Abstract

The scattering of electrically excited surface plasmon polaritons (SPPs) into photons at the edges of gold metal stripes is investigated. The SPPs are locally generated by the inelastic tunneling current of a scanning tunneling microscope (STM). The majority of the collected light arising from the scattering of SPPs at the stripe edges is emitted in the forward direction and is collected at large angle (close to the air-glass critical angle, θc). A much weaker isotropic component of the scattered light gives rise to an interference pattern in the Fourier plane images, demonstrating that plasmons may be scattered coherently. An analysis of the interference pattern as a function of excitation position on the stripe is used to determine a value of 1.42 ± 0.18 for the relative plasmon wave vector (kSPP/k0) of the corresponding SPPs. From these results, we interpret the directional, large angle (θ~θc) scattering to be mainly from plasmons on the air-gold interface, and the diffuse scattering forming interference fringes to be dominantly from plasmons on the gold-substrate interface.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005).
    [CrossRef]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
    [CrossRef]
  3. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett.22(7), 475–477 (1997).
    [CrossRef] [PubMed]
  4. J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B60(12), 9061–9068 (1999).
    [CrossRef]
  5. R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B104(26), 6095–6098 (2000).
    [CrossRef]
  6. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
    [CrossRef] [PubMed]
  7. E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett.7(9), 2843–2846 (2007).
    [CrossRef] [PubMed]
  8. T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett.11(2), 706–711 (2011).
    [CrossRef] [PubMed]
  9. C. Rewitz, T. Keitzl, P. Tuchscherer, J.-S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett.12(1), 45–49 (2012).
    [CrossRef] [PubMed]
  10. J.-C. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B68(11), 115401 (2003).
    [CrossRef]
  11. J. R. Krenn and J. C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos Trans A Math Phys Eng Sci362(1817), 739–756 (2004).
    [CrossRef] [PubMed]
  12. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B63(12), 125417 (2001).
    [CrossRef]
  13. R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B71(16), 165431 (2005).
    [CrossRef]
  14. E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence,” Nano Lett.11(10), 4265–4269 (2011).
    [CrossRef] [PubMed]
  15. R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B74(16), 165415 (2006).
    [CrossRef]
  16. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007).
    [CrossRef] [PubMed]
  17. H. Wei, D. Ratchford, X. E. Li, H. Xu, and C.-K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett.9(12), 4168–4171 (2009).
    [CrossRef] [PubMed]
  18. A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett.106(9), 096801 (2011).
    [CrossRef] [PubMed]
  19. P. Dawson, F. D. Fornel, and J. P. Goudonnet, “Imaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope,” Phys. Rev. Lett.72(18), 2927–2930 (1994).
  20. B. Steinberger, “The passive and dynamic control of surface plasmon polariton propagation,” Ph.D thesis (Karl-Franzens-University Graz, 2007).
  21. Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett.9(12), 4383–4386 (2009).
    [CrossRef] [PubMed]
  22. J. Berthelot, F. Tantussi, P. Rai, G. Colas des Francs, J.-C. Weeber, A. Dereux, F. Fuso, M. Allegrini, and A. Bouhelier, “Determinant role of the edges in defining surface plasmon propagation in stripe waveguides and tapered concentrators,” J. Opt. Soc. Am. B29(2), 226–231 (2012).
    [CrossRef]
  23. R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett.67(27), 3796–3799 (1991).
    [CrossRef] [PubMed]
  24. S. Egusa, Y.-H. Liau, and N. F. Scherer, “Imaging scanning tunneling microscope-induced electroluminescence in plasmonic corrals,” Appl. Phys. Lett.84(8), 1257–1259 (2004).
    [CrossRef]
  25. T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology22(17), 175201 (2011).
    [CrossRef] [PubMed]
  26. P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett.106(22), 226802 (2011).
    [CrossRef] [PubMed]
  27. L. Douillard and F. Charra, “High-resolution mapping of plasmonic modes: photoemission and scanning tunnelling luminescence microscopies,” J. Phys. D Appl. Phys.44(46), 464002 (2011).
    [CrossRef]
  28. C. J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford University, 1993).
  29. Y. Nakamura, Y. Mera, and K. Maeda, “A reproducible method to fabricate atomically sharp tips for scanning tunneling microscopy,” Rev. Sci. Instrum.70(8), 3373–3376 (1999).
    [CrossRef]
  30. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Philos. Roy. Soc. A149, 220–229 (2008).
  31. M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B21(6), 1210–1215 (2004).
    [CrossRef]
  32. Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett.10(5), 1831–1835 (2010).
    [CrossRef] [PubMed]
  33. T. Wang, “Electrical excitation of surface plasmons with a scanning tunneling microscope,” Ph.D thesis (Université Paris-Sud, 2012).
  34. V. B. Zon, “Reflection, refraction, and transformation into photons of surface plasmons on a metal wedge,” J. Opt. Soc. Am. B24(8), 1960–1967 (2007).
    [CrossRef]
  35. R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nat. Nanotechnol.2(7), 426–429 (2007).
    [CrossRef] [PubMed]
  36. S. Ravets, J. C. Rodier, B. Ea Kim, J. P. Hugonin, L. Jacubowiez, and P. Lalanne, “Surface plasmons in the Young slit doublet experiment,” J. Opt. Soc. Am. B26(12), B28–B33 (2009).
    [CrossRef]
  37. S. A. Guebrou, J. Laverdant, C. Symonds, S. Vignoli, and J. Bellessa, “Spatial coherence properties of surface plasmon investigated by Young’s slit experiment,” Opt. Lett.37(11), 2139–2141 (2012).
    [CrossRef] [PubMed]
  38. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  39. R. Innes and J. Sambles, “Optical characterisation of gold using surface plasmon-polaritons,” J. Phys. F Met. Phys.17(1), 277–287 (1987).
    [CrossRef]
  40. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  41. P. Li and T. Taubner, “Broadband subwavelength imaging using a tunable graphene-lens,” ACS Nano6(11), 10107–10114 (2012).
    [CrossRef] [PubMed]
  42. Theoretically it may be shown that by assuming that the scattered light is driven by a weighted coherent sum of SPP modes from both interfaces, the effectively observed kSPP/k0 determined from the above fringe shift method is neither that of the air/Au mode nor that of the Au/ITO/glass mode but a weighted average of the two. If both modes mix at the edge, there is some change in fringe visibility (due to partly constructive or destructive interference) and the fringes in the Fourier plane shift as if only one SPP with an effective kSPP is excited.
  43. M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas-des-Francs, “Imaging symmetry-selected corner plasmon modes in penta-twinned crystalline Ag nanowires,” ACS Nano5(7), 5874–5880 (2011).
    [CrossRef] [PubMed]

