Abstract

We realize giant optical nonlinearity of a single plasmonic nanostructure which we call a split hole resonator (SHR). The SHR is the marriage of two basic elements of nanoplasmonics, a nanohole and a nanorod. A peak field intensity in the SHR occurs at the single tip of the nanorod inside the nanohole. The peak field is much stronger than those of the nanorod and nanohole, because the SHR field involves contributions from the following two field-enhancement mechanisms: (1) the excitation of surface plasmon resonances and (2) the lightning-rod effect. Here, we demonstrate the use of the SHR as a highly efficient nonlinear optical element for: (i) the generation of the third harmonic from a single SHR; (ii) the excitation of intense multiphoton luminescence from a single SHR.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. V. M. Shalaev and S. Kawata, eds., Nanophotonics with Surface Plasmons (Elsevier, 2007).
  3. M. L. Brongersma and P. G. Kik, eds., Surface Plasmon Nanophotonics, Series: Springer Series in Optical Sciences (Springer, 2007, Vol. 131).
  4. A. E. Neeves and M. H. Birnboim, “Composite structures for the enhancement of nonlinear-optical susceptibility,” J. Opt. Soc. Am. B6(4), 787 (1989).
    [CrossRef]
  5. R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon Resonance Shifts of Au Coated Au2S Nanoshells: Insight into Multicomponent Nanoparticle Growth,” Phys. Rev. Lett.78(22), 4217–4220 (1997).
    [CrossRef]
  6. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
    [CrossRef]
  7. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006).
    [CrossRef] [PubMed]
  8. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express14(19), 8827–8836 (2006).
    [CrossRef] [PubMed]
  9. C. Rockstuhl, T. Zentgraf, E. Pshenay-Severin, J. Petschulat, A. Chipouline, J. Kuhl, T. Pertsch, H. Giessen, and F. Lederer, “The origin of magnetic polarizability in metamaterials at optical frequencies - an electrodynamic approach,” Opt. Express15(14), 8871–8883 (2007).
    [CrossRef] [PubMed]
  10. C. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).
  11. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
    [CrossRef]
  12. F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79(4), 1267–1290 (2007).
    [CrossRef]
  13. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
    [CrossRef]
  14. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science277(5329), 1078–1081 (1997).
    [CrossRef] [PubMed]
  15. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
    [CrossRef] [PubMed]
  16. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B62(24), R16356–R16359 (2000).
    [CrossRef]
  17. D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett.10(10), 511–513 (1985).
    [CrossRef] [PubMed]
  18. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997).
    [CrossRef]
  19. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett.90(5), 057401 (2003).
    [CrossRef] [PubMed]
  20. T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett.12(2), 992–996 (2012).
    [CrossRef] [PubMed]
  21. P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, and V. I. Balykin, “Single nano-hole as a new effective nonlinear element for third harmonic generation,” Laser Phys. Lett. 10 (to be published).
  22. L. D. Landau and L. P. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984, Vol. 8.).
  23. X. Shi, L. Hesselink, and R. L. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett.28(15), 1320–1322 (2003).
    [CrossRef] [PubMed]
  24. J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,” Appl. Phys. Lett.85(4), 648 (2004).
    [CrossRef]
  25. O. Lopatiuk-Tirpak, J. Ma, and S. Fathpour, “Optical transmission properties of C-shaped subwavelength waveguides on silicon,” Appl. Phys. Lett.96(24), 241109 (2010).
    [CrossRef]
  26. S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B104(33), 7867–7870 (2000).
    [CrossRef]
  27. P. N. Melentiev, A. V. Zablotskiy, D. A. Lapshin, E. P. Sheshin, A. S. Baturin, and V. I. Balykin, “Nanolithography based on an atom pinhole camera,” Nanotechnology20(23), 235301 (2009).
    [CrossRef] [PubMed]
  28. P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, and V. I. Balykin, “Single nanohole and photoluminescence: nanolocalized and wavelength tunable light source,” Opt. Express20(17), 19474–19483 (2012).
    [CrossRef] [PubMed]
  29. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  30. M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express15(8), 5238–5247 (2007).
    [CrossRef] [PubMed]
  31. M. Castro-Lopez, D. Brinks, R. Sapienza, and N. F. van Hulst, “Aluminum for nonlinear plasmonics: resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas,” Nano Lett.11(11), 4674–4678 (2011).
    [CrossRef] [PubMed]
  32. P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett.12(6), 2941–2947 (2012).
    [CrossRef] [PubMed]
  33. P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. V. Zablotskiy, A. S. Baturin, and V. I. Balykin, “Single nanohole and photonic crystal: wavelength selective enhanced transmission of light,” Opt. Express19(23), 22743–22754 (2011).
    [CrossRef] [PubMed]
  34. P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. V. Zablotskiy, A. S. Baturin, and V. I. Balykin, “Extremely high transmission of light through a nanohole inside a photonic crystal,” Sov. Phys. JETP115(2), 185–193 (2012).
    [CrossRef]
  35. X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, and A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express19(25), 25242–25254 (2011).
    [CrossRef] [PubMed]

