Abstract

We report a detailed theoretical and experimental study of fiber-optic cavities under broadband excitation by mode-locked laser combs. We calculate the effects of fiber dispersion on the cavity transmission. For any integer ratio between the comb repetition rate and cavity free spectral range, the theoretical resonant output spectrum exhibits a narrow group of resonant teeth, surrounded by minor, unevenly spaced resonances. Also, the central resonance can be rapidly and precisely tuned over the entire comb span by only acting on its repetition rate. Experimental observations are provided by a single-mode fiber ring and a telecom-wavelength comb laser. The resulting spectral pattern agrees very well with our theoretical prediction, allowing a thorough characterization of the cavity dispersion and opening new perspectives for comb spectroscopy in dielectric resonators.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T.  Udem, R.  Holzwarth, T. W.  Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [CrossRef] [PubMed]
  2. J.  Ye, H.  Schnatz, L. W.  Hollberg, “Optical frequency combs: from precision frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
    [CrossRef]
  3. N.  Schuhler, Y.  Salvadé, S.  Lévêque, R.  Dändliker, R.  Holzwarth, “Frequency-comb-referenced two-wavelength source for absolute distance measurement,” Opt. Lett. 31(21), 3101–3103 (2006).
    [CrossRef] [PubMed]
  4. P.  Maddaloni, P.  Cancio, P.  De Natale, “Optical comb generators for laser frequency measurement,” Meas. Sci. Technol. 20(5), 052001 (2009).
    [CrossRef]
  5. S. A.  Diddams, L.  Hollberg, V.  Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
    [CrossRef] [PubMed]
  6. J.  Mandon, G.  Guelachvili, N.  Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
    [CrossRef]
  7. Y.  Bitou, T. R.  Schibli, K.  Minoshima, “Accurate wide-range displacement measurement using tunable diode laser and optical frequency comb generator,” Opt. Express 14(2), 644–654 (2006).
    [CrossRef] [PubMed]
  8. G.  Gagliardi, M.  Salza, S.  Avino, P.  Ferraro, P.  De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330(6007), 1081–1084 (2010).
    [CrossRef] [PubMed]
  9. M. J.  Thorpe, K. D.  Moll, R. J.  Jones, B.  Safdi, J.  Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
    [CrossRef] [PubMed]
  10. B.  Bernhardt, A.  Ozawa, P.  Jacquet, M.  Jacquey, Y.  Kobayashi, T.  Udem, R.  Holzwarth, G.  Guelachvili, T. W.  Hänsch, N.  Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
    [CrossRef]
  11. R.  Grilli, G.  Mèjean, C.  Abd Alrahman, I.  Ventrillard, S.  Kassi, D.  Romanini, “Cavity-enhanced multiplexed comb spectroscopy down to the photon shot noise,” Phys. Rev. A 85(5), 051804(R) (2012).
    [CrossRef]
  12. C.  Gohle, B.  Stein, A.  Schliesser, T.  Udem, T. W.  Hänsch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99(26), 263902 (2007).
    [CrossRef] [PubMed]
  13. T.  Gherman, D.  Romanini, “Modelocked cavity--Enhanced absorption spectroscopy,” Opt. Express 10(19), 1033–1042 (2002).
    [CrossRef] [PubMed]
  14. L. F.  Stokes, M.  Chodorow, H. J.  Shaw, “All-single-mode fiber resonator,” Opt. Lett. 7(6), 288–290 (1982).
    [CrossRef] [PubMed]
  15. R. W. P.  Drever, J. L.  Hall, F. V.  Kowalski, J.  Hough, G. M.  Ford, A. J.  Munley, H.  Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
    [CrossRef]

2012 (1)

R.  Grilli, G.  Mèjean, C.  Abd Alrahman, I.  Ventrillard, S.  Kassi, D.  Romanini, “Cavity-enhanced multiplexed comb spectroscopy down to the photon shot noise,” Phys. Rev. A 85(5), 051804(R) (2012).
[CrossRef]

2010 (2)

B.  Bernhardt, A.  Ozawa, P.  Jacquet, M.  Jacquey, Y.  Kobayashi, T.  Udem, R.  Holzwarth, G.  Guelachvili, T. W.  Hänsch, N.  Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