2012 (4)

2011 (7)

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas-des-Francs, “Imaging symmetry-selected corner plasmon modes in penta-twinned crystalline Ag nanowires,” ACS Nano5(7), 5874–5880 (2011).
[CrossRef] [PubMed]

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett.106(9), 096801 (2011).
[CrossRef] [PubMed]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology22(17), 175201 (2011).
[CrossRef] [PubMed]

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett.106(22), 226802 (2011).
[CrossRef] [PubMed]

L. Douillard and F. Charra, “High-resolution mapping of plasmonic modes: photoemission and scanning tunnelling luminescence microscopies,” J. Phys. D Appl. Phys.44(46), 464002 (2011).
[CrossRef]

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence,” Nano Lett.11(10), 4265–4269 (2011).
[CrossRef] [PubMed]

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett.11(2), 706–711 (2011).
[CrossRef] [PubMed]

2010 (2)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett.10(5), 1831–1835 (2010).
[CrossRef] [PubMed]

2009 (3)

S. Ravets, J. C. Rodier, B. Ea Kim, J. P. Hugonin, L. Jacubowiez, and P. Lalanne, “Surface plasmons in the Young slit doublet experiment,” J. Opt. Soc. Am. B26(12), B28–B33 (2009).
[CrossRef]

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C.-K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett.9(12), 4168–4171 (2009).
[CrossRef] [PubMed]

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett.9(12), 4383–4386 (2009).
[CrossRef] [PubMed]

2008 (1)

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Philos. Roy. Soc. A149, 220–229 (2008).

2007 (4)

V. B. Zon, “Reflection, refraction, and transformation into photons of surface plasmons on a metal wedge,” J. Opt. Soc. Am. B24(8), 1960–1967 (2007).
[CrossRef]

R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nat. Nanotechnol.2(7), 426–429 (2007).
[CrossRef] [PubMed]

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett.7(9), 2843–2846 (2007).
[CrossRef] [PubMed]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007).
[CrossRef] [PubMed]

2006 (1)

R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B74(16), 165415 (2006).
[CrossRef]

2005 (3)

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B71(16), 165431 (2005).
[CrossRef]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005).
[CrossRef]

2004 (3)

J. R. Krenn and J. C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos Trans A Math Phys Eng Sci362(1817), 739–756 (2004).
[CrossRef] [PubMed]

S. Egusa, Y.-H. Liau, and N. F. Scherer, “Imaging scanning tunneling microscope-induced electroluminescence in plasmonic corrals,” Appl. Phys. Lett.84(8), 1257–1259 (2004).
[CrossRef]

