Abstract

A snapshot 3-Dimensional Optical Coherence Tomography system was developed using Image Mapping Spectrometry. This system can give depth information (Z) at different spatial positions (XY) within one camera integration time to potentially reduce motion artifact and enhance throughput. The current (x,y,λ) datacube of (85×356×117) provides a 3D visualization of sample with 400 μm depth and 13.4 μm in transverse resolution. Axial resolution of 16.0 μm can also be achieved in this proof-of-concept system. We present an analysis of the theoretical constraints which will guide development of future systems with increased imaging depth and improved axial and lateral resolutions.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C.  Adler, C.  Zhou, T.-H.  Tsai, J.  Schmitt, Q.  Huang, H.  Mashimo, J. G.  Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography.” Opt Express 17, 784–796 (2009).
    [CrossRef] [PubMed]
  2. K.  Yi, M.  Mujat, B. H.  Park, W.  Sun, J. W.  Miller, J. M.  Seddon, L. H.  Young, J. F.  de Boer, T. C.  Chen, “Spectral domain optical coherence tomography for quantitative evaluation of drusen and associated structural changes in non-neovascular age-related macular degeneration.” Br J Ophthalmol 93, 176–181 (2009).
    [CrossRef]
  3. E.  Osiac, A.  Saftoiu, D. I.  Gheonea, I.  Mandrila, R.  Angelescu, “Optical coherence tomography and Doppler optical coherence tomography in the gastrointestinal tract.” World J Gastroenterol 17, 15–20 (2011).
    [CrossRef] [PubMed]
  4. R.  de Kinkelder, J.  Kalkman, D. J.  Faber, O.  Schraa, P. H. B.  Kok, F. D.  Verbraak, T. G.  van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina.” Invest Ophthalmol Vis Sci 52, 3908–3913 (2011).
    [CrossRef] [PubMed]
  5. J. F.  de Boer, B.  Cense, B. H.  Park, M. C.  Pierce, G. J.  Tearney, B. E.  Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography.” Opt Lett 28, 2067–2069 (2003).
    [CrossRef] [PubMed]
  6. R.  Leitgeb, C.  Hitzenberger, A.  Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography.” Opt Express 11, 889–894 (2003).
    [CrossRef] [PubMed]
  7. N.  Hagen, R. T.  Kester, L.  Gao, T. S.  Tkaczyk, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems.” Opt Eng 51(2012).
    [CrossRef]
  8. Y.  Chen, A. D.  Aguirre, P.-L.  Hsiung, S.  Desai, P. R.  Herz, M.  Pedrosa, Q.  Huang, M.  Figueiredo, S.-W.  Huang, A.  Koski, J. M.  Schmitt, J. G.  Fujimoto, H.  Mashimo, “Ultrahigh resolution optical coherence tomography of Barrett’s esophagus: preliminary descriptive clinical study correlating images with histology.” Endoscopy 39, 599–605 (2007).
    [CrossRef] [PubMed]
  9. Y.  Nakamura, S.  Makita, M.  Yamanari, M.  Itoh, T.  Yatagai, Y.  Yasuno, “High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography,” Opt. Express 15, 7103–7116 (2007).
    [CrossRef] [PubMed]
  10. A.  Dubois, J.  Moreau, C.  Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy.” Opt Express 16, 17082–17091 (2008).
    [CrossRef] [PubMed]
  11. B.  Grajciar, M.  Pircher, A.  Fercher, R.  Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye.” Opt Express 13, 1131–1137 (2005).
    [CrossRef] [PubMed]
  12. Y.  Watanabe, K.  Yamada, M.  Sato, “Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography.” Opt Express 14, 5201–5209 (2006).
    [CrossRef] [PubMed]
  13. S.  Witte, M.  Baclayon, E. J. G.  Peterman, R. F. G.  Toonen, H. D.  Mansvelder, M. L.  Groot, “Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control.” Opt Express 17, 11335–11349 (2009).
    [CrossRef] [PubMed]
  14. K.  Grieve, A.  Dubois, M.  Simonutti, M.  Paques, J.  Sahel, J.-F. L.  Gargasson, C.  Boccara, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography.” Opt Express 13, 6286–6295 (2005).
    [CrossRef] [PubMed]
  15. M. S.  Hrebesh, R.  Dabu, M.  Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt Comm 282, 674–683 (2009).
    [CrossRef]
  16. H. M.  Subhash, “Review article: Full-field and single-shot full-field optical coherence tomography: A novel technique for biomedical imaging applications,” Advances in Optical Technologies 2012(2012).
    [CrossRef]
  17. B. K.  Ford, C. E.  Volin, S. M.  Murphy, R. M.  Lynch, M. R.  Descour, “Computed tomography-based spectral imaging for fluorescence microscopy.” Biophys J 80, 986–993 (2001).
    [CrossRef] [PubMed]
  18. B.  Ford, M.  Descour, R.  Lynch, “Large-image-format computed tomography imaging spectrometer for fluorescence microscopy.” Opt Express 9, 444–453 (2001).
    [CrossRef] [PubMed]
  19. C. A.  Fernandez, A.  Wagadarikar, D. J.  Brady, S. C.  McCain, T.  Oliver, “Fluorescence microscopy with a coded aperture snapshot spectral imager,” 7184, 71840Z–71840Z-11 (2009).
  20. C. F.  Cull, K.  Choi, D. J.  Brady, T.  Oliver, “Identification of fluorescent beads using a coded aperture snapshot spectral imager.” Appl Opt 49, B59–B70 (2010).
    [CrossRef] [PubMed]
  21. A.  Gorman, D. W.  Fletcher-Holmes, A. R.  Harvey, “Generalization of the Lyot filter and its application to snapshot spectral imaging.” Opt Express 18, 5602–5608 (2010).
    [CrossRef] [PubMed]
  22. A.  Bodkin, A.  Sheinis, A.  Norton, J.  Daly, C.  Roberts, S.  Beaven, J.  Weinheimer, eds., Video-rate chemical identification and visualization with snapshot hyperspectral imaging, vol. 8374 (2012).
  23. J.  Kriesel, G.  Scriven, N.  Gat, S.  Nagaraj, P.  Willson, V.  Swaminathan, eds., Snapshot hyperspectral fovea vision system (HyperVideo)(2012).
  24. L.  Gao, R. T.  Kester, N.  Hagen, T. S.  Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy.” Opt Express 18, 14330–14344 (2010).
    [CrossRef] [PubMed]
  25. L.  Gao, R. T.  Kester, T. S.  Tkaczyk, “Compact image slicing spectrometer (ISS) for hyperspectral fluorescence microscopy.” Opt Express 17, 12293–12308 (2009).
    [CrossRef] [PubMed]
  26. L.  Gao, N.  Bedard, N.  Hagen, R. T.  Kester, T. S.  Tkaczyk, “Depth-resolved image mapping spectrometer (IMS) with structured illumination.” Opt Express 19, 17439–17452 (2011).
    [CrossRef] [PubMed]
  27. N.  Bedard, N.  Hagen, L.  Gao, T. S.  Tkaczyk, “Image mapping spectrometry: calibration and characterization.” Opt Eng 51(2012).
    [CrossRef] [PubMed]
  28. R. T.  Kester, L.  Gao, T. S.  Tkaczyk, “Development of image mappers for hyperspectral biomedical imaging applications.” Appl Opt 49, 1886–1899 (2010).
    [CrossRef] [PubMed]
  29. L. S.  Gao T. S.  Tkaczyk, “Correction of vignetting and distortion errors induced by two-axis light beam steering,” Optical Engineering 51(2012).
    [CrossRef]
  30. A. D.  Elliott, L.  Gao, A.  Ustione, N.  Bedard, R.  Kester, D. W.  Piston, T. S.  Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer (IMS).” J Cell Sci (2012).
    [CrossRef]
  31. I.  Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy,” Journal of Optics A: Pure and Applied Optics 8(2006).
    [CrossRef]
  32. M.  Mujat, B. H.  Park, B.  Cense, T. C.  Chen, J. F.  de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination.” J Biomed Opt 12, 041205 (2007).
    [CrossRef] [PubMed]
  33. C.  Dorrer, “Influence of the calibration of the detector on spectral interferometry,” J. Opt. Soc. Am. B 16, 1160–1168 (1999).
    [CrossRef]
  34. L.  Lepetit, G.  Chriaux, M.  Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995).
    [CrossRef]
  35. M.  Wojtkowski, V.  Srinivasan, T.  Ko, J.  Fujimoto, A.  Kowalczyk, J.  Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation.” Opt Express 12, 2404–2422 (2004).
    [CrossRef] [PubMed]