2012 (4)

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett.12(2), 992–996 (2012).
[CrossRef] [PubMed]

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett.12(6), 2941–2947 (2012).
[CrossRef] [PubMed]

P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. V. Zablotskiy, A. S. Baturin, and V. I. Balykin, “Extremely high transmission of light through a nanohole inside a photonic crystal,” Sov. Phys. JETP115(2), 185–193 (2012).
[CrossRef]

P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, and V. I. Balykin, “Single nanohole and photoluminescence: nanolocalized and wavelength tunable light source,” Opt. Express20(17), 19474–19483 (2012).
[CrossRef] [PubMed]

2011 (4)

P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. V. Zablotskiy, A. S. Baturin, and V. I. Balykin, “Single nanohole and photonic crystal: wavelength selective enhanced transmission of light,” Opt. Express19(23), 22743–22754 (2011).
[CrossRef] [PubMed]

X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, and A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express19(25), 25242–25254 (2011).
[CrossRef] [PubMed]

M. Castro-Lopez, D. Brinks, R. Sapienza, and N. F. van Hulst, “Aluminum for nonlinear plasmonics: resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas,” Nano Lett.11(11), 4674–4678 (2011).
[CrossRef] [PubMed]

C. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).

2010 (2)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

O. Lopatiuk-Tirpak, J. Ma, and S. Fathpour, “Optical transmission properties of C-shaped subwavelength waveguides on silicon,” Appl. Phys. Lett.96(24), 241109 (2010).
[CrossRef]

2009 (1)

P. N. Melentiev, A. V. Zablotskiy, D. A. Lapshin, E. P. Sheshin, A. S. Baturin, and V. I. Balykin, “Nanolithography based on an atom pinhole camera,” Nanotechnology20(23), 235301 (2009).
[CrossRef] [PubMed]

2007 (3)

2006 (3)

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express14(19), 8827–8836 (2006).
[CrossRef] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006).
[CrossRef] [PubMed]

2004 (1)

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,” Appl. Phys. Lett.85(4), 648 (2004).
[CrossRef]

2003 (2)

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett.90(5), 057401 (2003).
[CrossRef] [PubMed]

X. Shi, L. Hesselink, and R. L. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett.28(15), 1320–1322 (2003).
[CrossRef] [PubMed]

2000 (2)

S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B104(33), 7867–7870 (2000).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B62(24), R16356–R16359 (2000).
[CrossRef]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

1997 (3)

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science277(5329), 1078–1081 (1997).
[CrossRef] [PubMed]

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon Resonance Shifts of Au Coated Au2S Nanoshells: Insight into Multicomponent Nanoparticle Growth,” Phys. Rev. Lett.78(22), 4217–4220 (1997).
[CrossRef]

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997).
[CrossRef]

1989 (1)

1985 (1)

Afanasiev, A. E.

Aizpurua, J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett.90(5), 057401 (2003).
[CrossRef] [PubMed]

Atwater, H. A.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B62(24), R16356–R16359 (2000).
[CrossRef]

Averitt, R. D.

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon Resonance Shifts of Au Coated Au2S Nanoshells: Insight into Multicomponent Nanoparticle Growth,” Phys. Rev. Lett.78(22), 4217–4220 (1997).
[CrossRef]

Balykin, V. I.