G.  Gagliardi, M.  Salza, S.  Avino, P.  Ferraro, P.  De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

2009 (2)

P.  Maddaloni, P.  Cancio, P.  De Natale, “Optical comb generators for laser frequency measurement,” Meas. Sci. Technol. 20(5), 052001 (2009).
[CrossRef]

J.  Mandon, G.  Guelachvili, N.  Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[CrossRef]

2007 (2)

C.  Gohle, B.  Stein, A.  Schliesser, T.  Udem, T. W.  Hänsch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99(26), 263902 (2007).
[CrossRef] [PubMed]

S. A.  Diddams, L.  Hollberg, V.  Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[CrossRef] [PubMed]

2006 (3)

2003 (1)

J.  Ye, H.  Schnatz, L. W.  Hollberg, “Optical frequency combs: from precision frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
[CrossRef]

2002 (2)

T.  Gherman, D.  Romanini, “Modelocked cavity--Enhanced absorption spectroscopy,” Opt. Express 10(19), 1033–1042 (2002).
[CrossRef] [PubMed]

T.  Udem, R.  Holzwarth, T. W.  Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

1983 (1)

R. W. P.  Drever, J. L.  Hall, F. V.  Kowalski, J.  Hough, G. M.  Ford, A. J.  Munley, H.  Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

1982 (1)

Abd Alrahman, C.

R.  Grilli, G.  Mèjean, C.  Abd Alrahman, I.  Ventrillard, S.  Kassi, D.  Romanini, “Cavity-enhanced multiplexed comb spectroscopy down to the photon shot noise,” Phys. Rev. A 85(5), 051804(R) (2012).
[CrossRef]

Avino, S.

G.  Gagliardi, M.  Salza, S.  Avino, P.  Ferraro, P.  De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

Bernhardt, B.

B.  Bernhardt, A.  Ozawa, P.  Jacquet, M.  Jacquey, Y.  Kobayashi, T.  Udem, R.  Holzwarth, G.  Guelachvili, T. W.  Hänsch, N.  Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Bitou, Y.

Cancio, P.

P.  Maddaloni, P.  Cancio, P.  De Natale, “Optical comb generators for laser frequency measurement,” Meas. Sci. Technol. 20(5), 052001 (2009).
[CrossRef]

Chodorow, M.

Dändliker, R.

De Natale, P.

G.  Gagliardi, M.  Salza, S.  Avino, P.  Ferraro, P.  De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

P.  Maddaloni, P.  Cancio, P.  De Natale, “Optical comb generators for laser frequency measurement,” Meas. Sci. Technol. 20(5), 052001 (2009).
[CrossRef]

Diddams, S. A.

S. A.  Diddams, L.  Hollberg, V.  Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[CrossRef] [PubMed]

Drever, R. W. P.

R. W. P.  Drever, J. L.  Hall, F. V.  Kowalski, J.  Hough, G. M.  Ford, A. J.  Munley, H.  Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Ferraro, P.

G.  Gagliardi, M.  Salza, S.  Avino, P.  Ferraro, P.  De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

Ford, G. M.

R. W. P.  Drever, J. L.  Hall, F. V.  Kowalski, J.  Hough, G. M.  Ford, A. J.  Munley, H.  Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Gagliardi, G.

G.  Gagliardi, M.  Salza, S.  Avino, P.  Ferraro, P.  De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

Gherman, T.

Gohle, C.

C.  Gohle, B.  Stein, A.  Schliesser, T.  Udem, T. W.  Hänsch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99(26), 263902 (2007).
[CrossRef] [PubMed]

Grilli, R.

R.  Grilli, G.  Mèjean, C.  Abd Alrahman, I.  Ventrillard, S.  Kassi, D.  Romanini, “Cavity-enhanced multiplexed comb spectroscopy down to the photon shot noise,” Phys. Rev. A 85(5), 051804(R) (2012).
[CrossRef]

Guelachvili, G.

