Abstract

We present a two-axis electrostatic MEMS scanner with high-reflectivity monolithic single-crystal-silicon photonic crystal (PC) mirrors suitable for applications in harsh environments. The reflective surfaces of the MEMS scanner are transfer-printed PC mirrors with low polarization dependence, low angular dependence, and reflectivity over 85% in the wavelength range of 1490nm~1505nm and above 90% over the wavelength band of 1550~1570nm. In static mode, the scanner has total scan range of 10.2° on one rotation axis and 7.8° on the other. Dynamic operation on resonance increase the scan range to 21° at 608Hz around the outer rotation axis and 9.5° at 1.73kHz about the inner rotation axis.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Akiyama, F. J. Grawert, J. Liu, K. Wada, G. K. Celler, L. C. Kimerling, and F. X. Kaertner, “Fabrication of highly reflecting epitaxy-ready Si–SiO2 Bragg reflectors,” IEEE Photon. Technol. Lett.17(7), 1456–1458 (2005).
    [CrossRef]
  2. S. Fan and J. D. Joannopoulos, “Analysis of guided resonance in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
    [CrossRef]
  3. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
    [CrossRef] [PubMed]
  4. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photon. Technol. Lett.16(2), 518–520 (2004).
    [CrossRef]
  5. O. Kilic, S. Kim, W. Suh, Y.-A. Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, “Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders,” Opt. Lett.29(23), 2782–2784 (2004).
    [CrossRef] [PubMed]
  6. W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett.82(13), 1999–2001 (2003).
    [CrossRef]
  7. K. B. Crozier, V. Lousse, O. Kilic, S. Kim, W. Suh, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and nearinfrared wavelengths,” Phys. Rev. B73(11), 115126 (2006).
    [CrossRef]
  8. Y. Ohira, A. Checkovsky, T. Yamanoi, T. Endo, H. Fujita, and H. Toshiyoshi, “A high-power handling MEMS optical scanner for display applications,” in Proceedings of IEEE/LEOS Conference on Optical MEMS and Nanophotonics (Institute of Electrical and Electronics Engineers, Freiburg, Germany, 2008), pp. 70–71.
    [CrossRef]
  9. G. Brown, G. Thursby, W. Johnstone, and D. Uttamchandani, “MEMS beam steering for high power fiber lasers,” in Proceedings of 4th EMRS DTC Tech. Conference (Edinburgh, U.K., 2007), B9.
  10. E. Stapparts, K. Baker, D. Gavel, S. Wilks, S. Olivier, and J. Brase, “Coherent communications, imaging and targeting,” in Proceedings of IEEE Conference on Aerospace (Institute of Electrical and Electronics Engineers, 2004), pp. 1105–1116.
  11. I. W. Jung, S. Kim, and O. Solgaard, “High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” J. Microelectromech. Syst.18(4), 924–932 (2009).
    [CrossRef]
  12. I. W. Jung, S. B. Mallick, and O. Solgaard, “A large-area high-reflectivity broadband monolithic single-crystal-silicon photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” IEEE J. Sel. Top. Quantum Electron.15(5), 1447–1454 (2009).
    [CrossRef]
  13. S. Hadzialic, S. Kim, A. F. Sarioglu, A. S. Sudbø, and O. Solgaard, “Displacement Sensing With a Mechanically Tunable Photonic Crystal,” IEEE Photon. Technol. Lett.22(16), 1196–1198 (2010).
    [CrossRef]
  14. S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A.107(40), 17095–17100 (2010).
    [CrossRef] [PubMed]
  15. T. D. Wang, M. J. Mandella, C. H. Contag, and G. S. Kino, “Dual-axis confocal microscope for high-resolution in vivo imaging,” Opt. Lett.28(6), 414–416 (2003).
    [CrossRef] [PubMed]
  16. J.-W. Jeong, S. Kim, and O. Solgaard, “Split-frame gimbaled two-dimensional MEMS scanner for miniature dual-axis confocal microendoscopes fabricated by front-side processing,” J. Microelectromech. Syst.21(2), 308–315 (2012).
    [CrossRef]
  17. D.-H. Kim, Z. Liu, Y.-S. Kim, J. Wu, J. Song, H.-S. Kim, Y. Huang, K.-C. Hwang, Y. Zhang, and J. A. Rogers, “Optimized structural designs for stretchable silicon integrated circuits,” Small5(24), 2841–2847 (2009).
    [CrossRef] [PubMed]
  18. M. K. Chaudhury and G. M. Whitesides, “Direct measurement of interfacial interactions between semispherical lens and flat sheets of poly(dimethylsiloxane) and their chemical derivatives,” Langmuir7(5), 1013–1025 (1991).
    [CrossRef]
  19. C. Harendt, H.-G. Graf, B. Hofflinger, and E. Penteker, “Silicon fusion bonding and its characterization,” J. Micromech. Microeng.2(3), 113–116 (1992).
    [CrossRef]
  20. D. Zhao, Z. Ma, and W. Zhou, “Design of dielectric photonic crystal reflector Fabry-Perot cavities,” Proc. SPIE7756, 775610, 775610-9 (2010).
    [CrossRef]
  21. C. Ataman and H. Urey, “Nonlinear frequency response of Comb-Driven Microscanners,” Proc. SPIE5348, 166–174 (2004).
    [CrossRef]
  22. A. M. Elshurafa, K. Khirallah, H. H. Tawfik, A. Emira, A. K. S. Abdel Aziz, and S. M. Sedky, “Nonlinear dynamics of spring softening and hardening in folded-MEMS comb drive resonators,” J. Microelectromech. Syst.20(4), 943–958 (2011).
    [CrossRef]
  23. J. O. Grepstad, P. Kaspar, O. Solgaard, I.-R. Johansen, and A. S. Sudbø, “Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application,” Opt. Express20(7), 7954–7965 (2012).
    [CrossRef] [PubMed]