M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B21(6), 1210–1215 (2004).
[CrossRef]

2003 (1)

J.-C. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B68(11), 115401 (2003).
[CrossRef]

2001 (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B63(12), 125417 (2001).
[CrossRef]

2000 (1)

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B104(26), 6095–6098 (2000).
[CrossRef]

1999 (2)

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B60(12), 9061–9068 (1999).
[CrossRef]

Y. Nakamura, Y. Mera, and K. Maeda, “A reproducible method to fabricate atomically sharp tips for scanning tunneling microscopy,” Rev. Sci. Instrum.70(8), 3373–3376 (1999).
[CrossRef]

1997 (1)

1994 (1)

P. Dawson, F. D. Fornel, and J. P. Goudonnet, “Imaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope,” Phys. Rev. Lett.72(18), 2927–2930 (1994).

1991 (1)

R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett.67(27), 3796–3799 (1991).
[CrossRef] [PubMed]

1987 (1)

R. Innes and J. Sambles, “Optical characterisation of gold using surface plasmon-polaritons,” J. Phys. F Met. Phys.17(1), 277–287 (1987).
[CrossRef]

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Allegrini, M.

Andersen, U. L.

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett.106(9), 096801 (2011).
[CrossRef] [PubMed]

Atwater, H. A.

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005).
[CrossRef]

Aussenegg, F.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Philos. Roy. Soc. A149, 220–229 (2008).

Aussenegg, F. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Bao, K.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett.11(2), 706–711 (2011).
[CrossRef] [PubMed]

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett.10(5), 1831–1835 (2010).
[CrossRef] [PubMed]

Barnard, E. S.

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence,” Nano Lett.11(10), 4265–4269 (2011).
[CrossRef] [PubMed]

Bellessa, J.

Berini, P.

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B63(12), 125417 (2001).
[CrossRef]

Berndt, R.

R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett.67(27), 3796–3799 (1991).
[CrossRef] [PubMed]

Berthelot, J.

Bharadwaj, P.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett.106(22), 226802 (2011).
[CrossRef] [PubMed]

Boer-Duchemin, E.

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology22(17), 175201 (2011).
[CrossRef] [PubMed]

Bouhelier, A.

J. Berthelot, F. Tantussi, P. Rai, G. Colas des Francs, J.-C. Weeber, A. Dereux, F. Fuso, M. Allegrini, and A. Bouhelier, “Determinant role of the edges in defining surface plasmon propagation in stripe waveguides and tapered concentrators,” J. Opt. Soc. Am. B29(2), 226–231 (2012).
[CrossRef]

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett.106(22), 226802 (2011).
[CrossRef] [PubMed]

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas-des-Francs, “Imaging symmetry-selected corner plasmon modes in penta-twinned crystalline Ag nanowires,” ACS Nano5(7), 5874–5880 (2011).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Bramant, P.

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas-des-Francs, “Imaging symmetry-selected corner plasmon modes in penta-twinned crystalline Ag nanowires,” ACS Nano5(7), 5874–5880 (2011).
[CrossRef] [PubMed]

Brixner, T.

C. Rewitz, T. Keitzl, P. Tuchscherer, J.-S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett.12(1), 45–49 (2012).
[CrossRef] [PubMed]

Brongersma, M. L.

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence,” Nano Lett.11(10), 4265–4269 (2011).
[CrossRef] [PubMed]

R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nat. Nanotechnol.2(7), 426–429 (2007).
[CrossRef] [PubMed]

R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B74(16), 165415 (2006).
[CrossRef]

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B71(16), 165431 (2005).
[CrossRef]

Chang, D. E.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Charra, F.

L. Douillard and F. Charra, “High-resolution mapping of plasmonic modes: photoemission and scanning tunnelling luminescence microscopies,” J. Phys. D Appl. Phys.44(46), 464002 (2011).
[CrossRef]

Coenen, T.

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence,” Nano Lett.11(10), 4265–4269 (2011).
[CrossRef] [PubMed]

Colas des Francs, G.

Colas-des-Francs, G.

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas-des-Francs, “Imaging symmetry-selected corner plasmon modes in penta-twinned crystalline Ag nanowires,” ACS Nano5(7), 5874–5880 (2011).
[CrossRef] [PubMed]

Comtet, G.

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology22(17), 175201 (2011).
[CrossRef] [PubMed]

Dawson, P.

P. Dawson, F. D. Fornel, and J. P. Goudonnet, “Imaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope,” Phys. Rev. Lett.72(18), 2927–2930 (1994).

de Waele, R.

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett.7(9), 2843–2846 (2007).
[CrossRef] [PubMed]

Dereux, A.