B.  Bernhardt, A.  Ozawa, P.  Jacquet, M.  Jacquey, Y.  Kobayashi, T.  Udem, R.  Holzwarth, G.  Guelachvili, T. W.  Hänsch, N.  Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

J.  Mandon, G.  Guelachvili, N.  Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[CrossRef]

Hall, J. L.

R. W. P.  Drever, J. L.  Hall, F. V.  Kowalski, J.  Hough, G. M.  Ford, A. J.  Munley, H.  Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Hänsch, T. W.

B.  Bernhardt, A.  Ozawa, P.  Jacquet, M.  Jacquey, Y.  Kobayashi, T.  Udem, R.  Holzwarth, G.  Guelachvili, T. W.  Hänsch, N.  Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

C.  Gohle, B.  Stein, A.  Schliesser, T.  Udem, T. W.  Hänsch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99(26), 263902 (2007).
[CrossRef] [PubMed]

T.  Udem, R.  Holzwarth, T. W.  Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Hollberg, L.

S. A.  Diddams, L.  Hollberg, V.  Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[CrossRef] [PubMed]

Hollberg, L. W.

J.  Ye, H.  Schnatz, L. W.  Hollberg, “Optical frequency combs: from precision frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
[CrossRef]

Holzwarth, R.

B.  Bernhardt, A.  Ozawa, P.  Jacquet, M.  Jacquey, Y.  Kobayashi, T.  Udem, R.  Holzwarth, G.  Guelachvili, T. W.  Hänsch, N.  Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

N.  Schuhler, Y.  Salvadé, S.  Lévêque, R.  Dändliker, R.  Holzwarth, “Frequency-comb-referenced two-wavelength source for absolute distance measurement,” Opt. Lett. 31(21), 3101–3103 (2006).
[CrossRef] [PubMed]

T.  Udem, R.  Holzwarth, T. W.  Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Hough, J.

R. W. P.  Drever, J. L.  Hall, F. V.  Kowalski, J.  Hough, G. M.  Ford, A. J.  Munley, H.  Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Jacquet, P.

B.  Bernhardt, A.  Ozawa, P.  Jacquet, M.  Jacquey, Y.  Kobayashi, T.  Udem, R.  Holzwarth, G.  Guelachvili, T. W.  Hänsch, N.  Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Jacquey, M.

B.  Bernhardt, A.  Ozawa, P.  Jacquet, M.  Jacquey, Y.  Kobayashi, T.  Udem, R.  Holzwarth, G.  Guelachvili, T. W.  Hänsch, N.  Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Jones, R. J.

M. J.  Thorpe, K. D.  Moll, R. J.  Jones, B.  Safdi, J.  Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[CrossRef] [PubMed]

Kassi, S.

R.  Grilli, G.  Mèjean, C.  Abd Alrahman, I.  Ventrillard, S.  Kassi, D.  Romanini, “Cavity-enhanced multiplexed comb spectroscopy down to the photon shot noise,” Phys. Rev. A 85(5), 051804(R) (2012).
[CrossRef]

Kobayashi, Y.

B.  Bernhardt, A.  Ozawa, P.  Jacquet, M.  Jacquey, Y.  Kobayashi, T.  Udem, R.  Holzwarth, G.  Guelachvili, T. W.  Hänsch, N.  Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Kowalski, F. V.

R. W. P.  Drever, J. L.  Hall, F. V.  Kowalski, J.  Hough, G. M.  Ford, A. J.  Munley, H.  Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Lévêque, S.

Maddaloni, P.

P.  Maddaloni, P.  Cancio, P.  De Natale, “Optical comb generators for laser frequency measurement,” Meas. Sci. Technol. 20(5), 052001 (2009).
[CrossRef]

Mandon, J.

J.  Mandon, G.  Guelachvili, N.  Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[CrossRef]

Mbele, V.

S. A.  Diddams, L.  Hollberg, V.  Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[CrossRef] [PubMed]

Mèjean, G.

R.  Grilli, G.  Mèjean, C.  Abd Alrahman, I.  Ventrillard, S.  Kassi, D.  Romanini, “Cavity-enhanced multiplexed comb spectroscopy down to the photon shot noise,” Phys. Rev. A 85(5), 051804(R) (2012).
[CrossRef]

Minoshima, K.