2012 (2)

J.-W. Jeong, S. Kim, and O. Solgaard, “Split-frame gimbaled two-dimensional MEMS scanner for miniature dual-axis confocal microendoscopes fabricated by front-side processing,” J. Microelectromech. Syst.21(2), 308–315 (2012).
[CrossRef]

J. O. Grepstad, P. Kaspar, O. Solgaard, I.-R. Johansen, and A. S. Sudbø, “Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application,” Opt. Express20(7), 7954–7965 (2012).
[CrossRef] [PubMed]

2011 (1)

A. M. Elshurafa, K. Khirallah, H. H. Tawfik, A. Emira, A. K. S. Abdel Aziz, and S. M. Sedky, “Nonlinear dynamics of spring softening and hardening in folded-MEMS comb drive resonators,” J. Microelectromech. Syst.20(4), 943–958 (2011).
[CrossRef]

2010 (3)

D. Zhao, Z. Ma, and W. Zhou, “Design of dielectric photonic crystal reflector Fabry-Perot cavities,” Proc. SPIE7756, 775610, 775610-9 (2010).
[CrossRef]

S. Hadzialic, S. Kim, A. F. Sarioglu, A. S. Sudbø, and O. Solgaard, “Displacement Sensing With a Mechanically Tunable Photonic Crystal,” IEEE Photon. Technol. Lett.22(16), 1196–1198 (2010).
[CrossRef]

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A.107(40), 17095–17100 (2010).
[CrossRef] [PubMed]

2009 (3)

I. W. Jung, S. Kim, and O. Solgaard, “High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” J. Microelectromech. Syst.18(4), 924–932 (2009).
[CrossRef]

I. W. Jung, S. B. Mallick, and O. Solgaard, “A large-area high-reflectivity broadband monolithic single-crystal-silicon photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” IEEE J. Sel. Top. Quantum Electron.15(5), 1447–1454 (2009).
[CrossRef]

D.-H. Kim, Z. Liu, Y.-S. Kim, J. Wu, J. Song, H.-S. Kim, Y. Huang, K.-C. Hwang, Y. Zhang, and J. A. Rogers, “Optimized structural designs for stretchable silicon integrated circuits,” Small5(24), 2841–2847 (2009).
[CrossRef] [PubMed]

2006 (1)

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, W. Suh, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and nearinfrared wavelengths,” Phys. Rev. B73(11), 115126 (2006).
[CrossRef]

2005 (1)

S. Akiyama, F. J. Grawert, J. Liu, K. Wada, G. K. Celler, L. C. Kimerling, and F. X. Kaertner, “Fabrication of highly reflecting epitaxy-ready Si–SiO2 Bragg reflectors,” IEEE Photon. Technol. Lett.17(7), 1456–1458 (2005).
[CrossRef]

2004 (4)

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photon. Technol. Lett.16(2), 518–520 (2004).
[CrossRef]

C. Ataman and H. Urey, “Nonlinear frequency response of Comb-Driven Microscanners,” Proc. SPIE5348, 166–174 (2004).
[CrossRef]