P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, and V. I. Balykin, “Single nanohole and photoluminescence: nanolocalized and wavelength tunable light source,” Opt. Express20(17), 19474–19483 (2012).
[CrossRef] [PubMed]

P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. V. Zablotskiy, A. S. Baturin, and V. I. Balykin, “Extremely high transmission of light through a nanohole inside a photonic crystal,” Sov. Phys. JETP115(2), 185–193 (2012).
[CrossRef]

P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. V. Zablotskiy, A. S. Baturin, and V. I. Balykin, “Single nanohole and photonic crystal: wavelength selective enhanced transmission of light,” Opt. Express19(23), 22743–22754 (2011).
[CrossRef] [PubMed]

P. N. Melentiev, A. V. Zablotskiy, D. A. Lapshin, E. P. Sheshin, A. S. Baturin, and V. I. Balykin, “Nanolithography based on an atom pinhole camera,” Nanotechnology20(23), 235301 (2009).
[CrossRef] [PubMed]

Baturin, A. S.

P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. V. Zablotskiy, A. S. Baturin, and V. I. Balykin, “Extremely high transmission of light through a nanohole inside a photonic crystal,” Sov. Phys. JETP115(2), 185–193 (2012).
[CrossRef]

P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, and V. I. Balykin, “Single nanohole and photoluminescence: nanolocalized and wavelength tunable light source,” Opt. Express20(17), 19474–19483 (2012).
[CrossRef] [PubMed]

P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. V. Zablotskiy, A. S. Baturin, and V. I. Balykin, “Single nanohole and photonic crystal: wavelength selective enhanced transmission of light,” Opt. Express19(23), 22743–22754 (2011).
[CrossRef] [PubMed]

P. N. Melentiev, A. V. Zablotskiy, D. A. Lapshin, E. P. Sheshin, A. S. Baturin, and V. I. Balykin, “Nanolithography based on an atom pinhole camera,” Nanotechnology20(23), 235301 (2009).
[CrossRef] [PubMed]

Biagioni, P.

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett.12(6), 2941–2947 (2012).
[CrossRef] [PubMed]

Bian, R. X.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997).
[CrossRef]

Birnboim, M. H.

Bratschitsch, R.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett.12(2), 992–996 (2012).
[CrossRef] [PubMed]

Brida, D.

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett.12(6), 2941–2947 (2012).
[CrossRef] [PubMed]

Brinks, D.

M. Castro-Lopez, D. Brinks, R. Sapienza, and N. F. van Hulst, “Aluminum for nonlinear plasmonics: resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas,” Nano Lett.11(11), 4674–4678 (2011).
[CrossRef] [PubMed]

Brongersma, M. L.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B62(24), R16356–R16359 (2000).
[CrossRef]

Bryant, G. W.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett.90(5), 057401 (2003).
[CrossRef] [PubMed]

Castro-Lopez, M.

M. Castro-Lopez, D. Brinks, R. Sapienza, and N. F. van Hulst, “Aluminum for nonlinear plasmonics: resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas,” Nano Lett.11(11), 4674–4678 (2011).
[CrossRef] [PubMed]

Cerullo, G.

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett.12(6), 2941–2947 (2012).
[CrossRef] [PubMed]

Cesar, J.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett.12(2), 992–996 (2012).
[CrossRef] [PubMed]

Chipouline, A.

Duò, L.

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett.12(6), 2941–2947 (2012).
[CrossRef] [PubMed]

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Elghanian, R.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science277(5329), 1078–1081 (1997).
[CrossRef] [PubMed]

El-Sayed, I. H.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B104(33), 7867–7870 (2000).
[CrossRef]

Enkrich, C.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Etrich, C.

Fathpour, S.

O. Lopatiuk-Tirpak, J. Ma, and S. Fathpour, “Optical transmission properties of C-shaped subwavelength waveguides on silicon,” Appl. Phys. Lett.96(24), 241109 (2010).
[CrossRef]

Feth, N.

Finazzi, M.

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett.12(6), 2941–2947 (2012).
[CrossRef] [PubMed]

Flytzanis, C.

Fromm, D. P.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,” Appl. Phys. Lett.85(4), 648 (2004).
[CrossRef]

García de Abajo, F. J.

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79(4), 1267–1290 (2007).
[CrossRef]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett.90(5), 057401 (2003).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Giessen, H.

Halas, N. J.

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon Resonance Shifts of Au Coated Au2S Nanoshells: Insight into Multicomponent Nanoparticle Growth,” Phys. Rev. Lett.78(22), 4217–4220 (1997).
[CrossRef]

Han, S.

Hanarp, P.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett.90(5), 057401 (2003).
[CrossRef] [PubMed]

Hanke, T.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett.12(2), 992–996 (2012).
[CrossRef] [PubMed]

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B62(24), R16356–R16359 (2000).
[CrossRef]

Hecht, B.