2012

N.  Hagen, R. T.  Kester, L.  Gao, T. S.  Tkaczyk, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems.” Opt Eng 51(2012).
[CrossRef]

H. M.  Subhash, “Review article: Full-field and single-shot full-field optical coherence tomography: A novel technique for biomedical imaging applications,” Advances in Optical Technologies 2012(2012).
[CrossRef]

N.  Bedard, N.  Hagen, L.  Gao, T. S.  Tkaczyk, “Image mapping spectrometry: calibration and characterization.” Opt Eng 51(2012).
[CrossRef] [PubMed]

L. S.  Gao T. S.  Tkaczyk, “Correction of vignetting and distortion errors induced by two-axis light beam steering,” Optical Engineering 51(2012).
[CrossRef]

A. D.  Elliott, L.  Gao, A.  Ustione, N.  Bedard, R.  Kester, D. W.  Piston, T. S.  Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer (IMS).” J Cell Sci (2012).
[CrossRef]

2011

L.  Gao, N.  Bedard, N.  Hagen, R. T.  Kester, T. S.  Tkaczyk, “Depth-resolved image mapping spectrometer (IMS) with structured illumination.” Opt Express 19, 17439–17452 (2011).
[CrossRef] [PubMed]

E.  Osiac, A.  Saftoiu, D. I.  Gheonea, I.  Mandrila, R.  Angelescu, “Optical coherence tomography and Doppler optical coherence tomography in the gastrointestinal tract.” World J Gastroenterol 17, 15–20 (2011).
[CrossRef] [PubMed]

R.  de Kinkelder, J.  Kalkman, D. J.  Faber, O.  Schraa, P. H. B.  Kok, F. D.  Verbraak, T. G.  van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina.” Invest Ophthalmol Vis Sci 52, 3908–3913 (2011).
[CrossRef] [PubMed]

2010

R. T.  Kester, L.  Gao, T. S.  Tkaczyk, “Development of image mappers for hyperspectral biomedical imaging applications.” Appl Opt 49, 1886–1899 (2010).
[CrossRef] [PubMed]

C. F.  Cull, K.  Choi, D. J.  Brady, T.  Oliver, “Identification of fluorescent beads using a coded aperture snapshot spectral imager.” Appl Opt 49, B59–B70 (2010).
[CrossRef] [PubMed]

A.  Gorman, D. W.  Fletcher-Holmes, A. R.  Harvey, “Generalization of the Lyot filter and its application to snapshot spectral imaging.” Opt Express 18, 5602–5608 (2010).
[CrossRef] [PubMed]

L.  Gao, R. T.  Kester, N.  Hagen, T. S.  Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy.” Opt Express 18, 14330–14344 (2010).
[CrossRef] [PubMed]

2009

L.  Gao, R. T.  Kester, T. S.  Tkaczyk, “Compact image slicing spectrometer (ISS) for hyperspectral fluorescence microscopy.” Opt Express 17, 12293–12308 (2009).
[CrossRef] [PubMed]

C. A.  Fernandez, A.  Wagadarikar, D. J.  Brady, S. C.  McCain, T.  Oliver, “Fluorescence microscopy with a coded aperture snapshot spectral imager,” 7184, 71840Z–71840Z-11 (2009).