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

O. Kilic, S. Kim, W. Suh, Y.-A. Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, “Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders,” Opt. Lett.29(23), 2782–2784 (2004).
[CrossRef] [PubMed]

2003 (2)

T. D. Wang, M. J. Mandella, C. H. Contag, and G. S. Kino, “Dual-axis confocal microscope for high-resolution in vivo imaging,” Opt. Lett.28(6), 414–416 (2003).
[CrossRef] [PubMed]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett.82(13), 1999–2001 (2003).
[CrossRef]

2002 (1)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonance in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

1992 (1)

C. Harendt, H.-G. Graf, B. Hofflinger, and E. Penteker, “Silicon fusion bonding and its characterization,” J. Micromech. Microeng.2(3), 113–116 (1992).
[CrossRef]

1991 (1)

M. K. Chaudhury and G. M. Whitesides, “Direct measurement of interfacial interactions between semispherical lens and flat sheets of poly(dimethylsiloxane) and their chemical derivatives,” Langmuir7(5), 1013–1025 (1991).
[CrossRef]

Abdel Aziz, A. K. S.

A. M. Elshurafa, K. Khirallah, H. H. Tawfik, A. Emira, A. K. S. Abdel Aziz, and S. M. Sedky, “Nonlinear dynamics of spring softening and hardening in folded-MEMS comb drive resonators,” J. Microelectromech. Syst.20(4), 943–958 (2011).
[CrossRef]

Ahmed, N.

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A.107(40), 17095–17100 (2010).
[CrossRef] [PubMed]

Akiyama, S.

S. Akiyama, F. J. Grawert, J. Liu, K. Wada, G. K. Celler, L. C. Kimerling, and F. X. Kaertner, “Fabrication of highly reflecting epitaxy-ready Si–SiO2 Bragg reflectors,” IEEE Photon. Technol. Lett.17(7), 1456–1458 (2005).
[CrossRef]

Ataman, C.

C. Ataman and H. Urey, “Nonlinear frequency response of Comb-Driven Microscanners,” Proc. SPIE5348, 166–174 (2004).
[CrossRef]

Brown, G.

G. Brown, G. Thursby, W. Johnstone, and D. Uttamchandani, “MEMS beam steering for high power fiber lasers,” in Proceedings of 4th EMRS DTC Tech. Conference (Edinburgh, U.K., 2007), B9.

Carlson, A.

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A.107(40), 17095–17100 (2010).
[CrossRef] [PubMed]

Celler, G. K.

S. Akiyama, F. J. Grawert, J. Liu, K. Wada, G. K. Celler, L. C. Kimerling, and F. X. Kaertner, “Fabrication of highly reflecting epitaxy-ready Si–SiO2 Bragg reflectors,” IEEE Photon. Technol. Lett.17(7), 1456–1458 (2005).
[CrossRef]

Chang-Hasnain, C. J.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photon. Technol. Lett.16(2), 518–520 (2004).
[CrossRef]

Chaudhury, M. K.

M. K. Chaudhury and G. M. Whitesides, “Direct measurement of interfacial interactions between semispherical lens and flat sheets of poly(dimethylsiloxane) and their chemical derivatives,” Langmuir7(5), 1013–1025 (1991).
[CrossRef]

Chen, W.

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A.107(40), 17095–17100 (2010).
[CrossRef] [PubMed]

Contag, C. H.

Crozier, K. B.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, W. Suh, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and nearinfrared wavelengths,” Phys. Rev. B73(11), 115126 (2006).
[CrossRef]

Deng, Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photon. Technol. Lett.16(2), 518–520 (2004).
[CrossRef]

Elgan, S. L.

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A.107(40), 17095–17100 (2010).
[CrossRef] [PubMed]

Elshurafa, A. M.

A. M. Elshurafa, K. Khirallah, H. H. Tawfik, A. Emira, A. K. S. Abdel Aziz, and S. M. Sedky, “Nonlinear dynamics of spring softening and hardening in folded-MEMS comb drive resonators,” J. Microelectromech. Syst.20(4), 943–958 (2011).
[CrossRef]

Emira, A.

A. M. Elshurafa, K. Khirallah, H. H. Tawfik, A. Emira, A. K. S. Abdel Aziz, and S. M. Sedky, “Nonlinear dynamics of spring softening and hardening in folded-MEMS comb drive resonators,” J. Microelectromech. Syst.20(4), 943–958 (2011).
[CrossRef]

Fan, S.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, W. Suh, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and nearinfrared wavelengths,” Phys. Rev. B73(11), 115126 (2006).
[CrossRef]

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

O. Kilic, S. Kim, W. Suh, Y.-A. Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, “Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders,” Opt. Lett.29(23), 2782–2784 (2004).
[CrossRef] [PubMed]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett.82(13), 1999–2001 (2003).
[CrossRef]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonance in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

Ferreira, P. M.