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett.12(6), 2941–2947 (2012).
[CrossRef] [PubMed]

Hesselink, L.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,” Appl. Phys. Lett.85(4), 648 (2004).
[CrossRef]

X. Shi, L. Hesselink, and R. L. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett.28(15), 1320–1322 (2003).
[CrossRef] [PubMed]

Hohenester, U.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett.12(2), 992–996 (2012).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

Huang, J.-S.

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett.12(6), 2941–2947 (2012).
[CrossRef] [PubMed]

Huang, X.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Ishii, S.

Käll, M.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett.90(5), 057401 (2003).
[CrossRef] [PubMed]

Kern, J.

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett.12(6), 2941–2947 (2012).
[CrossRef] [PubMed]

Kildishev, A. V.

Klein, M. W.

M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express15(8), 5238–5247 (2007).
[CrossRef] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Knittel, V.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett.12(2), 992–996 (2012).
[CrossRef] [PubMed]

Konstantinova, T. V.

Kuhl, J.

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Kuzin, A. A.

Lapshin, D. A.

P. N. Melentiev, A. V. Zablotskiy, D. A. Lapshin, E. P. Sheshin, A. S. Baturin, and V. I. Balykin, “Nanolithography based on an atom pinhole camera,” Nanotechnology20(23), 235301 (2009).
[CrossRef] [PubMed]

Lederer, F.

Lee, S.

Leitenstorfer, A.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett.12(2), 992–996 (2012).
[CrossRef] [PubMed]

Letsinger, R. L.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science277(5329), 1078–1081 (1997).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Linden, S.

M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express15(8), 5238–5247 (2007).
[CrossRef] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Link, S.

S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B104(33), 7867–7870 (2000).
[CrossRef]

Lopatiuk-Tirpak, O.

O. Lopatiuk-Tirpak, J. Ma, and S. Fathpour, “Optical transmission properties of C-shaped subwavelength waveguides on silicon,” Appl. Phys. Lett.96(24), 241109 (2010).
[CrossRef]

Ma, J.

O. Lopatiuk-Tirpak, J. Ma, and S. Fathpour, “Optical transmission properties of C-shaped subwavelength waveguides on silicon,” Appl. Phys. Lett.96(24), 241109 (2010).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Matteo, J. A.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,” Appl. Phys. Lett.85(4), 648 (2004).
[CrossRef]

Melentiev, P. N.

P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, and V. I. Balykin, “Single nanohole and photoluminescence: nanolocalized and wavelength tunable light source,” Opt. Express20(17), 19474–19483 (2012).
[CrossRef] [PubMed]

P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. V. Zablotskiy, A. S. Baturin, and V. I. Balykin, “Extremely high transmission of light through a nanohole inside a photonic crystal,” Sov. Phys. JETP115(2), 185–193 (2012).
[CrossRef]

P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. V. Zablotskiy, A. S. Baturin, and V. I. Balykin, “Single nanohole and photonic crystal: wavelength selective enhanced transmission of light,” Opt. Express19(23), 22743–22754 (2011).
[CrossRef] [PubMed]

P. N. Melentiev, A. V. Zablotskiy, D. A. Lapshin, E. P. Sheshin, A. S. Baturin, and V. I. Balykin, “Nanolithography based on an atom pinhole camera,” Nanotechnology20(23), 235301 (2009).
[CrossRef] [PubMed]

Mirkin, C. A.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science277(5329), 1078–1081 (1997).
[CrossRef] [PubMed]

Moerner, W. E.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,” Appl. Phys. Lett.85(4), 648 (2004).
[CrossRef]

Mucic, R. C.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science277(5329), 1078–1081 (1997).
[CrossRef] [PubMed]

Neeves, A. E.

Ni, X.

Novotny, L.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997).
[CrossRef]

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

Pertsch, T.

Petschulat, J.

Pshenay-Severin, E.

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Ricard, D.

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

Rockstuhl, C.

Roussignol, P.

Sapienza, R.

M. Castro-Lopez, D. Brinks, R. Sapienza, and N. F. van Hulst, “Aluminum for nonlinear plasmonics: resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas,” Nano Lett.11(11), 4674–4678 (2011).
[CrossRef] [PubMed]

Sarkar, D.