D. C.  Adler, C.  Zhou, T.-H.  Tsai, J.  Schmitt, Q.  Huang, H.  Mashimo, J. G.  Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography.” Opt Express 17, 784–796 (2009).
[CrossRef] [PubMed]

K.  Yi, M.  Mujat, B. H.  Park, W.  Sun, J. W.  Miller, J. M.  Seddon, L. H.  Young, J. F.  de Boer, T. C.  Chen, “Spectral domain optical coherence tomography for quantitative evaluation of drusen and associated structural changes in non-neovascular age-related macular degeneration.” Br J Ophthalmol 93, 176–181 (2009).
[CrossRef]

M. S.  Hrebesh, R.  Dabu, M.  Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt Comm 282, 674–683 (2009).
[CrossRef]

S.  Witte, M.  Baclayon, E. J. G.  Peterman, R. F. G.  Toonen, H. D.  Mansvelder, M. L.  Groot, “Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control.” Opt Express 17, 11335–11349 (2009).
[CrossRef] [PubMed]

2008

A.  Dubois, J.  Moreau, C.  Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy.” Opt Express 16, 17082–17091 (2008).
[CrossRef] [PubMed]

2007

Y.  Chen, A. D.  Aguirre, P.-L.  Hsiung, S.  Desai, P. R.  Herz, M.  Pedrosa, Q.  Huang, M.  Figueiredo, S.-W.  Huang, A.  Koski, J. M.  Schmitt, J. G.  Fujimoto, H.  Mashimo, “Ultrahigh resolution optical coherence tomography of Barrett’s esophagus: preliminary descriptive clinical study correlating images with histology.” Endoscopy 39, 599–605 (2007).
[CrossRef] [PubMed]

Y.  Nakamura, S.  Makita, M.  Yamanari, M.  Itoh, T.  Yatagai, Y.  Yasuno, “High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography,” Opt. Express 15, 7103–7116 (2007).
[CrossRef] [PubMed]

M.  Mujat, B. H.  Park, B.  Cense, T. C.  Chen, J. F.  de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination.” J Biomed Opt 12, 041205 (2007).
[CrossRef] [PubMed]

2006

I.  Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy,” Journal of Optics A: Pure and Applied Optics 8(2006).
[CrossRef]

Y.  Watanabe, K.  Yamada, M.  Sato, “Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography.” Opt Express 14, 5201–5209 (2006).
[CrossRef] [PubMed]

2005

B.  Grajciar, M.  Pircher, A.  Fercher, R.  Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye.” Opt Express 13, 1131–1137 (2005).
[CrossRef] [PubMed]

K.  Grieve, A.  Dubois, M.  Simonutti, M.  Paques, J.  Sahel, J.-F. L.  Gargasson, C.  Boccara, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography.” Opt Express 13, 6286–6295 (2005).
[CrossRef] [PubMed]

2004

M.  Wojtkowski, V.  Srinivasan, T.  Ko, J.  Fujimoto, A.  Kowalczyk, J.  Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation.” Opt Express 12, 2404–2422 (2004).
[CrossRef] [PubMed]

2003

J. F.  de Boer, B.  Cense, B. H.  Park, M. C.  Pierce, G. J.  Tearney, B. E.  Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography.” Opt Lett 28, 2067–2069 (2003).
[CrossRef] [PubMed]

R.  Leitgeb, C.  Hitzenberger, A.  Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography.” Opt Express 11, 889–894 (2003).
[CrossRef] [PubMed]

2001

B. K.  Ford, C. E.  Volin, S. M.  Murphy, R. M.  Lynch, M. R.  Descour, “Computed tomography-based spectral imaging for fluorescence microscopy.” Biophys J 80, 986–993 (2001).
[CrossRef] [PubMed]

B.  Ford, M.  Descour, R.  Lynch, “Large-image-format computed tomography imaging spectrometer for fluorescence microscopy.” Opt Express 9, 444–453 (2001).
[CrossRef] [PubMed]

1999

1995

L.  Lepetit, G.  Chriaux, M.  Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995).
[CrossRef]

Abdulhalim, I.

I.  Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy,” Journal of Optics A: Pure and Applied Optics 8(2006).
[CrossRef]

Adler, D. C.

D. C.  Adler, C.  Zhou, T.-H.  Tsai, J.  Schmitt, Q.  Huang, H.  Mashimo, J. G.  Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography.” Opt Express 17, 784–796 (2009).
[CrossRef] [PubMed]

Aguirre, A. D.

Y.  Chen, A. D.  Aguirre, P.-L.  Hsiung, S.  Desai, P. R.  Herz, M.  Pedrosa, Q.  Huang, M.  Figueiredo, S.-W.  Huang, A.  Koski, J. M.  Schmitt, J. G.  Fujimoto, H.  Mashimo, “Ultrahigh resolution optical coherence tomography of Barrett’s esophagus: preliminary descriptive clinical study correlating images with histology.” Endoscopy 39, 599–605 (2007).
[CrossRef] [PubMed]

Angelescu, R.

E.  Osiac, A.  Saftoiu, D. I.  Gheonea, I.  Mandrila, R.  Angelescu, “Optical coherence tomography and Doppler optical coherence tomography in the gastrointestinal tract.” World J Gastroenterol 17, 15–20 (2011).
[CrossRef] [PubMed]

Baclayon, M.

