Abstract

We have investigated the optical bistability behavior based on an electromagnetically induced reflection (EIR) effect in a compound metallic grating consisting of subwavelength slits and Kerr nonlinear nanocavities embedded in a metallic film. The theoretical and simulation results show that a narrow peak in the broad reflection dip possesses a red-shift with increasing the refractive index of coupled nanocavities. Importantly, we have obtained an obvious optical bistability with threshold intensity about ten times lower than that of metallic grating coated by nonlinear material. The results indicate that our structure may find excellent applications for nonlinear plasmonic devices, especially optical switches and modulators.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B80(19), 195415 (2009).
    [CrossRef]
  2. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
    [CrossRef] [PubMed]
  3. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett.9(8), 2935–2939 (2009).
    [CrossRef] [PubMed]
  4. W. Wang, Q. Yang, F. Fan, H. X. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett.11(4), 1603–1608 (2011).
    [CrossRef] [PubMed]
  5. J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett.96(6), 063105 (2010).
    [CrossRef]
  6. H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express18(17), 17922–17927 (2010).
    [CrossRef] [PubMed]
  7. Z. Han, A. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett.96(13), 131106 (2010).
    [CrossRef]
  8. S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express18(14), 14496–14510 (2010).
    [CrossRef] [PubMed]
  9. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express16(1), 413–425 (2008).
    [CrossRef] [PubMed]
  10. H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett.37(18), 3780–3782 (2012).
    [CrossRef] [PubMed]
  11. D. O’Connor, M. McCurry, B. Lafferty, and A. V. Zayats, “Plasmonic waveguide as an efficient transducer for high-density data storage,” Appl. Phys. Lett.95(17), 171112 (2009).
    [CrossRef]
  12. Q. Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett.102(5), 056801 (2009).
    [CrossRef] [PubMed]
  13. X. Piao, S. Yu, and N. Park, “Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator,” Opt. Express20(17), 18994–18999 (2012).
    [CrossRef] [PubMed]
  14. S. Lee, S. In, D. R. Mason, and N. Park, “Incorporation of nanovoids into metallic gratings for broadband plasmonic organic solar cells,” Opt. Express21(4), 4055–4060 (2013).
    [CrossRef] [PubMed]
  15. H. Wei, Z. Wang, X. Tian, M. Käll, and H. X. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat Commun2, 387 (2011).
    [CrossRef] [PubMed]
  16. H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express19(4), 2910–2915 (2011).
    [CrossRef] [PubMed]
  17. C. J. Min, P. Wang, C. C. Chen, Y. Deng, Y. H. Lu, H. Ming, T. Y. Ning, Y. L. Zhou, and G. Z. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett.33(8), 869–871 (2008).
    [CrossRef] [PubMed]
  18. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, 1985).
  19. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
    [CrossRef]
  20. G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett.97(5), 057402 (2006).
    [CrossRef] [PubMed]
  21. C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Optical bistability in subwavelength metallic grating coated by nonlinear material,” Opt. Express15(19), 12368–12373 (2007).
    [CrossRef] [PubMed]
  22. Y. Shen and G. P. Wang, “Optical bistability in metal gap waveguide nanocavities,” Opt. Express16(12), 8421–8426 (2008).
    [CrossRef] [PubMed]
  23. S. Harris, “Electromagnetically induced transparency,” Phys. Today50(7), 36–42 (1997).
    [CrossRef]
  24. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
    [CrossRef] [PubMed]
  25. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
    [CrossRef] [PubMed]
  26. X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett.102(17), 173902 (2009).
    [CrossRef] [PubMed]
  27. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
    [CrossRef] [PubMed]
  28. H. Lu, X. Liu, D. Mao, Y. Gong, and G. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett.36(16), 3233–3235 (2011).
    [CrossRef] [PubMed]
  29. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
    [CrossRef] [PubMed]
  30. Y. Cui and C. Zeng, “Optical bistability based on an analog of electromagnetically induced transparency in plasmonic waveguide-coupled resonators,” Appl. Opt.51(31), 7482–7486 (2012).
    [CrossRef] [PubMed]
  31. Z. Wang and B. Yu, “Optical bistability via dual electromagnetically induced transparency in a coupled quantum-well nanostructure,” J. Appl. Phys.113(11), 113101 (2013).
    [CrossRef]
  32. S. Collin, F. Pardo, R. Teissier, and J. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B63(3), 033107 (2001).
    [CrossRef]
  33. Z. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express19(4), 3251–3257 (2011).
    [CrossRef] [PubMed]
  34. Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett.19(2), 91–93 (2007).
    [CrossRef]
  35. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  36. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20(3), 569–572 (2003).
    [CrossRef] [PubMed]
  37. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

