Abstract

This paper reports the experimental wavelet denoising techniques carried out for the first time for a number of modulation schemes for indoor optical wireless communications in the presence of fluorescent light interference. The experimental results are verified using computer simulations, clearly illustrating the advantage of the wavelet denoising technique in comparison to the high pass filtering for all baseband modulation schemes.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Panta and J. Armstrong, “Indoor localisation using white LEDs,” Electron. Lett.48(4), 228–230 (2012).
    [CrossRef]
  2. S. Rajbhandari, Z. Ghassemlooy, and M. Angelova, “Effective denoising and adaptive equalization of indoor optical wireless channel with artificial light using the discrete wavelet transform and artificial neural network,” J. Lightwave Technol.27(20), 4493–4500 (2009).
    [CrossRef]
  3. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed indoor optical wireless communication system with single channel imaging receiver,” Opt. Express20(8), 8442–8456 (2012).
    [CrossRef] [PubMed]
  4. S. Rajagopal, R. Roberts, and S.-K. Lim , “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag.50(3), 72–82 (2012).
    [CrossRef]
  5. D. C. O'Brien, L. Zeng, H. Le-Minh, G. Faulkner, J. W. Walewski, and S. Randel, “Visible light communications: Challenges and possibilities,” in Proc. IEEE Symp. on Personal, Indoor and Mobile Radio Communications, PIMRC 2008, 1–5.
    [CrossRef]
  6. S. Rajbhandari, Z. Ghassemlooy, and M. Angelova, “Wavelet-artificial neural network receiver for indoor optical wireless communications,” J. Lightwave Technol.29(17), 2651–2659 (2011).
    [CrossRef]
  7. G. W. Marsh and J. M. Kahn, “50-Mb/s diffuse infrared free-space link using on-off keying with decision-feedback equalization,” IEEE Photon. Technol. Lett.6(10), 1268–1270 (1994).
    [CrossRef]
  8. S. Lee, “Reducing the effects of ambient noise light in an indoor optical wireless system using polarizers,” Microw. Opt. Technol. Lett.40(3), 228–231 (2004).
    [CrossRef]
  9. R. T. Valadas, A. M. R. Tavares, and A. M. Duarte, “Angle diversity to combat the ambient noise in indoor optical wireless communication systems,” Int. J. Wirel. Inf. Netw.4(4), 275–288 (1997).
    [CrossRef]
  10. A. C. Boucouvalas, “Indoor ambient light noise and its effect on wireless optical links,” IEEE P-Optoelectron143(6), 334–338 (1996).
    [CrossRef]
  11. S. Rajbhandari, Z. Ghassemlooy, and M. Angelova, “Experimental investigation of wavelet-based denoising receiver for los indoor optical wireless communications links,” IEEE Photon. Technol. Lett.23(20), 1502–1504 (2011).
    [CrossRef]
  12. C. S. Burrus, R. A. Gopinath, and H. Guo, Introduction to Wavelets and Wavelet Transforms: A Primer (Prentice Hall, 1998.)

2012 (3)

K. Panta and J. Armstrong, “Indoor localisation using white LEDs,” Electron. Lett.48(4), 228–230 (2012).
[CrossRef]

S. Rajagopal, R. Roberts, and S.-K. Lim , “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag.50(3), 72–82 (2012).
[CrossRef]

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed indoor optical wireless communication system with single channel imaging receiver,” Opt. Express20(8), 8442–8456 (2012).
[CrossRef] [PubMed]

2011 (2)

S. Rajbhandari, Z. Ghassemlooy, and M. Angelova, “Wavelet-artificial neural network receiver for indoor optical wireless communications,” J. Lightwave Technol.29(17), 2651–2659 (2011).
[CrossRef]

S. Rajbhandari, Z. Ghassemlooy, and M. Angelova, “Experimental investigation of wavelet-based denoising receiver for los indoor optical wireless communications links,” IEEE Photon. Technol. Lett.23(20), 1502–1504 (2011).
[CrossRef]

2009 (1)

2004 (1)

S. Lee, “Reducing the effects of ambient noise light in an indoor optical wireless system using polarizers,” Microw. Opt. Technol. Lett.40(3), 228–231 (2004).
[CrossRef]

1997 (1)

R. T. Valadas, A. M. R. Tavares, and A. M. Duarte, “Angle diversity to combat the ambient noise in indoor optical wireless communication systems,” Int. J. Wirel. Inf. Netw.4(4), 275–288 (1997).
[CrossRef]

1996 (1)

A. C. Boucouvalas, “Indoor ambient light noise and its effect on wireless optical links,” IEEE P-Optoelectron143(6), 334–338 (1996).
[CrossRef]

1994 (1)

G. W. Marsh and J. M. Kahn, “50-Mb/s diffuse infrared free-space link using on-off keying with decision-feedback equalization,” IEEE Photon. Technol. Lett.6(10), 1268–1270 (1994).
[CrossRef]

Angelova, M.

Armstrong, J.

K. Panta and J. Armstrong, “Indoor localisation using white LEDs,” Electron. Lett.48(4), 228–230 (2012).
[CrossRef]

Boucouvalas, A. C.

A. C. Boucouvalas, “Indoor ambient light noise and its effect on wireless optical links,” IEEE P-Optoelectron143(6), 334–338 (1996).
[CrossRef]

Duarte, A. M.

R. T. Valadas, A. M. R. Tavares, and A. M. Duarte, “Angle diversity to combat the ambient noise in indoor optical wireless communication systems,” Int. J. Wirel. Inf. Netw.4(4), 275–288 (1997).
[CrossRef]

Ghassemlooy, Z.

Kahn, J. M.