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon Resonance Shifts of Au Coated Au2S Nanoshells: Insight into Multicomponent Nanoparticle Growth,” Phys. Rev. Lett.78(22), 4217–4220 (1997).
[CrossRef]

Schuck, P. J.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,” Appl. Phys. Lett.85(4), 648 (2004).
[CrossRef]

Shalaev, V. M.

Sheshin, E. P.

P. N. Melentiev, A. V. Zablotskiy, D. A. Lapshin, E. P. Sheshin, A. S. Baturin, and V. I. Balykin, “Nanolithography based on an atom pinhole camera,” Nanotechnology20(23), 235301 (2009).
[CrossRef] [PubMed]

Shi, X.

Soukoulis, C.

C. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

Storhoff, J. J.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science277(5329), 1078–1081 (1997).
[CrossRef] [PubMed]

Sutherland, D. S.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett.90(5), 057401 (2003).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Thoreson, M. D.

Thornton, R. L.

Trügler, A.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett.12(2), 992–996 (2012).
[CrossRef] [PubMed]

van Hulst, N. F.

M. Castro-Lopez, D. Brinks, R. Sapienza, and N. F. van Hulst, “Aluminum for nonlinear plasmonics: resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas,” Nano Lett.11(11), 4674–4678 (2011).
[CrossRef] [PubMed]

Wang, Z. L.

S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B104(33), 7867–7870 (2000).
[CrossRef]

Wegener, M.

C. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).

M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express15(8), 5238–5247 (2007).
[CrossRef] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Xie, X. S.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997).
[CrossRef]

Yuen, Y.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,” Appl. Phys. Lett.85(4), 648 (2004).
[CrossRef]

Zablotskiy, A. V.

P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. V. Zablotskiy, A. S. Baturin, and V. I. Balykin, “Extremely high transmission of light through a nanohole inside a photonic crystal,” Sov. Phys. JETP115(2), 185–193 (2012).
[CrossRef]

P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. V. Zablotskiy, A. S. Baturin, and V. I. Balykin, “Single nanohole and photonic crystal: wavelength selective enhanced transmission of light,” Opt. Express19(23), 22743–22754 (2011).
[CrossRef] [PubMed]

P. N. Melentiev, A. V. Zablotskiy, D. A. Lapshin, E. P. Sheshin, A. S. Baturin, and V. I. Balykin, “Nanolithography based on an atom pinhole camera,” Nanotechnology20(23), 235301 (2009).
[CrossRef] [PubMed]

Zentgraf, T.

Appl. Phys. Lett. (2)

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,” Appl. Phys. Lett.85(4), 648 (2004).
[CrossRef]

O. Lopatiuk-Tirpak, J. Ma, and S. Fathpour, “Optical transmission properties of C-shaped subwavelength waveguides on silicon,” Appl. Phys. Lett.96(24), 241109 (2010).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

J. Am. Chem. Soc. (1)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B104(33), 7867–7870 (2000).
[CrossRef]

Nano Lett. (3)

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett.12(2), 992–996 (2012).
[CrossRef] [PubMed]

M. Castro-Lopez, D. Brinks, R. Sapienza, and N. F. van Hulst, “Aluminum for nonlinear plasmonics: resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas,” Nano Lett.11(11), 4674–4678 (2011).
[CrossRef] [PubMed]

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett.12(6), 2941–2947 (2012).
[CrossRef] [PubMed]

Nanotechnology (1)

P. N. Melentiev, A. V. Zablotskiy, D. A. Lapshin, E. P. Sheshin, A. S. Baturin, and V. I. Balykin, “Nanolithography based on an atom pinhole camera,” Nanotechnology20(23), 235301 (2009).
[CrossRef] [PubMed]

Nat. Photonics (1)

C. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. B (1)

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B62(24), R16356–R16359 (2000).
[CrossRef]

Phys. Rev. Lett. (3)

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997).
[CrossRef]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett.90(5), 057401 (2003).
[CrossRef] [PubMed]

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon Resonance Shifts of Au Coated Au2S Nanoshells: Insight into Multicomponent Nanoparticle Growth,” Phys. Rev. Lett.78(22), 4217–4220 (1997).
[CrossRef]

Rev. Mod. Phys. (2)

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79(4), 1267–1290 (2007).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Science (2)

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science277(5329), 1078–1081 (1997).
[CrossRef] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Sov. Phys. JETP (1)

P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. V. Zablotskiy, A. S. Baturin, and V. I. Balykin, “Extremely high transmission of light through a nanohole inside a photonic crystal,” Sov. Phys. JETP115(2), 185–193 (2012).
[CrossRef]

Other (6)

P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, and V. I. Balykin, “Single nano-hole as a new effective nonlinear element for third harmonic generation,” Laser Phys. Lett. 10 (to be published).