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A.107(40), 17095–17100 (2010).
[CrossRef] [PubMed]

Glass, P.

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A.107(40), 17095–17100 (2010).
[CrossRef] [PubMed]

Graf, H.-G.

C. Harendt, H.-G. Graf, B. Hofflinger, and E. Penteker, “Silicon fusion bonding and its characterization,” J. Micromech. Microeng.2(3), 113–116 (1992).
[CrossRef]

Grawert, F. J.

S. Akiyama, F. J. Grawert, J. Liu, K. Wada, G. K. Celler, L. C. Kimerling, and F. X. Kaertner, “Fabrication of highly reflecting epitaxy-ready Si–SiO2 Bragg reflectors,” IEEE Photon. Technol. Lett.17(7), 1456–1458 (2005).
[CrossRef]

Grepstad, J. O.

Hadzialic, S.

S. Hadzialic, S. Kim, A. F. Sarioglu, A. S. Sudbø, and O. Solgaard, “Displacement Sensing With a Mechanically Tunable Photonic Crystal,” IEEE Photon. Technol. Lett.22(16), 1196–1198 (2010).
[CrossRef]

Harendt, C.

C. Harendt, H.-G. Graf, B. Hofflinger, and E. Penteker, “Silicon fusion bonding and its characterization,” J. Micromech. Microeng.2(3), 113–116 (1992).
[CrossRef]

Hofflinger, B.

C. Harendt, H.-G. Graf, B. Hofflinger, and E. Penteker, “Silicon fusion bonding and its characterization,” J. Micromech. Microeng.2(3), 113–116 (1992).
[CrossRef]

Huang, M. C. Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photon. Technol. Lett.16(2), 518–520 (2004).
[CrossRef]

Huang, Y.

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A.107(40), 17095–17100 (2010).
[CrossRef] [PubMed]

D.-H. Kim, Z. Liu, Y.-S. Kim, J. Wu, J. Song, H.-S. Kim, Y. Huang, K.-C. Hwang, Y. Zhang, and J. A. Rogers, “Optimized structural designs for stretchable silicon integrated circuits,” Small5(24), 2841–2847 (2009).
[CrossRef] [PubMed]

Hwang, K.-C.

D.-H. Kim, Z. Liu, Y.-S. Kim, J. Wu, J. Song, H.-S. Kim, Y. Huang, K.-C. Hwang, Y. Zhang, and J. A. Rogers, “Optimized structural designs for stretchable silicon integrated circuits,” Small5(24), 2841–2847 (2009).
[CrossRef] [PubMed]

Jeong, J.-W.

J.-W. Jeong, S. Kim, and O. Solgaard, “Split-frame gimbaled two-dimensional MEMS scanner for miniature dual-axis confocal microendoscopes fabricated by front-side processing,” J. Microelectromech. Syst.21(2), 308–315 (2012).
[CrossRef]

Jin, S. H.

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A.107(40), 17095–17100 (2010).
[CrossRef] [PubMed]

Joannopoulos, J. D.

S. Fan and J. D. Joannopoulos, “Analysis of guided resonance in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

Johansen, I.-R.

Johnstone, W.

G. Brown, G. Thursby, W. Johnstone, and D. Uttamchandani, “MEMS beam steering for high power fiber lasers,” in Proceedings of 4th EMRS DTC Tech. Conference (Edinburgh, U.K., 2007), B9.

Jung, I. W.

I. W. Jung, S. Kim, and O. Solgaard, “High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” J. Microelectromech. Syst.18(4), 924–932 (2009).
[CrossRef]

I. W. Jung, S. B. Mallick, and O. Solgaard, “A large-area high-reflectivity broadband monolithic single-crystal-silicon photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” IEEE J. Sel. Top. Quantum Electron.15(5), 1447–1454 (2009).
[CrossRef]

Kaertner, F. X.

S. Akiyama, F. J. Grawert, J. Liu, K. Wada, G. K. Celler, L. C. Kimerling, and F. X. Kaertner, “Fabrication of highly reflecting epitaxy-ready Si–SiO2 Bragg reflectors,” IEEE Photon. Technol. Lett.17(7), 1456–1458 (2005).
[CrossRef]

Kaspar, P.

Khirallah, K.

