure modification of amorphous titanium oxide thin films during annealing treatment,” Thin Solid Films 300(1-2), 113–121 (1997).
[CrossRef]

Poitras, C. B.

Powell, O.

O.  Powell, D.  Sweatman, H. B.  Harrison, “The use of titanium and titanium dioxide as masks for deep silicon etching,” Smart Mater. Struct. 15(1), S81–S86 (2006).
[CrossRef]

Preston, K.

Raghunathan, V.

Rondot, D.

N.  Martin, C.  Rousselot, D.  Rondot, F.  Palmino, R.  Mercier, “Microstructure modification of amorphous titanium oxide thin films during annealing treatment,” Thin Solid Films 300(1-2), 113–121 (1997).
[CrossRef]

Rousselot, C.

N.  Martin, C.  Rousselot, D.  Rondot, F.  Palmino, R.  Mercier, “Microstructure modification of amorphous titanium oxide thin films during annealing treatment,” Thin Solid Films 300(1-2), 113–121 (1997).
[CrossRef]

Salem, R.

Schmidt, B.

Schwalm, R.

C.  Decker, F.  Masson, R.  Schwalm, “Weathering resistance of waterbased UV-cured polyurethane-acrylate coatings,” Polym. Degrad. Stabil. 83(2), 309–320 (2004).
[CrossRef]

Scott, R.

L.  Zhou, K.  Kashiwagi, K.  Okamoto, R.  Scott, N.  Fontaine, D.  Ding, V.  Akella, S. J.  Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys., A Mater. Sci. Process. 95(4), 1101–1109 (2009).
[CrossRef]

Shakya, J.

Song, X.

X.  Song C. G.  Takoudis, “Cyclic Chemical-Vapor-Deposited TiO2/ Al2O3 Film Using Trimethyl Aluminum, Tetrakis (diethylamino) titanium, and O2,” J. Electrochem. Soc. 154(8), G177–G182 (2007).
[CrossRef]

Sweatman, D.

O.  Powell, D.  Sweatman, H. B.  Harrison, “The use of titanium and titanium dioxide as masks for deep silicon etching,” Smart Mater. Struct. 15(1), S81–S86 (2006).
[CrossRef]

Takoudis, C. G.

X.  Song C. G.  Takoudis, “Cyclic Chemical-Vapor-Deposited TiO2/ Al2O3 Film Using Trimethyl Aluminum, Tetrakis (diethylamino) titanium, and O2,” J. Electrochem. Soc. 154(8), G177–G182 (2007).
[CrossRef]

Tricker, T.

Turner-Foster, A. C.

Wicaksana, D.

D.  Wicaksana, A.  Kobayashi, A.  Kinbara, “Process effects on structural properties of TiO2 thin films by reactive sputtering,” J. Vac. Sci. Technol. A 10(4), 1479–1482 (1992).
[CrossRef]

Xu, Q.

Ye, W. N.

Yoo, S. J.

L.  Zhou, K.  Kashiwagi, K.  Okamoto, R.  Scott, N.  Fontaine, D.  Ding, V.  Akella, S. J.  Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys., A Mater. Sci. Process. 95(4), 1101–1109 (2009).
[CrossRef]

Yoo, S. J. B.

L.  Zhou, K.  Okamoto, S. J. B.  Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett. 21(17), 1175–1177 (2009).

Zahouily, K.

C.  Decker K.  Zahouily, “Photodegradation and photooxidation of thermoset and UV-cured acrylate polymers,” Polym. Degrad. Stabil. 64(2), 293–304 (1999).
[CrossRef]

Zhou, L.

L.  Zhou, K.  Okamoto, S. J. B.  Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett. 21(17), 1175–1177 (2009).

L.  Zhou, K.  Kashiwagi, K.  Okamoto, R.  Scott, N.  Fontaine, D.  Ding, V.  Akella, S. J.  Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys., A Mater. Sci. Process. 95(4), 1101–1109 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys., A Mater. Sci. Process. (1)

L.  Zhou, K.  Kashiwagi, K.  Okamoto, R.  Scott, N.  Fontaine, D.  Ding, V.  Akella, S. J.  Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys., A Mater. Sci. Process. 95(4), 1101–1109 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L.  Zhou, K.  Okamoto, S. J. B.  Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photon. Technol. Lett. 21(17), 1175–1177 (2009).