Moll, K. D.

M. J.  Thorpe, K. D.  Moll, R. J.  Jones, B.  Safdi, J.  Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[CrossRef] [PubMed]

Munley, A. J.

R. W. P.  Drever, J. L.  Hall, F. V.  Kowalski, J.  Hough, G. M.  Ford, A. J.  Munley, H.  Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Ozawa, A.

B.  Bernhardt, A.  Ozawa, P.  Jacquet, M.  Jacquey, Y.  Kobayashi, T.  Udem, R.  Holzwarth, G.  Guelachvili, T. W.  Hänsch, N.  Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Picqué, N.

B.  Bernhardt, A.  Ozawa, P.  Jacquet, M.  Jacquey, Y.  Kobayashi, T.  Udem, R.  Holzwarth, G.  Guelachvili, T. W.  Hänsch, N.  Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

J.  Mandon, G.  Guelachvili, N.  Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[CrossRef]

Romanini, D.

R.  Grilli, G.  Mèjean, C.  Abd Alrahman, I.  Ventrillard, S.  Kassi, D.  Romanini, “Cavity-enhanced multiplexed comb spectroscopy down to the photon shot noise,” Phys. Rev. A 85(5), 051804(R) (2012).
[CrossRef]

T.  Gherman, D.  Romanini, “Modelocked cavity--Enhanced absorption spectroscopy,” Opt. Express 10(19), 1033–1042 (2002).
[CrossRef] [PubMed]

Safdi, B.

M. J.  Thorpe, K. D.  Moll, R. J.  Jones, B.  Safdi, J.  Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[CrossRef] [PubMed]

Salvadé, Y.

Salza, M.

G.  Gagliardi, M.  Salza, S.  Avino, P.  Ferraro, P.  De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

Schibli, T. R.

Schliesser, A.

C.  Gohle, B.  Stein, A.  Schliesser, T.  Udem, T. W.  Hänsch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99(26), 263902 (2007).
[CrossRef] [PubMed]

Schnatz, H.

J.  Ye, H.  Schnatz, L. W.  Hollberg, “Optical frequency combs: from precision frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
[CrossRef]

Schuhler, N.

Shaw, H. J.

Stein, B.

C.  Gohle, B.  Stein, A.  Schliesser, T.  Udem, T. W.  Hänsch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99(26), 263902 (2007).
[CrossRef] [PubMed]

Stokes, L. F.

Thorpe, M. J.

M. J.  Thorpe, K. D.  Moll, R. J.  Jones, B.  Safdi, J.  Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[CrossRef] [PubMed]

Udem, T.

B.  Bernhardt, A.  Ozawa, P.  Jacquet, M.  Jacquey, Y.  Kobayashi, T.  Udem, R.  Holzwarth, G.  Guelachvili, T. W.  Hänsch, N.  Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

C.  Gohle, B.  Stein, A.  Schliesser, T.  Udem, T. W.  Hänsch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99(26), 263902 (2007).
[CrossRef] [PubMed]

T.  Udem, R.  Holzwarth, T. W.  Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Ventrillard, I.

R.  Grilli, G.  Mèjean, C.  Abd Alrahman, I.  Ventrillard, S.  Kassi, D.  Romanini, “Cavity-enhanced multiplexed comb spectroscopy down to the photon shot noise,” Phys. Rev. A 85(5), 051804(R) (2012).
[CrossRef]

Ward, H.

R. W. P.  Drever, J. L.  Hall, F. V.  Kowalski, J.  Hough, G. M.  Ford, A. J.  Munley, H.  Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Ye, J.