S.  Witte, M.  Baclayon, E. J. G.  Peterman, R. F. G.  Toonen, H. D.  Mansvelder, M. L.  Groot, “Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control.” Opt Express 17, 11335–11349 (2009).
[CrossRef] [PubMed]

Bedard, N.

A. D.  Elliott, L.  Gao, A.  Ustione, N.  Bedard, R.  Kester, D. W.  Piston, T. S.  Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer (IMS).” J Cell Sci (2012).
[CrossRef]

N.  Bedard, N.  Hagen, L.  Gao, T. S.  Tkaczyk, “Image mapping spectrometry: calibration and characterization.” Opt Eng 51(2012).
[CrossRef] [PubMed]

L.  Gao, N.  Bedard, N.  Hagen, R. T.  Kester, T. S.  Tkaczyk, “Depth-resolved image mapping spectrometer (IMS) with structured illumination.” Opt Express 19, 17439–17452 (2011).
[CrossRef] [PubMed]

Boccara, C.

A.  Dubois, J.  Moreau, C.  Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy.” Opt Express 16, 17082–17091 (2008).
[CrossRef] [PubMed]

K.  Grieve, A.  Dubois, M.  Simonutti, M.  Paques, J.  Sahel, J.-F. L.  Gargasson, C.  Boccara, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography.” Opt Express 13, 6286–6295 (2005).
[CrossRef] [PubMed]

Bouma, B. E.

J. F.  de Boer, B.  Cense, B. H.  Park, M. C.  Pierce, G. J.  Tearney, B. E.  Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography.” Opt Lett 28, 2067–2069 (2003).
[CrossRef] [PubMed]

Brady, D. J.

C. F.  Cull, K.  Choi, D. J.  Brady, T.  Oliver, “Identification of fluorescent beads using a coded aperture snapshot spectral imager.” Appl Opt 49, B59–B70 (2010).
[CrossRef] [PubMed]

C. A.  Fernandez, A.  Wagadarikar, D. J.  Brady, S. C.  McCain, T.  Oliver, “Fluorescence microscopy with a coded aperture snapshot spectral imager,” 7184, 71840Z–71840Z-11 (2009).

Cense, B.

M.  Mujat, B. H.  Park, B.  Cense, T. C.  Chen, J. F.  de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination.” J Biomed Opt 12, 041205 (2007).
[CrossRef] [PubMed]

J. F.  de Boer, B.  Cense, B. H.  Park, M. C.  Pierce, G. J.  Tearney, B. E.  Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography.” Opt Lett 28, 2067–2069 (2003).
[CrossRef] [PubMed]

Chen, T. C.

K.  Yi, M.  Mujat, B. H.  Park, W.  Sun, J. W.  Miller, J. M.  Seddon, L. H.  Young, J. F.  de Boer, T. C.  Chen, “Spectral domain optical coherence tomography for quantitative evaluation of drusen and associated structural changes in non-neovascular age-related macular degeneration.” Br J Ophthalmol 93, 176–181 (2009).
[CrossRef]

M.  Mujat, B. H.  Park, B.  Cense, T. C.  Chen, J. F.  de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination.” J Biomed Opt 12, 041205 (2007).
[CrossRef] [PubMed]

Chen, Y.

Y.  Chen, A. D.  Aguirre, P.-L.  Hsiung, S.  Desai, P. R.  Herz, M.  Pedrosa, Q.  Huang, M.  Figueiredo, S.-W.  Huang, A.  Koski, J. M.  Schmitt, J. G.  Fujimoto, H.  Mashimo, “Ultrahigh resolution optical coherence tomography of Barrett’s esophagus: preliminary descriptive clinical study correlating images with histology.” Endoscopy 39, 599–605 (2007).
[CrossRef] [PubMed]

Choi, K.

C. F.  Cull, K.  Choi, D. J.  Brady, T.  Oliver, “Identification of fluorescent beads using a coded aperture snapshot spectral imager.” Appl Opt 49, B59–B70 (2010).
[CrossRef] [PubMed]

Chriaux, G.

L.  Lepetit, G.  Chriaux, M.  Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995).
[CrossRef]

Cull, C. F.

C. F.  Cull, K.  Choi, D. J.  Brady, T.  Oliver, “Identification of fluorescent beads using a coded aperture snapshot spectral imager.” Appl Opt 49, B59–B70 (2010).
[CrossRef] [PubMed]

Dabu, R.

M. S.  Hrebesh, R.  Dabu, M.  Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt Comm 282, 674–683 (2009).
[CrossRef]

de Boer, J. F.

K.  Yi, M.  Mujat, B. H.  Park, W.  Sun, J. W.  Miller, J. M.  Seddon, L. H.  Young, J. F.  de Boer, T. C.  Chen, “Spectral domain optical coherence tomography for quantitative evaluation of drusen and associated structural changes in non-neovascular age-related macular degeneration.” Br J Ophthalmol 93, 176–181 (2009).
[CrossRef]

M.  Mujat, B. H.  Park, B.  Cense, T. C.  Chen, J. F.  de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination.” J Biomed Opt 12, 041205 (2007).
[CrossRef] [PubMed]

J. F.  de Boer, B.  Cense, B. H.  Park, M. C.  Pierce, G. J.  Tearney, B. E.  Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography.” Opt Lett 28, 2067–2069 (2003).
[CrossRef] [PubMed]

de Kinkelder, R.

R.  de Kinkelder, J.  Kalkman, D. J.  Faber, O.  Schraa, P. H. B.  Kok, F. D.  Verbraak, T. G.  van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina.” Invest Ophthalmol Vis Sci 52, 3908–3913 (2011).
[CrossRef] [PubMed]

Desai, S.