J. Electrochem. Soc. (2)

H. Y.  Jeong, S. K.  Kim, J. Y.  Lee, S.-Y.  Choi, “Role of interface reaction on resistive switching of metal/amorphous TiO2/Al RRAM devices,” J. Electrochem. Soc. 158(10), H979–H982 (2011).
[CrossRef]

X.  Song C. G.  Takoudis, “Cyclic Chemical-Vapor-Deposited TiO2/ Al2O3 Film Using Trimethyl Aluminum, Tetrakis (diethylamino) titanium, and O2,” J. Electrochem. Soc. 154(8), G177–G182 (2007).
[CrossRef]

J. Vac. Sci. Technol. A (1)

D.  Wicaksana, A.  Kobayashi, A.  Kinbara, “Process effects on structural properties of TiO2 thin films by reactive sputtering,” J. Vac. Sci. Technol. A 10(4), 1479–1482 (1992).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Photonics Technology Letters, IEEE (1)

L.  Chen, C. R.  Doerr, Y.-K.  Chen, T.-Y.  Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” Photonics Technology Letters, IEEE 22(23), 1744–1746 (2010).
[CrossRef]

Polym. Degrad. Stabil. (2)

C.  Decker, F.  Masson, R.  Schwalm, “Weathering resistance of waterbased UV-cured polyurethane-acrylate coatings,” Polym. Degrad. Stabil. 83(2), 309–320 (2004).
[CrossRef]

C.  Decker K.  Zahouily, “Photodegradation and photooxidation of thermoset and UV-cured acrylate polymers,” Polym. Degrad. Stabil. 64(2), 293–304 (1999).
[CrossRef]

Science (1)

I. M.  Hodge, “Physical aging in polymer glasses,” Science 267(5206), 1945–1947 (1995).
[PubMed]

Smart Mater. Struct. (1)

O.  Powell, D.  Sweatman, H. B.  Harrison, “The use of titanium and titanium dioxide as masks for deep silicon etching,” Smart Mater. Struct. 15(1), S81–S86 (2006).
[CrossRef]

Thin Solid Films (3)

N.  Martin, C.  Rousselot, D.  Rondot, F.  Palmino, R.  Mercier, “Microstructure modification of amorphous titanium oxide thin films during annealing treatment,” Thin Solid Films 300(1-2), 113–121 (1997).
[CrossRef]

J.  Heller, “Reactive sputtering of metals in oxidizing atmospheres,” Thin Solid Films 17(2), 163–176 (1973).
[CrossRef]

C.  Ottermann K.  Bange, “Correlation between the density of TiO< sub> 2 films and their properties,” Thin Solid Films 286(1-2), 32–34 (1996).
[CrossRef]

Other (8)

Y. Ma, Y. Ono, and S. T. Hsu, “Deposition and treatment of TiO2 as an alternative for ultrathin gate dielectrics,” in MRS Proceedings (Cambridge University Press, 1999).
[CrossRef]

K. Shang, S. S. Djordjevic, J. Li, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible Titanium Dioxide Deposition for Athermalization of Silicon Waveguides,” accepted for publication in Conference on Lasers and Electro-Optics (CLEO), Paper CF2I.5 (San Jose, 2013).

S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, C. Qin, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “Athermal Silicon Ring Modulators Clad with Titanium Dioxide by RF Magnetron Sputtering,” Paper TuC4, Optical Interconnects Conference, 2012 IEEE (Santa Fe, 2013)

B. Guha, B. B. Kyotoku, and M. Lipson, “CMOS compatible athermal silicon microring resonators,” arXiv preprint arXiv:0911.3444 (2009).

V. Raghunathan, J. Hu, W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal silicon ring resonators,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2010).

S. T. Cheung, B. Guan, S. S. Djordjevic, K. Okamoto, and S. Yoo, “Low-loss and high contrast silicon-on-insulator (SOI) arrayed waveguide grating,” in CLEO: Science and Innovations(Optical Society of America, 2012).

B. R. Moss, S. Chen, M. Georgas, J. Shainline, J. S. Orcutt, J. C. Leu, M. Wade, C. Yu-Hsin, K. Nammari, W. Xiaoxi, L. Hanqing, R. Ram, M. A. Popovic, and V. Stojanovic, “A 1.23pJ/b 2.5Gb/s monolithically integrated optical carrier-injection ring modulator and all-digital driver circuit in commercial 45nm SOI,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International(2013), 126–127.