2013 (2)

S. Lee, S. In, D. R. Mason, and N. Park, “Incorporation of nanovoids into metallic gratings for broadband plasmonic organic solar cells,” Opt. Express21(4), 4055–4060 (2013).
[CrossRef] [PubMed]

Z. Wang and B. Yu, “Optical bistability via dual electromagnetically induced transparency in a coupled quantum-well nanostructure,” J. Appl. Phys.113(11), 113101 (2013).
[CrossRef]

2012 (4)

2011 (5)

2010 (6)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
[CrossRef] [PubMed]

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett.96(6), 063105 (2010).
[CrossRef]

H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express18(17), 17922–17927 (2010).
[CrossRef] [PubMed]

Z. Han, A. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett.96(13), 131106 (2010).
[CrossRef]

S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express18(14), 14496–14510 (2010).
[CrossRef] [PubMed]

2009 (5)

D. O’Connor, M. McCurry, B. Lafferty, and A. V. Zayats, “Plasmonic waveguide as an efficient transducer for high-density data storage,” Appl. Phys. Lett.95(17), 171112 (2009).
[CrossRef]

Q. Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett.102(5), 056801 (2009).
[CrossRef] [PubMed]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B80(19), 195415 (2009).
[CrossRef]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett.9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett.102(17), 173902 (2009).
[CrossRef] [PubMed]

2008 (4)

2007 (2)

Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett.19(2), 91–93 (2007).
[CrossRef]

C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Optical bistability in subwavelength metallic grating coated by nonlinear material,” Opt. Express15(19), 12368–12373 (2007).
[CrossRef] [PubMed]

2006 (3)

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett.97(5), 057402 (2006).
[CrossRef] [PubMed]

2003 (1)

2001 (1)

S. Collin, F. Pardo, R. Teissier, and J. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B63(3), 033107 (2001).
[CrossRef]

1997 (1)

S. Harris, “Electromagnetically induced transparency,” Phys. Today50(7), 36–42 (1997).
[CrossRef]

Barnard, E. S.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
[CrossRef] [PubMed]

Bartoli, F. J.

Q. Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett.102(5), 056801 (2009).
[CrossRef] [PubMed]

Bouhelier, A.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett.96(6), 063105 (2010).
[CrossRef]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett.9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

Z. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express19(4), 3251–3257 (2011).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Brongersma, M. L.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
[CrossRef] [PubMed]

Cai, W.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
[CrossRef] [PubMed]

Chen, C. C.

Colas des Francs, G.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett.96(6), 063105 (2010).
[CrossRef]

Collin, S.

S. Collin, F. Pardo, R. Teissier, and J. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B63(3), 033107 (2001).
[CrossRef]

Cui, Y.

Deng, Y.

Dereux, A.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett.96(6), 063105 (2010).
[CrossRef]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett.9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

des Francs, G. C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett.9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Ding, Y. J.

Q. Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett.102(5), 056801 (2009).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Elezzabi, A.

Z. Han, A. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett.96(13), 131106 (2010).
[CrossRef]

Enoch, S.

Fan, F.

W. Wang, Q. Yang, F. Fan, H. X. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett.11(4), 1603–1608 (2011).
[CrossRef] [PubMed]

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20(3), 569–572 (2003).
[CrossRef] [PubMed]

Finot, C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett.9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Forsberg, E.

Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett.19(2), 91–93 (2007).
[CrossRef]

Gan, Q. Q.

Q. Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett.102(5), 056801 (2009).
[CrossRef] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Gong, Y.

González, M. U.

Grandidier, J.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett.96(6), 063105 (2010).
[CrossRef]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett.9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Han, Z.

Z. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express19(4), 3251–3257 (2011).
[CrossRef] [PubMed]

Z. Han, A. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett.96(13), 131106 (2010).
[CrossRef]

Han, Z. H.

Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett.19(2), 91–93 (2007).
[CrossRef]

Harris, S.

S. Harris, “Electromagnetically induced transparency,” Phys. Today50(7), 36–42 (1997).
[CrossRef]

He, S.

Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett.19(2), 91–93 (2007).
[CrossRef]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

In, S.

Jiao, X.

Joannopoulos, J. D.

Käll, M.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. X. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat Commun2, 387 (2011).
[CrossRef] [PubMed]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

Kekatpure, R. D.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
[CrossRef] [PubMed]

Kim, H.

Kwong, D. L.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett.102(17), 173902 (2009).
[CrossRef] [PubMed]

Lafferty, B.