Y.  Chen, A. D.  Aguirre, P.-L.  Hsiung, S.  Desai, P. R.  Herz, M.  Pedrosa, Q.  Huang, M.  Figueiredo, S.-W.  Huang, A.  Koski, J. M.  Schmitt, J. G.  Fujimoto, H.  Mashimo, “Ultrahigh resolution optical coherence tomography of Barrett’s esophagus: preliminary descriptive clinical study correlating images with histology.” Endoscopy 39, 599–605 (2007).
[CrossRef] [PubMed]

Descour, M.

B.  Ford, M.  Descour, R.  Lynch, “Large-image-format computed tomography imaging spectrometer for fluorescence microscopy.” Opt Express 9, 444–453 (2001).
[CrossRef] [PubMed]

Descour, M. R.

B. K.  Ford, C. E.  Volin, S. M.  Murphy, R. M.  Lynch, M. R.  Descour, “Computed tomography-based spectral imaging for fluorescence microscopy.” Biophys J 80, 986–993 (2001).
[CrossRef] [PubMed]

Dorrer, C.

Dubois, A.

A.  Dubois, J.  Moreau, C.  Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy.” Opt Express 16, 17082–17091 (2008).
[CrossRef] [PubMed]

K.  Grieve, A.  Dubois, M.  Simonutti, M.  Paques, J.  Sahel, J.-F. L.  Gargasson, C.  Boccara, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography.” Opt Express 13, 6286–6295 (2005).
[CrossRef] [PubMed]

Duker, J.

M.  Wojtkowski, V.  Srinivasan, T.  Ko, J.  Fujimoto, A.  Kowalczyk, J.  Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation.” Opt Express 12, 2404–2422 (2004).
[CrossRef] [PubMed]

Elliott, A. D.

A. D.  Elliott, L.  Gao, A.  Ustione, N.  Bedard, R.  Kester, D. W.  Piston, T. S.  Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer (IMS).” J Cell Sci (2012).
[CrossRef]

Faber, D. J.

R.  de Kinkelder, J.  Kalkman, D. J.  Faber, O.  Schraa, P. H. B.  Kok, F. D.  Verbraak, T. G.  van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina.” Invest Ophthalmol Vis Sci 52, 3908–3913 (2011).
[CrossRef] [PubMed]

Fercher, A.

B.  Grajciar, M.  Pircher, A.  Fercher, R.  Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye.” Opt Express 13, 1131–1137 (2005).
[CrossRef] [PubMed]

R.  Leitgeb, C.  Hitzenberger, A.  Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography.” Opt Express 11, 889–894 (2003).
[CrossRef] [PubMed]

Fernandez, C. A.

C. A.  Fernandez, A.  Wagadarikar, D. J.  Brady, S. C.  McCain, T.  Oliver, “Fluorescence microscopy with a coded aperture snapshot spectral imager,” 7184, 71840Z–71840Z-11 (2009).

Figueiredo, M.

Y.  Chen, A. D.  Aguirre, P.-L.  Hsiung, S.  Desai, P. R.  Herz, M.  Pedrosa, Q.  Huang, M.  Figueiredo, S.-W.  Huang, A.  Koski, J. M.  Schmitt, J. G.  Fujimoto, H.  Mashimo, “Ultrahigh resolution optical coherence tomography of Barrett’s esophagus: preliminary descriptive clinical study correlating images with histology.” Endoscopy 39, 599–605 (2007).
[CrossRef] [PubMed]

Fletcher-Holmes, D. W.

A.  Gorman, D. W.  Fletcher-Holmes, A. R.  Harvey, “Generalization of the Lyot filter and its application to snapshot spectral imaging.” Opt Express 18, 5602–5608 (2010).
[CrossRef] [PubMed]

Ford, B.

B.  Ford, M.  Descour, R.  Lynch, “Large-image-format computed tomography imaging spectrometer for fluorescence microscopy.” Opt Express 9, 444–453 (2001).
[CrossRef] [PubMed]

Ford, B. K.

B. K.  Ford, C. E.  Volin, S. M.  Murphy, R. M.  Lynch, M. R.  Descour, “Computed tomography-based spectral imaging for fluorescence microscopy.” Biophys J 80, 986–993 (2001).
[CrossRef] [PubMed]

Fujimoto, J.

M.  Wojtkowski, V.  Srinivasan, T.  Ko, J.  Fujimoto, A.  Kowalczyk, J.  Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation.” Opt Express 12, 2404–2422 (2004).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. C.  Adler, C.  Zhou, T.-H.  Tsai, J.  Schmitt, Q.  Huang, H.  Mashimo, J. G.  Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography.” Opt Express 17, 784–796 (2009).
[CrossRef] [PubMed]

Y.  Chen, A. D.  Aguirre, P.-L.  Hsiung, S.  Desai, P. R.  Herz, M.  Pedrosa, Q.  Huang, M.  Figueiredo, S.-W.  Huang, A.  Koski, J. M.  Schmitt, J. G.  Fujimoto, H.  Mashimo, “Ultrahigh resolution optical coherence tomography of Barrett’s esophagus: preliminary descriptive clinical study correlating images with histology.” Endoscopy 39, 599–605 (2007).
[CrossRef] [PubMed]

Gao, L.

N.  Hagen, R. T.  Kester, L.  Gao, T. S.  Tkaczyk, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems.” Opt Eng 51(2012).
[CrossRef]

A. D.  Elliott, L.  Gao, A.  Ustione, N.  Bedard, R.  Kester, D. W.  Piston, T. S.  Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer (IMS).” J Cell Sci (2012).
[CrossRef]

N.  Bedard, N.  Hagen, L.  Gao, T. S.  Tkaczyk, “Image mapping spectrometry: calibration and characterization.” Opt Eng 51(2012).
[CrossRef] [PubMed]

L.  Gao, N.  Bedard, N.  Hagen, R. T.  Kester, T. S.  Tkaczyk, “Depth-resolved image mapping spectrometer (IMS) with structured illumination.” Opt Express 19, 17439–17452 (2011).
[CrossRef] [PubMed]

L.  Gao, R. T.  Kester, N.  Hagen, T. S.  Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy.” Opt Express 18, 14330–14344 (2010).
[CrossRef] [PubMed]

R. T.  Kester, L.  Gao, T. S.  Tkaczyk, “Development of image mappers for hyperspectral biomedical imaging applications.” Appl Opt 49, 1886–1899 (2010).
[CrossRef] [PubMed]

L.  Gao, R. T.  Kester, T. S.  Tkaczyk, “Compact image slicing spectrometer (ISS) for hyperspectral fluorescence microscopy.” Opt Express 17, 12293–12308 (2009).
[CrossRef] [PubMed]

Gao, L. S.