G. W. Marsh and J. M. Kahn, “50-Mb/s diffuse infrared free-space link using on-off keying with decision-feedback equalization,” IEEE Photon. Technol. Lett.6(10), 1268–1270 (1994).
[CrossRef]

Lee, S.

S. Lee, “Reducing the effects of ambient noise light in an indoor optical wireless system using polarizers,” Microw. Opt. Technol. Lett.40(3), 228–231 (2004).
[CrossRef]

Lim, C.

Lim , S.-K.

S. Rajagopal, R. Roberts, and S.-K. Lim , “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag.50(3), 72–82 (2012).
[CrossRef]

Marsh, G. W.

G. W. Marsh and J. M. Kahn, “50-Mb/s diffuse infrared free-space link using on-off keying with decision-feedback equalization,” IEEE Photon. Technol. Lett.6(10), 1268–1270 (1994).
[CrossRef]

Nirmalathas, A.

Panta, K.

K. Panta and J. Armstrong, “Indoor localisation using white LEDs,” Electron. Lett.48(4), 228–230 (2012).
[CrossRef]

Rajagopal, S.

S. Rajagopal, R. Roberts, and S.-K. Lim , “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag.50(3), 72–82 (2012).
[CrossRef]

Rajbhandari, S.

Roberts, R.

S. Rajagopal, R. Roberts, and S.-K. Lim , “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag.50(3), 72–82 (2012).
[CrossRef]

Skafidas, E.

Tavares, A. M. R.

R. T. Valadas, A. M. R. Tavares, and A. M. Duarte, “Angle diversity to combat the ambient noise in indoor optical wireless communication systems,” Int. J. Wirel. Inf. Netw.4(4), 275–288 (1997).
[CrossRef]

Valadas, R. T.

R. T. Valadas, A. M. R. Tavares, and A. M. Duarte, “Angle diversity to combat the ambient noise in indoor optical wireless communication systems,” Int. J. Wirel. Inf. Netw.4(4), 275–288 (1997).
[CrossRef]

Wang, K.

Electron. Lett. (1)

K. Panta and J. Armstrong, “Indoor localisation using white LEDs,” Electron. Lett.48(4), 228–230 (2012).
[CrossRef]

IEEE Commun. Mag. (1)

S. Rajagopal, R. Roberts, and S.-K. Lim , “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag.50(3), 72–82 (2012).
[CrossRef]

IEEE P-Optoelectron (1)

A. C. Boucouvalas, “Indoor ambient light noise and its effect on wireless optical links,” IEEE P-Optoelectron143(6), 334–338 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. Rajbhandari, Z. Ghassemlooy, and M. Angelova, “Experimental investigation of wavelet-based denoising receiver for los indoor optical wireless communications links,” IEEE Photon. Technol. Lett.23(20), 1502–1504 (2011).
[CrossRef]

G. W. Marsh and J. M. Kahn, “50-Mb/s diffuse infrared free-space link using on-off keying with decision-feedback equalization,” IEEE Photon. Technol. Lett.6(10), 1268–1270 (1994).
[CrossRef]

Int. J. Wirel. Inf. Netw. (1)

R. T. Valadas, A. M. R. Tavares, and A. M. Duarte, “Angle diversity to combat the ambient noise in indoor optical wireless communication systems,” Int. J. Wirel. Inf. Netw.4(4), 275–288 (1997).
[CrossRef]

J. Lightwave Technol. (2)

Microw. Opt. Technol. Lett. (1)

S. Lee, “Reducing the effects of ambient noise light in an indoor optical wireless system using polarizers,” Microw. Opt. Technol. Lett.40(3), 228–231 (2004).
[CrossRef]

Opt. Express (1)

Other (2)

C. S. Burrus, R. A. Gopinath, and H. Guo, Introduction to Wavelets and Wavelet Transforms: A Primer (Prentice Hall, 1998.)

D. C. O'Brien, L. Zeng, H. Le-Minh, G. Faulkner, J. W. Walewski, and S. Randel, “Visible light communications: Challenges and possibilities,” in Proc. IEEE Symp. on Personal, Indoor and Mobile Radio Communications, PIMRC 2008, 1–5.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The experimental set-up for wavelet based denoising OWC system.

Fig. 2
Fig. 2

(a) FLI signal and difference in wavelet coefficient for OOK-NRZ signal at 10 Mbps with and without FLI (b) approximation and (c) details coefficients.

Fig. 3
Fig. 3

The measured and simulated Q-factor against the slot rate in the presence of FLI with and without denoising techniques at µ=3 for (a) OOK-NRZ, (b) 4-PPM, c) 8-PPM, d) 4-DPIM and e) 8-DPIM.

Fig. 4
Fig. 4

The simulated SER against the slot rate with FLI with and without denoising at for (a) OOK-NRZ, (b) 4-PPM, (c) 8-PPM, (d) 4-DPIM and (e) 8-DPIM.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

x( t )= P r k= c k p( tk T s );
T sPPM = ( T b M ) /L ;
T sDPIM =  ( 2 T b M ) / ( L+1 ) ;
P e =Q( E/ 2 N 0 );
  E b =0.5E =2 ( R P avg ) 2 T b  ;  for OOK
E b =  M 1 E=L ( R P avg ) 2 T b  ; for PPM
E b =  M 1 E= 0.5( L+1 ) (  R P avg ) 2 T b .  for DPIM
Q= ( v H v L ) / ( σ H + σ L ) ;
y 1h ( k )= n y( n )f( 2kn );
y 1l ( k )= n y( n )g( 2kn ).
γ=  log 2 ( f s / f c );
μ= I m / I FLI .

Metrics