D. O’Connor, M. McCurry, B. Lafferty, and A. V. Zayats, “Plasmonic waveguide as an efficient transducer for high-density data storage,” Appl. Phys. Lett.95(17), 171112 (2009).
[CrossRef]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Lee, B.

Lee, S.

Lipson, M.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Liu, X.

Lu, H.

Lu, Y. H.

Mao, D.

Markey, L.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett.96(6), 063105 (2010).
[CrossRef]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett.9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Mason, D. R.

Massenot, S.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett.96(6), 063105 (2010).
[CrossRef]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett.9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

McCurry, M.

D. O’Connor, M. McCurry, B. Lafferty, and A. V. Zayats, “Plasmonic waveguide as an efficient transducer for high-density data storage,” Appl. Phys. Lett.95(17), 171112 (2009).
[CrossRef]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Min, C.

Min, C. J.

Ming, H.

Ning, T. Y.

O’Connor, D.

D. O’Connor, M. McCurry, B. Lafferty, and A. V. Zayats, “Plasmonic waveguide as an efficient transducer for high-density data storage,” Appl. Phys. Lett.95(17), 171112 (2009).
[CrossRef]

Oulton, R. F.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B80(19), 195415 (2009).
[CrossRef]

Pardo, F.

S. Collin, F. Pardo, R. Teissier, and J. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B63(3), 033107 (2001).
[CrossRef]

Park, J.

Park, N.

Pelouard, J.

S. Collin, F. Pardo, R. Teissier, and J. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B63(3), 033107 (2001).
[CrossRef]

Piao, X.

Pollard, R.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett.97(5), 057402 (2006).
[CrossRef] [PubMed]

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

Quidant, R.

Randhawa, S.

Renger, J.

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

Shen, Y.

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Suh, W.

Teissier, R.

S. Collin, F. Pardo, R. Teissier, and J. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B63(3), 033107 (2001).
[CrossRef]

Tian, X.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. X. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat Commun2, 387 (2011).
[CrossRef] [PubMed]

Van, V.

Z. Han, A. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett.96(13), 131106 (2010).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Wang, G.

Wang, G. P.

Wang, L.

Wang, P.

Wang, W.

W. Wang, Q. Yang, F. Fan, H. X. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett.11(4), 1603–1608 (2011).
[CrossRef] [PubMed]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Wang, Z.

Z. Wang and B. Yu, “Optical bistability via dual electromagnetically induced transparency in a coupled quantum-well nanostructure,” J. Appl. Phys.113(11), 113101 (2013).
[CrossRef]

H. Wei, Z. Wang, X. Tian, M. Käll, and H. X. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat Commun2, 387 (2011).
[CrossRef] [PubMed]

Wang, Z. L.

W. Wang, Q. Yang, F. Fan, H. X. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett.11(4), 1603–1608 (2011).
[CrossRef] [PubMed]

Weeber, J.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett.96(6), 063105 (2010).
[CrossRef]

Weeber, J. C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett.9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Wei, H.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. X. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat Commun2, 387 (2011).
[CrossRef] [PubMed]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Wong, C. W.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett.102(17), 173902 (2009).
[CrossRef] [PubMed]

Wurtz, G. A.

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett.97(5), 057402 (2006).
[CrossRef] [PubMed]

Xu, H. X.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. X. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat Commun2, 387 (2011).
[CrossRef] [PubMed]

W. Wang, Q. Yang, F. Fan, H. X. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett.11(4), 1603–1608 (2011).
[CrossRef] [PubMed]

Xu, Q.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

Yang, G. Z.

Yang, Q.

W. Wang, Q. Yang, F. Fan, H. X. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett.11(4), 1603–1608 (2011).
[CrossRef] [PubMed]

Yang, X.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett.102(17), 173902 (2009).
[CrossRef] [PubMed]

Yu, B.

Z. Wang and B. Yu, “Optical bistability via dual electromagnetically induced transparency in a coupled quantum-well nanostructure,” J. Appl. Phys.113(11), 113101 (2013).
[CrossRef]

Yu, M.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett.102(17), 173902 (2009).
[CrossRef] [PubMed]

Yu, S.

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

D. O’Connor, M. McCurry, B. Lafferty, and A. V. Zayats, “Plasmonic waveguide as an efficient transducer for high-density data storage,” Appl. Phys. Lett.95(17), 171112 (2009).
[CrossRef]

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett.97(5), 057402 (2006).
[CrossRef] [PubMed]

Zeng, C.