L. S.  Gao T. S.  Tkaczyk, “Correction of vignetting and distortion errors induced by two-axis light beam steering,” Optical Engineering 51(2012).
[CrossRef]

Gargasson, J.-F. L.

K.  Grieve, A.  Dubois, M.  Simonutti, M.  Paques, J.  Sahel, J.-F. L.  Gargasson, C.  Boccara, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography.” Opt Express 13, 6286–6295 (2005).
[CrossRef] [PubMed]

Gheonea, D. I.

E.  Osiac, A.  Saftoiu, D. I.  Gheonea, I.  Mandrila, R.  Angelescu, “Optical coherence tomography and Doppler optical coherence tomography in the gastrointestinal tract.” World J Gastroenterol 17, 15–20 (2011).
[CrossRef] [PubMed]

Gorman, A.

A.  Gorman, D. W.  Fletcher-Holmes, A. R.  Harvey, “Generalization of the Lyot filter and its application to snapshot spectral imaging.” Opt Express 18, 5602–5608 (2010).
[CrossRef] [PubMed]

Grajciar, B.

B.  Grajciar, M.  Pircher, A.  Fercher, R.  Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye.” Opt Express 13, 1131–1137 (2005).
[CrossRef] [PubMed]

Grieve, K.

K.  Grieve, A.  Dubois, M.  Simonutti, M.  Paques, J.  Sahel, J.-F. L.  Gargasson, C.  Boccara, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography.” Opt Express 13, 6286–6295 (2005).
[CrossRef] [PubMed]

Groot, M. L.

S.  Witte, M.  Baclayon, E. J. G.  Peterman, R. F. G.  Toonen, H. D.  Mansvelder, M. L.  Groot, “Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control.” Opt Express 17, 11335–11349 (2009).
[CrossRef] [PubMed]

Hagen, N.

N.  Hagen, R. T.  Kester, L.  Gao, T. S.  Tkaczyk, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems.” Opt Eng 51(2012).
[CrossRef]

N.  Bedard, N.  Hagen, L.  Gao, T. S.  Tkaczyk, “Image mapping spectrometry: calibration and characterization.” Opt Eng 51(2012).
[CrossRef] [PubMed]

L.  Gao, N.  Bedard, N.  Hagen, R. T.  Kester, T. S.  Tkaczyk, “Depth-resolved image mapping spectrometer (IMS) with structured illumination.” Opt Express 19, 17439–17452 (2011).
[CrossRef] [PubMed]

L.  Gao, R. T.  Kester, N.  Hagen, T. S.  Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy.” Opt Express 18, 14330–14344 (2010).
[CrossRef] [PubMed]

Harvey, A. R.

A.  Gorman, D. W.  Fletcher-Holmes, A. R.  Harvey, “Generalization of the Lyot filter and its application to snapshot spectral imaging.” Opt Express 18, 5602–5608 (2010).
[CrossRef] [PubMed]

Herz, P. R.

Y.  Chen, A. D.  Aguirre, P.-L.  Hsiung, S.  Desai, P. R.  Herz, M.  Pedrosa, Q.  Huang, M.  Figueiredo, S.-W.  Huang, A.  Koski, J. M.  Schmitt, J. G.  Fujimoto, H.  Mashimo, “Ultrahigh resolution optical coherence tomography of Barrett’s esophagus: preliminary descriptive clinical study correlating images with histology.” Endoscopy 39, 599–605 (2007).
[CrossRef] [PubMed]

Hitzenberger, C.

R.  Leitgeb, C.  Hitzenberger, A.  Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography.” Opt Express 11, 889–894 (2003).
[CrossRef] [PubMed]

Hrebesh, M. S.

M. S.  Hrebesh, R.  Dabu, M.  Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt Comm 282, 674–683 (2009).
[CrossRef]

Hsiung, P.-L.

Y.  Chen, A. D.  Aguirre, P.-L.  Hsiung, S.  Desai, P. R.  Herz, M.  Pedrosa, Q.  Huang, M.  Figueiredo, S.-W.  Huang, A.  Koski, J. M.  Schmitt, J. G.  Fujimoto, H.  Mashimo, “Ultrahigh resolution optical coherence tomography of Barrett’s esophagus: preliminary descriptive clinical study correlating images with histology.” Endoscopy 39, 599–605 (2007).
[CrossRef] [PubMed]

Huang, Q.

D. C.  Adler, C.  Zhou, T.-H.  Tsai, J.  Schmitt, Q.  Huang, H.  Mashimo, J. G.  Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography.” Opt Express 17, 784–796 (2009).
[CrossRef] [PubMed]

Y.  Chen, A. D.  Aguirre, P.-L.  Hsiung, S.  Desai, P. R.  Herz, M.  Pedrosa, Q.  Huang, M.  Figueiredo, S.-W.  Huang, A.  Koski, J. M.  Schmitt, J. G.  Fujimoto, H.  Mashimo, “Ultrahigh resolution optical coherence tomography of Barrett’s esophagus: preliminary descriptive clinical study correlating images with histology.” Endoscopy 39, 599–605 (2007).
[CrossRef] [PubMed]

Huang, S.-W.