J. Berthelot, F. Tantussi, P. Rai, G. Colas des Francs, J.-C. Weeber, A. Dereux, F. Fuso, M. Allegrini, and A. Bouhelier, “Determinant role of the edges in defining surface plasmon propagation in stripe waveguides and tapered concentrators,” J. Opt. Soc. Am. B29(2), 226–231 (2012).
[CrossRef]

J.-C. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B68(11), 115401 (2003).
[CrossRef]

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B60(12), 9061–9068 (1999).
[CrossRef]

Dickson, R. M.

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B104(26), 6095–6098 (2000).
[CrossRef]

Ditlbacher, H.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Philos. Roy. Soc. A149, 220–229 (2008).

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Douillard, L.

L. Douillard and F. Charra, “High-resolution mapping of plasmonic modes: photoemission and scanning tunnelling luminescence microscopies,” J. Phys. D Appl. Phys.44(46), 464002 (2011).
[CrossRef]

Drezet, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Philos. Roy. Soc. A149, 220–229 (2008).

Dujardin, E.

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas-des-Francs, “Imaging symmetry-selected corner plasmon modes in penta-twinned crystalline Ag nanowires,” ACS Nano5(7), 5874–5880 (2011).
[CrossRef] [PubMed]

Dujardin, G.

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology22(17), 175201 (2011).
[CrossRef] [PubMed]

Ea Kim, B.

Egusa, S.

S. Egusa, Y.-H. Liau, and N. F. Scherer, “Imaging scanning tunneling microscope-induced electroluminescence in plasmonic corrals,” Appl. Phys. Lett.84(8), 1257–1259 (2004).
[CrossRef]

Fang, Y.

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett.10(5), 1831–1835 (2010).
[CrossRef] [PubMed]

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett.9(12), 4383–4386 (2009).
[CrossRef] [PubMed]

Fornel, F. D.

P. Dawson, F. D. Fornel, and J. P. Goudonnet, “Imaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope,” Phys. Rev. Lett.72(18), 2927–2930 (1994).

Fuso, F.

Geisler, P.

C. Rewitz, T. Keitzl, P. Tuchscherer, J.-S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett.12(1), 45–49 (2012).
[CrossRef] [PubMed]

Gimzewski, J. K.

R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett.67(27), 3796–3799 (1991).
[CrossRef] [PubMed]

Girard, C.

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B60(12), 9061–9068 (1999).
[CrossRef]

Goudonnet, J. P.

P. Dawson, F. D. Fornel, and J. P. Goudonnet, “Imaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope,” Phys. Rev. Lett.72(18), 2927–2930 (1994).

Goudonnet, J.-P.

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B60(12), 9061–9068 (1999).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Guebrou, S. A.

Hao, F.

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett.9(12), 4383–4386 (2009).
[CrossRef] [PubMed]

Hecht, B.

C. Rewitz, T. Keitzl, P. Tuchscherer, J.-S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett.12(1), 45–49 (2012).
[CrossRef] [PubMed]

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Hohenau, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Philos. Roy. Soc. A149, 220–229 (2008).

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Huang, J.-S.

C. Rewitz, T. Keitzl, P. Tuchscherer, J.-S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett.12(1), 45–49 (2012).
[CrossRef] [PubMed]

Huang, Y.

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett.10(5), 1831–1835 (2010).
[CrossRef] [PubMed]

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett.9(12), 4383–4386 (2009).
[CrossRef] [PubMed]

Huck, A.

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett.106(9), 096801 (2011).
[CrossRef] [PubMed]

Hugonin, J. P.

Innes, R.

R. Innes and J. Sambles, “Optical characterisation of gold using surface plasmon-polaritons,” J. Phys. F Met. Phys.17(1), 277–287 (1987).
[CrossRef]

Jacubowiez, L.

Johansson, P.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett.11(2), 706–711 (2011).
[CrossRef] [PubMed]

R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett.67(27), 3796–3799 (1991).
[CrossRef] [PubMed]

Käll, M.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett.11(2), 706–711 (2011).
[CrossRef] [PubMed]

Keitzl, T.

C. Rewitz, T. Keitzl, P. Tuchscherer, J.-S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett.12(1), 45–49 (2012).
[CrossRef] [PubMed]

Kobayashi, T.

Koller, D.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Philos. Roy. Soc. A149, 220–229 (2008).

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Krenn, J.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Philos. Roy. Soc. A149, 220–229 (2008).

Krenn, J. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

J. R. Krenn and J. C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos Trans A Math Phys Eng Sci362(1817), 739–756 (2004).
[CrossRef] [PubMed]

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B60(12), 9061–9068 (1999).
[CrossRef]

Kumar, S.

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett.106(9), 096801 (2011).
[CrossRef] [PubMed]

Kuttge, M.