Zentgraf, T.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B80(19), 195415 (2009).
[CrossRef]

Zhang, S.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B80(19), 195415 (2009).
[CrossRef]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Zhang, X.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B80(19), 195415 (2009).
[CrossRef]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Zhou, Y. L.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Z. Han, A. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett.96(13), 131106 (2010).
[CrossRef]

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett.96(6), 063105 (2010).
[CrossRef]

D. O’Connor, M. McCurry, B. Lafferty, and A. V. Zayats, “Plasmonic waveguide as an efficient transducer for high-density data storage,” Appl. Phys. Lett.95(17), 171112 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett.19(2), 91–93 (2007).
[CrossRef]

J. Appl. Phys. (1)

Z. Wang and B. Yu, “Optical bistability via dual electromagnetically induced transparency in a coupled quantum-well nanostructure,” J. Appl. Phys.113(11), 113101 (2013).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nano Lett. (3)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett.9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

W. Wang, Q. Yang, F. Fan, H. X. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett.11(4), 1603–1608 (2011).
[CrossRef] [PubMed]

Nat Commun (1)

H. Wei, Z. Wang, X. Tian, M. Käll, and H. X. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat Commun2, 387 (2011).
[CrossRef] [PubMed]

Nat. Photonics (1)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

Nature (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Opt. Express (9)

S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express18(14), 14496–14510 (2010).
[CrossRef] [PubMed]

J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express16(1), 413–425 (2008).
[CrossRef] [PubMed]

H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express19(4), 2910–2915 (2011).
[CrossRef] [PubMed]

H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express18(17), 17922–17927 (2010).
[CrossRef] [PubMed]

X. Piao, S. Yu, and N. Park, “Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator,” Opt. Express20(17), 18994–18999 (2012).
[CrossRef] [PubMed]

S. Lee, S. In, D. R. Mason, and N. Park, “Incorporation of nanovoids into metallic gratings for broadband plasmonic organic solar cells,” Opt. Express21(4), 4055–4060 (2013).
[CrossRef] [PubMed]

C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Optical bistability in subwavelength metallic grating coated by nonlinear material,” Opt. Express15(19), 12368–12373 (2007).
[CrossRef] [PubMed]

Y. Shen and G. P. Wang, “Optical bistability in metal gap waveguide nanocavities,” Opt. Express16(12), 8421–8426 (2008).
[CrossRef] [PubMed]

Z. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express19(4), 3251–3257 (2011).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. B (2)

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B80(19), 195415 (2009).
[CrossRef]

S. Collin, F. Pardo, R. Teissier, and J. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B63(3), 033107 (2001).
[CrossRef]

Phys. Rev. Lett. (6)

G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett.97(5), 057402 (2006).
[CrossRef] [PubMed]

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
[CrossRef] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett.102(17), 173902 (2009).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Q. Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett.102(5), 056801 (2009).
[CrossRef] [PubMed]

Phys. Today (1)

S. Harris, “Electromagnetically induced transparency,” Phys. Today50(7), 36–42 (1997).
[CrossRef]

Other (3)

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, 1985).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Supplementary Material (3)

» Media 1: MOV (2642 KB)     
» Media 2: MOV (2642 KB)     
» Media 3: MOV (2642 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the metallic grating with geometrical parameters: the period of grating P, thickness of metallic film h, slit width a, coupling distance between silts and nanocavities g, as well as length and width of cavities L and w.

Fig. 2
Fig. 2

(a) Schematic of the simple two-oscillator model. (b) Dynamic evolution of reflection spectra with the coupling coefficient κ with the frequency detuning δ = 0. (c) Spectral evolution with the detuning δ when κ = 0.033ω1. The results in (b) and (c) are calculated by theoretical modeling.

Fig. 3
Fig. 3

(a) Reflection spectra with different g for L = 210 nm. (b) Reflection spectra with different refractive index nd of nanocavities for g = 30 nm and L = 210 nm. (c) Reflection spectra with different incident intensities from the metallic grating with Kerr-nonlinear nanocavities. (d) Output intensities versus different incident intensities for λ = 1078 nm. The dashed (solid) line corresponds to increasing (decreasing) intensities. In (c) and (d), g is set as 30 nm.

Fig. 4
Fig. 4

Magnetic field distributions |Hz| with incident intensities of (a) 400 V2/μm2 (Media 1) and (b) 1300 V2/μm2 at the wavelength of 1078 nm. The upper dotted lines and white arrows denote the incident plane and direction, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

da/dt=(j ω 1 γ 11 γ 12 )a+ S i γ 11 jκb,
db/dt=(j ω 2 γ 2 )bjκa.
R= | S r S i | 2 = | γ 11 j(ω 1 ω)+ γ 1 + κ 2 / [ j(ω 1 ω+δ)+ γ 2 ] 1 | 2 .

Metrics