Y.  Chen, A. D.  Aguirre, P.-L.  Hsiung, S.  Desai, P. R.  Herz, M.  Pedrosa, Q.  Huang, M.  Figueiredo, S.-W.  Huang, A.  Koski, J. M.  Schmitt, J. G.  Fujimoto, H.  Mashimo, “Ultrahigh resolution optical coherence tomography of Barrett’s esophagus: preliminary descriptive clinical study correlating images with histology.” Endoscopy 39, 599–605 (2007).
[CrossRef] [PubMed]

Itoh, M.

Y.  Nakamura, S.  Makita, M.  Yamanari, M.  Itoh, T.  Yatagai, Y.  Yasuno, “High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography,” Opt. Express 15, 7103–7116 (2007).
[CrossRef] [PubMed]

Joffre, M.

L.  Lepetit, G.  Chriaux, M.  Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995).
[CrossRef]

Kalkman, J.

R.  de Kinkelder, J.  Kalkman, D. J.  Faber, O.  Schraa, P. H. B.  Kok, F. D.  Verbraak, T. G.  van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina.” Invest Ophthalmol Vis Sci 52, 3908–3913 (2011).
[CrossRef] [PubMed]

Kester, R.

A. D.  Elliott, L.  Gao, A.  Ustione, N.  Bedard, R.  Kester, D. W.  Piston, T. S.  Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer (IMS).” J Cell Sci (2012).
[CrossRef]

Kester, R. T.

N.  Hagen, R. T.  Kester, L.  Gao, T. S.  Tkaczyk, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems.” Opt Eng 51(2012).
[CrossRef]

L.  Gao, N.  Bedard, N.  Hagen, R. T.  Kester, T. S.  Tkaczyk, “Depth-resolved image mapping spectrometer (IMS) with structured illumination.” Opt Express 19, 17439–17452 (2011).
[CrossRef] [PubMed]

L.  Gao, R. T.  Kester, N.  Hagen, T. S.  Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy.” Opt Express 18, 14330–14344 (2010).
[CrossRef] [PubMed]

R. T.  Kester, L.  Gao, T. S.  Tkaczyk, “Development of image mappers for hyperspectral biomedical imaging applications.” Appl Opt 49, 1886–1899 (2010).
[CrossRef] [PubMed]

L.  Gao, R. T.  Kester, T. S.  Tkaczyk, “Compact image slicing spectrometer (ISS) for hyperspectral fluorescence microscopy.” Opt Express 17, 12293–12308 (2009).
[CrossRef] [PubMed]

Ko, T.

M.  Wojtkowski, V.  Srinivasan, T.  Ko, J.  Fujimoto, A.  Kowalczyk, J.  Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation.” Opt Express 12, 2404–2422 (2004).
[CrossRef] [PubMed]

Kok, P. H. B.

R.  de Kinkelder, J.  Kalkman, D. J.  Faber, O.  Schraa, P. H. B.  Kok, F. D.  Verbraak, T. G.  van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina.” Invest Ophthalmol Vis Sci 52, 3908–3913 (2011).
[CrossRef] [PubMed]

Koski, A.

Y.  Chen, A. D.  Aguirre, P.-L.  Hsiung, S.  Desai, P. R.  Herz, M.  Pedrosa, Q.  Huang, M.  Figueiredo, S.-W.  Huang, A.  Koski, J. M.  Schmitt, J. G.  Fujimoto, H.  Mashimo, “Ultrahigh resolution optical coherence tomography of Barrett’s esophagus: preliminary descriptive clinical study correlating images with histology.” Endoscopy 39, 599–605 (2007).
[CrossRef] [PubMed]

Kowalczyk, A.

M.  Wojtkowski, V.  Srinivasan, T.  Ko, J.  Fujimoto, A.  Kowalczyk, J.  Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation.” Opt Express 12, 2404–2422 (2004).
[CrossRef] [PubMed]

Leitgeb, R.

B.  Grajciar, M.  Pircher, A.  Fercher, R.  Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye.” Opt Express 13, 1131–1137 (2005).
[CrossRef] [PubMed]

R.  Leitgeb, C.  Hitzenberger, A.  Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography.” Opt Express 11, 889–894 (2003).
[CrossRef] [PubMed]

Lepetit, L.

L.  Lepetit, G.  Chriaux, M.  Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995).
[CrossRef]

Lynch, R.

B.  Ford, M.  Descour, R.  Lynch, “Large-image-format computed tomography imaging spectrometer for fluorescence microscopy.” Opt Express 9, 444–453 (2001).
[CrossRef] [PubMed]

Lynch, R. M.

B. K.  Ford, C. E.  Volin, S. M.  Murphy, R. M.  Lynch, M. R.  Descour, “Computed tomography-based spectral imaging for fluorescence microscopy.” Biophys J 80, 986–993 (2001).
[CrossRef] [PubMed]

Makita, S.

Y.  Nakamura, S.  Makita, M.  Yamanari, M.  Itoh, T.  Yatagai, Y.  Yasuno, “High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography,” Opt. Express 15, 7103–7116 (2007).
[CrossRef] [PubMed]

Mandrila, I.

E.  Osiac, A.  Saftoiu, D. I.  Gheonea, I.  Mandrila, R.  Angelescu, “Optical coherence tomography and Doppler optical coherence tomography in the gastrointestinal tract.” World J Gastroenterol 17, 15–20 (2011).
[CrossRef] [PubMed]

Mansvelder, H. D.

S.  Witte, M.  Baclayon, E. J. G.  Peterman, R. F. G.  Toonen, H. D.  Mansvelder, M. L.  Groot, “Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control.” Opt Express 17, 11335–11349 (2009).
[CrossRef] [PubMed]

Mashimo, H.