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett.7(9), 2843–2846 (2007).
[CrossRef] [PubMed]

Lacroute, Y.

J.-C. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B68(11), 115401 (2003).
[CrossRef]

Lalanne, P.

Laverdant, J.

Leitner, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Philos. Roy. Soc. A149, 220–229 (2008).

Li, P.

P. Li and T. Taubner, “Broadband subwavelength imaging using a tunable graphene-lens,” ACS Nano6(11), 10107–10114 (2012).
[CrossRef] [PubMed]

Li, X. E.

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C.-K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett.9(12), 4168–4171 (2009).
[CrossRef] [PubMed]

Li, Z.

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett.10(5), 1831–1835 (2010).
[CrossRef] [PubMed]

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett.9(12), 4383–4386 (2009).
[CrossRef] [PubMed]

Liau, Y.-H.

S. Egusa, Y.-H. Liau, and N. F. Scherer, “Imaging scanning tunneling microscope-induced electroluminescence in plasmonic corrals,” Appl. Phys. Lett.84(8), 1257–1259 (2004).
[CrossRef]

Lieb, M. A.

Lukin, M. D.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Lyon, L. A.

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B104(26), 6095–6098 (2000).
[CrossRef]

Maeda, K.

Y. Nakamura, Y. Mera, and K. Maeda, “A reproducible method to fabricate atomically sharp tips for scanning tunneling microscopy,” Rev. Sci. Instrum.70(8), 3373–3376 (1999).
[CrossRef]

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005).
[CrossRef]

Mera, Y.

Y. Nakamura, Y. Mera, and K. Maeda, “A reproducible method to fabricate atomically sharp tips for scanning tunneling microscopy,” Rev. Sci. Instrum.70(8), 3373–3376 (1999).
[CrossRef]

Miljkovic, V. D.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett.11(2), 706–711 (2011).
[CrossRef] [PubMed]

Morimoto, A.

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Nakamura, Y.

Y. Nakamura, Y. Mera, and K. Maeda, “A reproducible method to fabricate atomically sharp tips for scanning tunneling microscopy,” Rev. Sci. Instrum.70(8), 3373–3376 (1999).
[CrossRef]

Nordlander, P.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett.11(2), 706–711 (2011).
[CrossRef] [PubMed]

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett.10(5), 1831–1835 (2010).
[CrossRef] [PubMed]

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett.9(12), 4383–4386 (2009).
[CrossRef] [PubMed]

Novotny, L.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett.106(22), 226802 (2011).
[CrossRef] [PubMed]

M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B21(6), 1210–1215 (2004).
[CrossRef]

Park, H.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Polman, A.

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence,” Nano Lett.11(10), 4265–4269 (2011).
[CrossRef] [PubMed]

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett.7(9), 2843–2846 (2007).
[CrossRef] [PubMed]

Rai, P.

Ratchford, D.

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C.-K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett.9(12), 4168–4171 (2009).
[CrossRef] [PubMed]

Ravets, S.

Razinskas, G.

C. Rewitz, T. Keitzl, P. Tuchscherer, J.-S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett.12(1), 45–49 (2012).
[CrossRef] [PubMed]

Rewitz, C.

C. Rewitz, T. Keitzl, P. Tuchscherer, J.-S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett.12(1), 45–49 (2012).
[CrossRef] [PubMed]

Rodier, J. C.

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Sambles, J.

R. Innes and J. Sambles, “Optical characterisation of gold using surface plasmon-polaritons,” J. Phys. F Met. Phys.17(1), 277–287 (1987).
[CrossRef]

Scherer, N. F.

S. Egusa, Y.-H. Liau, and N. F. Scherer, “Imaging scanning tunneling microscope-induced electroluminescence in plasmonic corrals,” Appl. Phys. Lett.84(8), 1257–1259 (2004).
[CrossRef]

Schuller, J. A.

R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B74(16), 165415 (2006).
[CrossRef]

Selker, M. D.

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B71(16), 165431 (2005).
[CrossRef]

Shakoor, A.

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett.106(9), 096801 (2011).
[CrossRef] [PubMed]

Sharma, J.

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas-des-Francs, “Imaging symmetry-selected corner plasmon modes in penta-twinned crystalline Ag nanowires,” ACS Nano5(7), 5874–5880 (2011).
[CrossRef] [PubMed]

Shegai, T.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett.11(2), 706–711 (2011).
[CrossRef] [PubMed]

Shih, C.-K.

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C.-K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett.9(12), 4168–4171 (2009).
[CrossRef] [PubMed]

Song, M.