A. M. Elshurafa, K. Khirallah, H. H. Tawfik, A. Emira, A. K. S. Abdel Aziz, and S. M. Sedky, “Nonlinear dynamics of spring softening and hardening in folded-MEMS comb drive resonators,” J. Microelectromech. Syst.20(4), 943–958 (2011).
[CrossRef]

Kilic, O.

Kim, D.-H.

D.-H. Kim, Z. Liu, Y.-S. Kim, J. Wu, J. Song, H.-S. Kim, Y. Huang, K.-C. Hwang, Y. Zhang, and J. A. Rogers, “Optimized structural designs for stretchable silicon integrated circuits,” Small5(24), 2841–2847 (2009).
[CrossRef] [PubMed]

Kim, H.-S.

D.-H. Kim, Z. Liu, Y.-S. Kim, J. Wu, J. Song, H.-S. Kim, Y. Huang, K.-C. Hwang, Y. Zhang, and J. A. Rogers, “Optimized structural designs for stretchable silicon integrated circuits,” Small5(24), 2841–2847 (2009).
[CrossRef] [PubMed]

Kim, S.

J.-W. Jeong, S. Kim, and O. Solgaard, “Split-frame gimbaled two-dimensional MEMS scanner for miniature dual-axis confocal microendoscopes fabricated by front-side processing,” J. Microelectromech. Syst.21(2), 308–315 (2012).
[CrossRef]

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A.107(40), 17095–17100 (2010).
[CrossRef] [PubMed]

S. Hadzialic, S. Kim, A. F. Sarioglu, A. S. Sudbø, and O. Solgaard, “Displacement Sensing With a Mechanically Tunable Photonic Crystal,” IEEE Photon. Technol. Lett.22(16), 1196–1198 (2010).
[CrossRef]

I. W. Jung, S. Kim, and O. Solgaard, “High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” J. Microelectromech. Syst.18(4), 924–932 (2009).
[CrossRef]

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, W. Suh, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and nearinfrared wavelengths,” Phys. Rev. B73(11), 115126 (2006).
[CrossRef]

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

O. Kilic, S. Kim, W. Suh, Y.-A. Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, “Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders,” Opt. Lett.29(23), 2782–2784 (2004).
[CrossRef] [PubMed]

Kim, Y.-S.

D.-H. Kim, Z. Liu, Y.-S. Kim, J. Wu, J. Song, H.-S. Kim, Y. Huang, K.-C. Hwang, Y. Zhang, and J. A. Rogers, “Optimized structural designs for stretchable silicon integrated circuits,” Small5(24), 2841–2847 (2009).
[CrossRef] [PubMed]

Kimerling, L. C.

S. Akiyama, F. J. Grawert, J. Liu, K. Wada, G. K. Celler, L. C. Kimerling, and F. X. Kaertner, “Fabrication of highly reflecting epitaxy-ready Si–SiO2 Bragg reflectors,” IEEE Photon. Technol. Lett.17(7), 1456–1458 (2005).
[CrossRef]

Kino, G. S.

Kovalsky, A.

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A.107(40), 17095–17100 (2010).
[CrossRef] [PubMed]

Liu, J.

S. Akiyama, F. J. Grawert, J. Liu, K. Wada, G. K. Celler, L. C. Kimerling, and F. X. Kaertner, “Fabrication of highly reflecting epitaxy-ready Si–SiO2 Bragg reflectors,” IEEE Photon. Technol. Lett.17(7), 1456–1458 (2005).
[CrossRef]

Liu, Z.

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A.107(40), 17095–17100 (2010).
[CrossRef] [PubMed]

D.-H. Kim, Z. Liu, Y.-S. Kim, J. Wu, J. Song, H.-S. Kim, Y. Huang, K.-C. Hwang, Y. Zhang, and J. A. Rogers, “Optimized structural designs for stretchable silicon integrated circuits,” Small5(24), 2841–2847 (2009).
[CrossRef] [PubMed]

Lousse, V.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, W. Suh, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and nearinfrared wavelengths,” Phys. Rev. B73(11), 115126 (2006).
[CrossRef]

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

Ma, Z.

D. Zhao, Z. Ma, and W. Zhou, “Design of dielectric photonic crystal reflector Fabry-Perot cavities,” Proc. SPIE7756, 775610, 775610-9 (2010).
[CrossRef]

Mallick, S. B.

I. W. Jung, S. B. Mallick, and O. Solgaard, “A large-area high-reflectivity broadband monolithic single-crystal-silicon photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” IEEE J. Sel. Top. Quantum Electron.15(5), 1447–1454 (2009).
[CrossRef]

Mandella, M. J.