M. J.  Thorpe, K. D.  Moll, R. J.  Jones, B.  Safdi, J.  Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[CrossRef] [PubMed]

J.  Ye, H.  Schnatz, L. W.  Hollberg, “Optical frequency combs: from precision frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
[CrossRef]

Appl. Phys. B (1)

R. W. P.  Drever, J. L.  Hall, F. V.  Kowalski, J.  Hough, G. M.  Ford, A. J.  Munley, H.  Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J.  Ye, H.  Schnatz, L. W.  Hollberg, “Optical frequency combs: from precision frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
[CrossRef]

Meas. Sci. Technol. (1)

P.  Maddaloni, P.  Cancio, P.  De Natale, “Optical comb generators for laser frequency measurement,” Meas. Sci. Technol. 20(5), 052001 (2009).
[CrossRef]

Nat. Photonics (2)

J.  Mandon, G.  Guelachvili, N.  Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3(2), 99–102 (2009).
[CrossRef]

B.  Bernhardt, A.  Ozawa, P.  Jacquet, M.  Jacquey, Y.  Kobayashi, T.  Udem, R.  Holzwarth, G.  Guelachvili, T. W.  Hänsch, N.  Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Nature (2)

T.  Udem, R.  Holzwarth, T. W.  Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

S. A.  Diddams, L.  Hollberg, V.  Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (1)

R.  Grilli, G.  Mèjean, C.  Abd Alrahman, I.  Ventrillard, S.  Kassi, D.  Romanini, “Cavity-enhanced multiplexed comb spectroscopy down to the photon shot noise,” Phys. Rev. A 85(5), 051804(R) (2012).
[CrossRef]

Phys. Rev. Lett. (1)

C.  Gohle, B.  Stein, A.  Schliesser, T.  Udem, T. W.  Hänsch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99(26), 263902 (2007).
[CrossRef] [PubMed]

Science (2)

G.  Gagliardi, M.  Salza, S.  Avino, P.  Ferraro, P.  De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

M. J.  Thorpe, K. D.  Moll, R. J.  Jones, B.  Safdi, J.  Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

a) Theoretical spectrum of the comb resonances for L ~20 m ( λ 0 =2πc/ ω 0 , c is the speed of light in vacuum). b) Wavelength position of the comb secondary resonances for 3 different fiber cavity lengths using the manufacturer specified D value (0.0196738 ps2/m).

Fig. 2
Fig. 2

Experimental set-up. EOM: electro-optic modulator; PM: phase modulation; RR: repetition rate; PZT: piezo electric transducer.

Fig. 3
Fig. 3

Resonance spectrum of the fiber loop as observed by an OSA (resolution 0.05 nm) when the comb teeth are frequency locked to the cavity modes. The original comb spectrum is also shown (blue line, right vertical axis).

Fig. 4
Fig. 4

Distance of the secondary comb resonances from the central condition (λ0) – Full circles: experimental data. Solid line: best fit with Eq. (10) using L = 20.43 m, resulting in a D best = 0.02179 ± 0.00002 ps2/m.

Fig. 5
Fig. 5

a) Tuning of the comb resonances in the optical fiber loop with repetition rate steps of about 10 kHz. b) Linear fit of the tuning response with Eq. (8), using fr = 249.9184 MHz, D best = 0.02179 ± 0.00002 ps2/m, resulting in a vg0)best = (1.95 ± 0.03)·108 m/s.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

k(ω)L=2Aπ
[ k( ω 0 )+ 1 v g ( ω 0 ) (ω ω 0 ) ]L=2Aπ
N L v g ( ω 0 ) f r =B
L v g ( ω 0 ) f r =G
k( ω 0 )L+ 1 v g ( ω 0 ) (ω ω 0 )L+ 1 2 D (ω ω 0 ) 2 L=2Cπ
1 v g (ω) = 1 v g ( ω 0 ) +D(ω ω 0 ).
L[ 1 v g ( ω 0 ) +D(ω ω 0 ) ]( f r +δ f r )=G
ω 0 1 ω 0 = 1 v g ( ω 0 )D δ f r f r +δ f r 1 v g ( ω 0 )D δ f r f r
1 2 | D | ( ω M ω 0 ) 2 L=2Mπ
ω M ω 0 =± 4πM | D |L
Δ φ rt = φ rt ω δω=LD(ω ω 0 )δω
δ ω HWHM = 2arcsin( π 2F ) LD( ω M ω 0 ) .
δ ω HWHM M = 2arcsin( π 2F ) 4πM| D |L
δ ω HWHM PCR = 2arcsin( π 2F ) | D |L

Metrics