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas-des-Francs, “Imaging symmetry-selected corner plasmon modes in penta-twinned crystalline Ag nanowires,” ACS Nano5(7), 5874–5880 (2011).
[CrossRef] [PubMed]

Steinberger, B.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Philos. Roy. Soc. A149, 220–229 (2008).

Stepanov, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Philos. Roy. Soc. A149, 220–229 (2008).

Symonds, C.

Takahara, J.

Taki, H.

Tantussi, F.

Taubner, T.

P. Li and T. Taubner, “Broadband subwavelength imaging using a tunable graphene-lens,” ACS Nano6(11), 10107–10114 (2012).
[CrossRef] [PubMed]

Tuchscherer, P.

C. Rewitz, T. Keitzl, P. Tuchscherer, J.-S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett.12(1), 45–49 (2012).
[CrossRef] [PubMed]

Vesseur, E. J. R.

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence,” Nano Lett.11(10), 4265–4269 (2011).
[CrossRef] [PubMed]

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett.7(9), 2843–2846 (2007).
[CrossRef] [PubMed]

Vignoli, S.

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Wang, T.

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology22(17), 175201 (2011).
[CrossRef] [PubMed]

Weeber, J. C.

J. R. Krenn and J. C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos Trans A Math Phys Eng Sci362(1817), 739–756 (2004).
[CrossRef] [PubMed]

Weeber, J.-C.

J. Berthelot, F. Tantussi, P. Rai, G. Colas des Francs, J.-C. Weeber, A. Dereux, F. Fuso, M. Allegrini, and A. Bouhelier, “Determinant role of the edges in defining surface plasmon propagation in stripe waveguides and tapered concentrators,” J. Opt. Soc. Am. B29(2), 226–231 (2012).
[CrossRef]

J.-C. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B68(11), 115401 (2003).
[CrossRef]

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B60(12), 9061–9068 (1999).
[CrossRef]

Wei, H.

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C.-K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett.9(12), 4168–4171 (2009).
[CrossRef] [PubMed]

Xu, H.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett.11(2), 706–711 (2011).
[CrossRef] [PubMed]

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett.10(5), 1831–1835 (2010).
[CrossRef] [PubMed]

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett.9(12), 4383–4386 (2009).
[CrossRef] [PubMed]

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C.-K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett.9(12), 4168–4171 (2009).
[CrossRef] [PubMed]

Yamagishi, S.

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Zavislan, J. M.

Zhang, D.

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas-des-Francs, “Imaging symmetry-selected corner plasmon modes in penta-twinned crystalline Ag nanowires,” ACS Nano5(7), 5874–5880 (2011).
[CrossRef] [PubMed]

Zhang, Y.

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology22(17), 175201 (2011).
[CrossRef] [PubMed]

Zia, R.

R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nat. Nanotechnol.2(7), 426–429 (2007).
[CrossRef] [PubMed]

R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B74(16), 165415 (2006).
[CrossRef]

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B71(16), 165431 (2005).
[CrossRef]

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Zon, V. B.

ACS Nano (2)

P. Li and T. Taubner, “Broadband subwavelength imaging using a tunable graphene-lens,” ACS Nano6(11), 10107–10114 (2012).
[CrossRef] [PubMed]

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas-des-Francs, “Imaging symmetry-selected corner plasmon modes in penta-twinned crystalline Ag nanowires,” ACS Nano5(7), 5874–5880 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

S. Egusa, Y.-H. Liau, and N. F. Scherer, “Imaging scanning tunneling microscope-induced electroluminescence in plasmonic corrals,” Appl. Phys. Lett.84(8), 1257–1259 (2004).
[CrossRef]

J. Appl. Phys. (1)

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Phys. Chem. B (1)

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B104(26), 6095–6098 (2000).
[CrossRef]

J. Phys. D Appl. Phys. (1)

L. Douillard and F. Charra, “High-resolution mapping of plasmonic modes: photoemission and scanning tunnelling luminescence microscopies,” J. Phys. D Appl. Phys.44(46), 464002 (2011).
[CrossRef]

J. Phys. F Met. Phys. (1)

R. Innes and J. Sambles, “Optical characterisation of gold using surface plasmon-polaritons,” J. Phys. F Met. Phys.17(1), 277–287 (1987).
[CrossRef]

Nano Lett. (7)

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett.10(5), 1831–1835 (2010).
[CrossRef] [PubMed]

E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, “Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence,” Nano Lett.11(10), 4265–4269 (2011).
[CrossRef] [PubMed]

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett.9(12), 4383–4386 (2009).
[CrossRef] [PubMed]

H. Wei, D. Ratchford, X. E. Li, H. Xu, and C.-K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett.9(12), 4168–4171 (2009).
[CrossRef] [PubMed]