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photon. Technol. Lett.16(2), 518–520 (2004).
[CrossRef]

Neureuther, A. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photon. Technol. Lett.16(2), 518–520 (2004).
[CrossRef]

Penteker, E.

C. Harendt, H.-G. Graf, B. Hofflinger, and E. Penteker, “Silicon fusion bonding and its characterization,” J. Micromech. Microeng.2(3), 113–116 (1992).
[CrossRef]

Peter, Y.-A.

Rogers, J. A.

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A.107(40), 17095–17100 (2010).
[CrossRef] [PubMed]

D.-H. Kim, Z. Liu, Y.-S. Kim, J. Wu, J. Song, H.-S. Kim, Y. Huang, K.-C. Hwang, Y. Zhang, and J. A. Rogers, “Optimized structural designs for stretchable silicon integrated circuits,” Small5(24), 2841–2847 (2009).
[CrossRef] [PubMed]

Sarioglu, A. F.

S. Hadzialic, S. Kim, A. F. Sarioglu, A. S. Sudbø, and O. Solgaard, “Displacement Sensing With a Mechanically Tunable Photonic Crystal,” IEEE Photon. Technol. Lett.22(16), 1196–1198 (2010).
[CrossRef]

Sedky, S. M.

A. M. Elshurafa, K. Khirallah, H. H. Tawfik, A. Emira, A. K. S. Abdel Aziz, and S. M. Sedky, “Nonlinear dynamics of spring softening and hardening in folded-MEMS comb drive resonators,” J. Microelectromech. Syst.20(4), 943–958 (2011).
[CrossRef]

Sitti, M.

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A.107(40), 17095–17100 (2010).
[CrossRef] [PubMed]

Solgaard, O.

J.-W. Jeong, S. Kim, and O. Solgaard, “Split-frame gimbaled two-dimensional MEMS scanner for miniature dual-axis confocal microendoscopes fabricated by front-side processing,” J. Microelectromech. Syst.21(2), 308–315 (2012).
[CrossRef]

J. O. Grepstad, P. Kaspar, O. Solgaard, I.-R. Johansen, and A. S. Sudbø, “Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application,” Opt. Express20(7), 7954–7965 (2012).
[CrossRef] [PubMed]

S. Hadzialic, S. Kim, A. F. Sarioglu, A. S. Sudbø, and O. Solgaard, “Displacement Sensing With a Mechanically Tunable Photonic Crystal,” IEEE Photon. Technol. Lett.22(16), 1196–1198 (2010).
[CrossRef]

I. W. Jung, S. Kim, and O. Solgaard, “High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” J. Microelectromech. Syst.18(4), 924–932 (2009).
[CrossRef]

I. W. Jung, S. B. Mallick, and O. Solgaard, “A large-area high-reflectivity broadband monolithic single-crystal-silicon photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” IEEE J. Sel. Top. Quantum Electron.15(5), 1447–1454 (2009).
[CrossRef]

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, W. Suh, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and nearinfrared wavelengths,” Phys. Rev. B73(11), 115126 (2006).
[CrossRef]

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

O. Kilic, S. Kim, W. Suh, Y.-A. Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, “Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders,” Opt. Lett.29(23), 2782–2784 (2004).
[CrossRef] [PubMed]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett.82(13), 1999–2001 (2003).
[CrossRef]

Song, J.

D.-H. Kim, Z. Liu, Y.-S. Kim, J. Wu, J. Song, H.-S. Kim, Y. Huang, K.-C. Hwang, Y. Zhang, and J. A. Rogers, “Optimized structural designs for stretchable silicon integrated circuits,” Small5(24), 2841–2847 (2009).
[CrossRef] [PubMed]

Sudbø, A. S.

Suh, W.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, W. Suh, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and nearinfrared wavelengths,” Phys. Rev. B73(11), 115126 (2006).
[CrossRef]

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

O. Kilic, S. Kim, W. Suh, Y.-A. Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, “Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders,” Opt. Lett.29(23), 2782–2784 (2004).
[CrossRef] [PubMed]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett.82(13), 1999–2001 (2003).
[CrossRef]

Tawfik, H. H.

A. M. Elshurafa, K. Khirallah, H. H. Tawfik, A. Emira, A. K. S. Abdel Aziz, and S. M. Sedky, “Nonlinear dynamics of spring softening and hardening in folded-MEMS comb drive resonators,” J. Microelectromech. Syst.20(4), 943–958 (2011).
[CrossRef]

Thursby, G.