L. D. Landau and L. P. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984, Vol. 8.).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

V. M. Shalaev and S. Kawata, eds., Nanophotonics with Surface Plasmons (Elsevier, 2007).

M. L. Brongersma and P. G. Kik, eds., Surface Plasmon Nanophotonics, Series: Springer Series in Optical Sciences (Springer, 2007, Vol. 131).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The main idea of the construction of a SHR and its operation. The SHR (с) is formed from a nanorod (а) and a nanohole (b) in a metal nanofilm. Bottom: spatial distributions of the near field calculated by the FDTD method for aluminum nanostructures exposed to irradiation at a wavelength of 1560 nm: (a) a nanorod 50 × 180 nm, (b) a nanohole with a diameter of 400 nm in an aluminum film 50 nm thick, (c) an SHR nanostructure formed by the nanohole (b) and the nanorod (c).

Fig. 2
Fig. 2

Schematic of the experimental setup for investigation of SHR nanostructures.

Fig. 3
Fig. 3

. Generation of the third harmonic by an SHR nanostructure formed in aluminum film. (a) an electron microscope image of the nanostructure formed by a nanohole of 380 nm diameter and nanorod of 220 nm (length) × 120 nm (width), (b) calculated enhancement of the electric field amplitude upon irradiation of the nanostructure of Fig. 3(a) by a plane monochromatic wave with a wavelength of 1560 nm, (c) an optical image of the nanostructure upon its laser irradiation at a wavelength of 1560 nm and detection at the THG wavelength, and (d) measured spectrum of radiation that forms optical image presented on Fig. 3(c) . The incident radiation is polarized along the direction of the nanorod of the nanostructure.

Fig. 4
Fig. 4

FDTD calculations of electric field amplification at fundamental frequency in the vicinity of end of a SHR nanorod for various geometry of SHR with a fixed 120 nm width of a nanorod: (a) SHR with fixed radius is equaled to 185 nm and different length of its nanorod, (b) SHR with fixed length of its nanorod is equaled to 190 nm and different radius of its hole.

Fig. 5
Fig. 5

Third harmonic generation by a single nanohole with a diameter of 200 nm (left) and an SHR nanostructure (right) that have equal open surface areas: (a) two-dimensional optical microscope images of the nanostructures at the THG frequency (the electron microscope images of the nanostructures are presented as insets), and (b) corresponding transverse sections of the optical images. The nanostructures were prepared in an aluminum film 200 nm thick.

Fig. 6
Fig. 6

(a) Calculated 2D spatial temperature distribution in an SHR nanostructure (formed by a nanohole with diameter of 380 nm and nanorod of 220 nm (length) × 120 nm (width), made in 50 nm thick Al film) exposed to femtosecond laser radiation (wavelength 1560 nm, pulse duration 120 fs, pulse repetition rate 70 MHz) with a peak intensity of 5 × 1011 W/cm2. Blue dashed line shows the contour of the SHR nanostructure. (b) Calculated 2D spatial temperature distribution in Al nanostructure made in a form of a nanorod of size 50 nm × 50 nm × 570 nm arranged on a SiO2 substrate and exposed to the femtosecond laser radiation with a peak intensity 5 × 1011 W/cm2.

Fig. 7
Fig. 7

Multiphoton photoluminescence from a SHR nanostructure formed in an aluminum film. (a) an electron microscope image of the nanostructure formed by a nanohole of 380 nm diameter and nanorod of 220 nm (length) × 120 nm (width), (b) calculated enhancement of the electric field amplitude inside the SHR of Fig. 7(a) upon irradiation of the nanostructure by a plane monochromatic wave with a wavelength of 1560 nm, (c) an optical image of the nanostructure upon its laser irradiation at a wavelength of 1560 nm and detection in the spectral range 400–800 nm, and (d) measured emission spectrum of multiphoton luminescence.

Fig. 8
Fig. 8

Experimental measurements of dependence of a multiphoton photoluminescence power from a SHR nanostructure formed in an aluminum film as a function of power of excitation laser field.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η THG = 1 κ P THG I(ω)× S hole ,

Metrics