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett.7(9), 2843–2846 (2007).
[CrossRef] [PubMed]

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett.11(2), 706–711 (2011).
[CrossRef] [PubMed]

C. Rewitz, T. Keitzl, P. Tuchscherer, J.-S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett.12(1), 45–49 (2012).
[CrossRef] [PubMed]

Nanotechnology (1)

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology22(17), 175201 (2011).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nat. Nanotechnol.2(7), 426–429 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Nature (1)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Opt. Lett. (2)

Philos Trans A Math Phys Eng Sci (1)

J. R. Krenn and J. C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos Trans A Math Phys Eng Sci362(1817), 739–756 (2004).
[CrossRef] [PubMed]

Philos. Roy. Soc. A (1)

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Philos. Roy. Soc. A149, 220–229 (2008).

Phys. Rev. B (5)

R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B74(16), 165415 (2006).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B63(12), 125417 (2001).
[CrossRef]

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B71(16), 165431 (2005).
[CrossRef]

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B60(12), 9061–9068 (1999).
[CrossRef]

J.-C. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B68(11), 115401 (2003).
[CrossRef]

Phys. Rev. Lett. (5)

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett.106(9), 096801 (2011).
[CrossRef] [PubMed]

P. Dawson, F. D. Fornel, and J. P. Goudonnet, “Imaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope,” Phys. Rev. Lett.72(18), 2927–2930 (1994).

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett.106(22), 226802 (2011).
[CrossRef] [PubMed]

R. Berndt, J. K. Gimzewski, and P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett.67(27), 3796–3799 (1991).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

Y. Nakamura, Y. Mera, and K. Maeda, “A reproducible method to fabricate atomically sharp tips for scanning tunneling microscopy,” Rev. Sci. Instrum.70(8), 3373–3376 (1999).
[CrossRef]

Other (6)

C. J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford University, 1993).

T. Wang, “Electrical excitation of surface plasmons with a scanning tunneling microscope,” Ph.D thesis (Université Paris-Sud, 2012).

B. Steinberger, “The passive and dynamic control of surface plasmon polariton propagation,” Ph.D thesis (Karl-Franzens-University Graz, 2007).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Theoretically it may be shown that by assuming that the scattered light is driven by a weighted coherent sum of SPP modes from both interfaces, the effectively observed kSPP/k0 determined from the above fringe shift method is neither that of the air/Au mode nor that of the Au/ITO/glass mode but a weighted average of the two. If both modes mix at the edge, there is some change in fringe visibility (due to partly constructive or destructive interference) and the fringes in the Fourier plane shift as if only one SPP with an effective kSPP is excited.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the experiment: the STM excites SPPs (red arrows) which propagate radially on an Au stripe (5 μm × 2 μm × 100 nm) on an ITO/glass substrate. Inset: the edge scattered light is collected through the transparent substrate by the objective below the sample. (b) and (c) Real plane emission patterns from an Au stripe excited by STM, as collected with an oil objective (NA = 1.45) and an air objective (NA = 0.95), respectively. The yellow dotted lines indicate the Au stripe edges. The green spot indicates the STM tip position. The STM excitation parameters are Vs = 2.5 V, I = 2 nA, Pt/Ir tip, accumulation time t = 30 s in (b) and Vs = 2.8 V, I = 6 nA, accumulation time t = 120 s in (c).

Fig. 2
Fig. 2

Real and Fourier plane images of the light generated when STM-excited SPPs are scattered at the edges of an Au stripe, obtained with the oil objective (NA = 1.45) and a polarizer before the CCD camera. (a) Real plane image, polarizer axis perpendicular to the Au stripe long axis. (b) Real plane image, polarizer axis parallel to the Au stripe long axis. Red double arrows indicate the polarizer orientation. Yellow dashed lines show the position of the Au stripe and the green dot represents the STM tip position. (c) and (d) The corresponding Fourier plane images. (e) and (f) Normalized cross sections of the Fourier plane images along the white dashed lines in (c) and (d) respectively. n glass sinθ=1 corresponds to the air-glass interface critical angle (the angle θ is measured with respect to the optical axis, see also Fig. 3(a)). The STM excitation is carried out with a Pt/Ir tip (Vs = 2.5 V, I = 2 nA, accumulation time t = 60 s). As the usable wavelength range of the polarizer is 380 - 780 nm, a 775nm short pass filter is also used during these measurements. The Fourier plane measurements obtained with the oil immersion objective were calibrated from molecular fluorescence data by assigning the critical angle to the inflection point, i.e., where the intensity increases rapidly [25, 31].