G. Brown, G. Thursby, W. Johnstone, and D. Uttamchandani, “MEMS beam steering for high power fiber lasers,” in Proceedings of 4th EMRS DTC Tech. Conference (Edinburgh, U.K., 2007), B9.

Urey, H.

C. Ataman and H. Urey, “Nonlinear frequency response of Comb-Driven Microscanners,” Proc. SPIE5348, 166–174 (2004).
[CrossRef]

Uttamchandani, D.

G. Brown, G. Thursby, W. Johnstone, and D. Uttamchandani, “MEMS beam steering for high power fiber lasers,” in Proceedings of 4th EMRS DTC Tech. Conference (Edinburgh, U.K., 2007), B9.

Wada, K.

S. Akiyama, F. J. Grawert, J. Liu, K. Wada, G. K. Celler, L. C. Kimerling, and F. X. Kaertner, “Fabrication of highly reflecting epitaxy-ready Si–SiO2 Bragg reflectors,” IEEE Photon. Technol. Lett.17(7), 1456–1458 (2005).
[CrossRef]

Wang, T. D.

Whitesides, G. M.

M. K. Chaudhury and G. M. Whitesides, “Direct measurement of interfacial interactions between semispherical lens and flat sheets of poly(dimethylsiloxane) and their chemical derivatives,” Langmuir7(5), 1013–1025 (1991).
[CrossRef]

Wu, J.

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A.107(40), 17095–17100 (2010).
[CrossRef] [PubMed]

D.-H. Kim, Z. Liu, Y.-S. Kim, J. Wu, J. Song, H.-S. Kim, Y. Huang, K.-C. Hwang, Y. Zhang, and J. A. Rogers, “Optimized structural designs for stretchable silicon integrated circuits,” Small5(24), 2841–2847 (2009).
[CrossRef] [PubMed]

Yanik, M. F.

O. Kilic, S. Kim, W. Suh, Y.-A. Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, “Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders,” Opt. Lett.29(23), 2782–2784 (2004).
[CrossRef] [PubMed]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett.82(13), 1999–2001 (2003).
[CrossRef]

Zhang, Y.

D.-H. Kim, Z. Liu, Y.-S. Kim, J. Wu, J. Song, H.-S. Kim, Y. Huang, K.-C. Hwang, Y. Zhang, and J. A. Rogers, “Optimized structural designs for stretchable silicon integrated circuits,” Small5(24), 2841–2847 (2009).
[CrossRef] [PubMed]

Zhao, D.

D. Zhao, Z. Ma, and W. Zhou, “Design of dielectric photonic crystal reflector Fabry-Perot cavities,” Proc. SPIE7756, 775610, 775610-9 (2010).
[CrossRef]

Zhou, W.

D. Zhao, Z. Ma, and W. Zhou, “Design of dielectric photonic crystal reflector Fabry-Perot cavities,” Proc. SPIE7756, 775610, 775610-9 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett.82(13), 1999–2001 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

I. W. Jung, S. B. Mallick, and O. Solgaard, “A large-area high-reflectivity broadband monolithic single-crystal-silicon photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” IEEE J. Sel. Top. Quantum Electron.15(5), 1447–1454 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. Hadzialic, S. Kim, A. F. Sarioglu, A. S. Sudbø, and O. Solgaard, “Displacement Sensing With a Mechanically Tunable Photonic Crystal,” IEEE Photon. Technol. Lett.22(16), 1196–1198 (2010).
[CrossRef]

S. Akiyama, F. J. Grawert, J. Liu, K. Wada, G. K. Celler, L. C. Kimerling, and F. X. Kaertner, “Fabrication of highly reflecting epitaxy-ready Si–SiO2 Bragg reflectors,” IEEE Photon. Technol. Lett.17(7), 1456–1458 (2005).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photon. Technol. Lett.16(2), 518–520 (2004).
[CrossRef]

J. Microelectromech. Syst. (3)

I. W. Jung, S. Kim, and O. Solgaard, “High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” J. Microelectromech. Syst.18(4), 924–932 (2009).
[CrossRef]

J.-W. Jeong, S. Kim, and O. Solgaard, “Split-frame gimbaled two-dimensional MEMS scanner for miniature dual-axis confocal microendoscopes fabricated by front-side processing,” J. Microelectromech. Syst.21(2), 308–315 (2012).
[CrossRef]