S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in Lasers and Electro-Optics Society,2007. LEOS 2007. The 20th Annual Meeting of the IEEE(IEEE, 2007), 537–538.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Design of athermal Si-TiO2 waveguide: overcladding-to-core confinement factor ratio versus waveguide width for different possible values of TiO2 cladding refractive index. Considered are TE polarized optical modes. Inset shows waveguide cross-section, with marked critical dimensions

Fig. 2
Fig. 2

Phase transitions in TiO2: a) Annealing experiment at 850 °C using films deposited at 350 °C and b) Annealing experiment at 750 °C using films deposited at 400°C. XRD traces show anatase peaks with triangular markers and rutile peaks with circular markers. Blue lines represent XRD traces of ‘as deposited’ samples and green lines are XRD traces of annealed samples.

Fig. 3
Fig. 3

Characterization of TiO2 films a1-a4) XRD traces of films with 6%, 12%, 18% and 24% O2 content; Marked are silicon substrate peaks and Ti peak in a1); triangles mark anatase and circles mark peaks attributed to rutile; b) refractive index (red line) and TOC (blue line) as function of O2 content (at 350 W RF power); c) refractive index (red line) and TOC (blue line) as function of RF power (at 12% O2 content); d1-d3) atomic force microscope images of films with 12%, 20% and 24% O2 content. Respective RMS roughness values measured are 0.463 nm, 0.226 nm and 0.237 nm.

Fig. 4
Fig. 4

Fabrication process flow. Left device represents coupling structure (at the facet) and right device represents modulator phase tuning section (middle of the die): a) starting SOI wafer b) LSN hard mask deposition c) waveguide layer lithography d) waveguide etching e) sidewall smoothening by dry oxidation f) oxide stripping g) LTO deposition for oxidation mask h) oxidation mask patterning lithography i) oxidation mask patterning etch j) selective deep oxidation process k) – r) P and N implant lithography, etch and implant steps, s) cladding deposition and dopant activation anneal t) via lithography, u) via etch, v) contact metal deposition, w) electrode patterning lithography, x) electrode patterning etch and forming gas anneal y) trench layer patterning lithography z) trench layer patterning etch aa) O2 plasma ashing and oxide descum step bb) cantilever patterning litho cc) cladding and BOx etch dd) cantilever release etch ee) deep facet etching dd) TiO2 deposition and final device structure. Marked are inverse taper coupler (edge of die) and ring phase tuning section (middle of die).

Fig. 5
Fig. 5

fabricated devices: a) cross-section schematic of the phase tuning section in the ring resonator after filling the trench with TiO2; b) SEM image of the ring resonator with 275 nm wide waveguide, prior to TiO2 deposition; c) magnified view of the section of waveguide to ring directional coupler, illustrating the principle of trenching; d) transition of trenched waveguide to waveguide clad with SiO2 (not trenched).

Fig. 6
Fig. 6

a1-a4) OVNA recorded impulse responses of devices with 400 nm, 350 nm, 300 nm and 250 nm wide waveguides; b1-b4) respective frequency responses; c) comparison of propagation loss values for SiO2 and TiO2 (prior and post 450 °C anneal) cladding with respect to the waveguide width; d1) XRD of ‘as deposited’ sample and d2-d6) XRD traces of samples annealed at 350 °C, 450 °C, 550 °C, 750 °C, and 850 °C. Clear evidence of crystallization is present in d5) and d6) with dominant rutile peaks at ~62 deg and ~66 deg.

Fig. 7
Fig. 7

a) evidence of blue shift with temperature increase in 250nm wide waveguide device b) summary of measured (square markers) and fitted values of resonant frequency shifts for different waveguide width devices. Inset marks the waveguide width.

Fig. 8
Fig. 8

Modulation performance a) static modulation by carrier injection showing blue shift of ring resonance at the bias value of 2.3VDC b) small signal modulation bandwidth measurement setup c) LCA trace of modulation response as function of frequency.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n eff = Γ core n core + Γ overclad n overclad + Γ underclad n underclad ,
n eff T Γ core n core T + Γ overclad n overclad T + Γ underclad n underclad T ,
n eff T Γ core n core T + Γ overclad n overclad T 0,
Γ overclad Γ core n core T n oveclad T ,

Metrics