Fig. 3
Fig. 3

Fringes observed in the Fourier plane. (a) Schematic of the experiment: a sharp tungsten STM tip is placed above the center of the stripe and launches SPPs. SPPs at both the air/Au (dark blue curve) and Au/substrate interface (red curve) are excited. The radiative scattering at opposite edges (A and B) is collected using an air objective (NA = 0.95) and a polarizer. The distance (L) between opposite edges is either the width or length of the stripe. The STM tip, located initially at d = 0, is then displaced by an amount Δd along the width or length of the stripe and the experiment is repeated. (b) and (f) Real plane images recorded with the polarizer axis perpendicular or parallel to the stripe long axis respectively. Yellow dashed lines indicate the profile of the stripe, and green dots indicate the STM tip excitation position. The excitation conditions are Vs = 2.5 V, I = 6 nA, and the accumulation time is t = 120 s (W tip). (c)-(e) and (g)-(i) Fourier plane images recorded with a polarizer perpendicular or parallel to the Au stripe long axis respectively, when the STM tip is displaced from the center by different values of Δd. The excitation conditions are Vs = 2.8 V, I = 6 nA, and the accumulation time t = 600 s (W tip). The dashed lines in (c)-(e) and (g)-(i), as well as j) and k) indicate the central fringe. (j) and (k) Cross sections of the Fourier plane images (vertical lines in (c)-(e) and (g)-(i)) are plotted together (raw data and smoothed curves). The red ■ are for Δd = 0, the blue ● for Δd = 100 nm, and the green ▲ for Δd = 200 nm. Curves in (j) and (k) are shifted vertically for clarity. The Fourier plane images obtained with the air objective were calibrated using the fringe pattern spacing from a known laser-illuminated diffraction grating. The fringes in (d) and (e) are seen to curve slightly due to the fact that phase difference between the light scattered from each edge depends on the incident angle of the SPP when the tip is not in the center of the stripe.

Fig. 4
Fig. 4

Spectrum of the light emitted at one end of a gold stripe after STM excitation. The data is obtained using an aperture so that light from a 2 µm diameter area is collected (red dashed circle in inset). Note that no Fabry-Perot oscillations are observed in the spectrum. Smoothed (red curve) and raw data (grey curve) are shown. The excitation conditions are Vs = 2.5 V, I = 1 nA, W tip, and the accumulation time is t = 60 s (oil immersion objective used). The green dot shows the position of the STM tip on the gold stripe (inset).

Fig. 5
Fig. 5

Complementary experiment performed on a 200 nm thick Au film perforated with two 250 nm-diameter holes. The purpose of this experiment is to test the validity of the fringe shift method for measuring the relative plasmon wave vector kSPP/k0. (a) Diffraction-limited real plane image obtained when the STM excitation is equidistant from the two holes (as represented by the green dot). The hole separation is 2 µm. The excitation conditions are Vs = 2.5 V, I = 6 nA, W tip, and the accumulation time is t = 180 s. (b) and (c) Fourier plane images obtained when the tip is equidistant from the two holes (Δd = 0) or shifted 100 nm along the tip-hole axis (Δd = 100 nm). As in the case of the stripe, fringes are seen in the Fourier plane image and these fringes shift with excitation position. The bright fringe denoted by the red dashed line in (b) shifts to the position denoted by the blue dashed line in (c). Note that this shift is smaller than that which is seen in Fig. 3, giving rise to a smaller measured relative plasmon wave vector kSPP/k0 and note also that the fringes are not curved in this case. The excitation conditions are Vs = 2.5 V, I = 6 nA, W tip, and the accumulation time is t = 300 s (air objective used).

Fig. 6
Fig. 6

Radiative scattering of STM-excited SPPs on an Au stripe edge. (a) 3D view and (b) top view. The incident and reflected SPP wave vectors (kSPP) are represented by red arrows. α is the SPP incident angle with respect to the stripe edge normal. The wave vector of the scattered radiation in the glass medium (kglass) is represented by a blue arrow. The projection of kglass on the stripe top surface (kxy_glass) is represented by a green arrow. kx_glass, ky_glass, kz_glass (black arrows) are the x,y,z components of kglass respectively. The direction of the scattered radiation is defined by the polar angle θ with respect to the z axis and the in-plane angle φ. Momentum conservation implies that k x_glass = k SPP sinα . The optical axis of the microscope is in the z direction.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I( n glass sinθ)= I A + I B +2 I A I B cos( Φ A Φ B + μ A μ B + δ A δ B )
( n glass sinθ) bright (d)= λ 0 L m 2d L k SPP k 0 μ A μ B k 0 L
Δ ( n glass sinθ) bright | shift = 2Δd L k SPP k 0
k SPP k 0 = L 2Δd Δ (nsinθ) bright | shift
θarcsin( 1 n glass k SPP sinα k 0 )

Metrics