A. M. Elshurafa, K. Khirallah, H. H. Tawfik, A. Emira, A. K. S. Abdel Aziz, and S. M. Sedky, “Nonlinear dynamics of spring softening and hardening in folded-MEMS comb drive resonators,” J. Microelectromech. Syst.20(4), 943–958 (2011).
[CrossRef]

J. Micromech. Microeng. (1)

C. Harendt, H.-G. Graf, B. Hofflinger, and E. Penteker, “Silicon fusion bonding and its characterization,” J. Micromech. Microeng.2(3), 113–116 (1992).
[CrossRef]

Langmuir (1)

M. K. Chaudhury and G. M. Whitesides, “Direct measurement of interfacial interactions between semispherical lens and flat sheets of poly(dimethylsiloxane) and their chemical derivatives,” Langmuir7(5), 1013–1025 (1991).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (2)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonance in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, W. Suh, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and nearinfrared wavelengths,” Phys. Rev. B73(11), 115126 (2006).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, “Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing,” Proc. Natl. Acad. Sci. U.S.A.107(40), 17095–17100 (2010).
[CrossRef] [PubMed]

Proc. SPIE (2)

D. Zhao, Z. Ma, and W. Zhou, “Design of dielectric photonic crystal reflector Fabry-Perot cavities,” Proc. SPIE7756, 775610, 775610-9 (2010).
[CrossRef]

C. Ataman and H. Urey, “Nonlinear frequency response of Comb-Driven Microscanners,” Proc. SPIE5348, 166–174 (2004).
[CrossRef]

Small (1)

D.-H. Kim, Z. Liu, Y.-S. Kim, J. Wu, J. Song, H.-S. Kim, Y. Huang, K.-C. Hwang, Y. Zhang, and J. A. Rogers, “Optimized structural designs for stretchable silicon integrated circuits,” Small5(24), 2841–2847 (2009).
[CrossRef] [PubMed]

Other (3)

Y. Ohira, A. Checkovsky, T. Yamanoi, T. Endo, H. Fujita, and H. Toshiyoshi, “A high-power handling MEMS optical scanner for display applications,” in Proceedings of IEEE/LEOS Conference on Optical MEMS and Nanophotonics (Institute of Electrical and Electronics Engineers, Freiburg, Germany, 2008), pp. 70–71.
[CrossRef]

G. Brown, G. Thursby, W. Johnstone, and D. Uttamchandani, “MEMS beam steering for high power fiber lasers,” in Proceedings of 4th EMRS DTC Tech. Conference (Edinburgh, U.K., 2007), B9.

E. Stapparts, K. Baker, D. Gavel, S. Wilks, S. Olivier, and J. Brase, “Coherent communications, imaging and targeting,” in Proceedings of IEEE Conference on Aerospace (Institute of Electrical and Electronics Engineers, 2004), pp. 1105–1116.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Two-axis PC MEMS scanner (a) Schematic diagram, (b) Cross-sectional diagram.

Fig. 2
Fig. 2

(a) Simulation structures 1) with and 2) without thin posts (not to scale) (b) Reflection spectrum simulation of PCs with and without thin connecting posts.

Fig. 3
Fig. 3

Schematic diagram of (a) PC fabrication and (b) transfer-printing process (not to scale).

Fig. 4
Fig. 4

SEM Images of the PC mirror MEMS Scanner (a) Full device view; the check patterns on PC mirrors are due to the electron beam diffraction, (b) Top view of the PC mirror, (c) Cross-sectional view of the PC mirror.

Fig. 5
Fig. 5

Optical setup for the PC mirror MEMS scanner reflectance measurement. OF1 and 2: single mode optical fibers, BS1~3: beam splitters. The steering mirror can be removed to couple light into the optical spectrum analyzer.

Fig. 6
Fig. 6

Optical measurement of the PC mirror MEMS scanner (a) Reflection spectrum of the silicon mirror of the scanner (b) Reflection spectrum of the PC mirror MEMS scanner (c) Definition of incident and azimuthal angle with respect to the PC mirror (d) Angular dependence of the PC mirror MEMS scanner at p- and s-polarization.

Fig. 7
Fig. 7

(a) Surface profile of the transferred PC mirror. (b) Cross section across the center showing a peak-to-valley value of ~60 nm (320 μm in length) resulting in a flatness of λ/25.

Fig. 8
Fig. 8

Optical deflection curves after PC bonding in (a) Static mode – V1 and V2 are for the outer axis, and V3 and V4 are for the inner axis, (b) Dynamic mode.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

h min = w stamp γ E ¯ [ 3.04 ln( w stamp E ¯ γ tan 2 θ 2 )11.5 ]

Metrics