D. C.  Adler, C.  Zhou, T.-H.  Tsai, J.  Schmitt, Q.  Huang, H.  Mashimo, J. G.  Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography.” Opt Express 17, 784–796 (2009).
[CrossRef] [PubMed]

Y.  Chen, A. D.  Aguirre, P.-L.  Hsiung, S.  Desai, P. R.  Herz, M.  Pedrosa, Q.  Huang, M.  Figueiredo, S.-W.  Huang, A.  Koski, J. M.  Schmitt, J. G.  Fujimoto, H.  Mashimo, “Ultrahigh resolution optical coherence tomography of Barrett’s esophagus: preliminary descriptive clinical study correlating images with histology.” Endoscopy 39, 599–605 (2007).
[CrossRef] [PubMed]

McCain, S. C.

C. A.  Fernandez, A.  Wagadarikar, D. J.  Brady, S. C.  McCain, T.  Oliver, “Fluorescence microscopy with a coded aperture snapshot spectral imager,” 7184, 71840Z–71840Z-11 (2009).

Miller, J. W.

K.  Yi, M.  Mujat, B. H.  Park, W.  Sun, J. W.  Miller, J. M.  Seddon, L. H.  Young, J. F.  de Boer, T. C.  Chen, “Spectral domain optical coherence tomography for quantitative evaluation of drusen and associated structural changes in non-neovascular age-related macular degeneration.” Br J Ophthalmol 93, 176–181 (2009).
[CrossRef]

Moreau, J.

A.  Dubois, J.  Moreau, C.  Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy.” Opt Express 16, 17082–17091 (2008).
[CrossRef] [PubMed]

Mujat, M.

K.  Yi, M.  Mujat, B. H.  Park, W.  Sun, J. W.  Miller, J. M.  Seddon, L. H.  Young, J. F.  de Boer, T. C.  Chen, “Spectral domain optical coherence tomography for quantitative evaluation of drusen and associated structural changes in non-neovascular age-related macular degeneration.” Br J Ophthalmol 93, 176–181 (2009).
[CrossRef]

M.  Mujat, B. H.  Park, B.  Cense, T. C.  Chen, J. F.  de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination.” J Biomed Opt 12, 041205 (2007).
[CrossRef] [PubMed]

Murphy, S. M.

B. K.  Ford, C. E.  Volin, S. M.  Murphy, R. M.  Lynch, M. R.  Descour, “Computed tomography-based spectral imaging for fluorescence microscopy.” Biophys J 80, 986–993 (2001).
[CrossRef] [PubMed]

Nakamura, Y.

Y.  Nakamura, S.  Makita, M.  Yamanari, M.  Itoh, T.  Yatagai, Y.  Yasuno, “High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography,” Opt. Express 15, 7103–7116 (2007).
[CrossRef] [PubMed]

Oliver, T.

C. F.  Cull, K.  Choi, D. J.  Brady, T.  Oliver, “Identification of fluorescent beads using a coded aperture snapshot spectral imager.” Appl Opt 49, B59–B70 (2010).
[CrossRef] [PubMed]

C. A.  Fernandez, A.  Wagadarikar, D. J.  Brady, S. C.  McCain, T.  Oliver, “Fluorescence microscopy with a coded aperture snapshot spectral imager,” 7184, 71840Z–71840Z-11 (2009).

Osiac, E.

E.  Osiac, A.  Saftoiu, D. I.  Gheonea, I.  Mandrila, R.  Angelescu, “Optical coherence tomography and Doppler optical coherence tomography in the gastrointestinal tract.” World J Gastroenterol 17, 15–20 (2011).
[CrossRef] [PubMed]

Paques, M.

K.  Grieve, A.  Dubois, M.  Simonutti, M.  Paques, J.  Sahel, J.-F. L.  Gargasson, C.  Boccara, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography.” Opt Express 13, 6286–6295 (2005).
[CrossRef] [PubMed]

Park, B. H.

K.  Yi, M.  Mujat, B. H.  Park, W.  Sun, J. W.  Miller, J. M.  Seddon, L. H.  Young, J. F.  de Boer, T. C.  Chen, “Spectral domain optical coherence tomography for quantitative evaluation of drusen and associated structural changes in non-neovascular age-related macular degeneration.” Br J Ophthalmol 93, 176–181 (2009).
[CrossRef]

M.  Mujat, B. H.  Park, B.  Cense, T. C.  Chen, J. F.  de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination.” J Biomed Opt 12, 041205 (2007).
[CrossRef] [PubMed]

J. F.  de Boer, B.  Cense, B. H.  Park, M. C.  Pierce, G. J.  Tearney, B. E.  Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography.” Opt Lett 28, 2067–2069 (2003).
[CrossRef] [PubMed]

Pedrosa, M.

Y.  Chen, A. D.  Aguirre, P.-L.  Hsiung, S.  Desai, P. R.  Herz, M.  Pedrosa, Q.  Huang, M.  Figueiredo, S.-W.  Huang, A.  Koski, J. M.  Schmitt, J. G.  Fujimoto, H.  Mashimo, “Ultrahigh resolution optical coherence tomography of Barrett’s esophagus: preliminary descriptive clinical study correlating images with histology.” Endoscopy 39, 599–605 (2007).
[CrossRef] [PubMed]

Peterman, E. J. G.

S.  Witte, M.  Baclayon, E. J. G.  Peterman, R. F. G.  Toonen, H. D.  Mansvelder, M. L.  Groot, “Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control.” Opt Express 17, 11335–11349 (2009).
[CrossRef] [PubMed]

Pierce, M. C.

J. F.  de Boer, B.  Cense, B. H.  Park, M. C.  Pierce, G. J.  Tearney, B. E.  Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography.” Opt Lett 28, 2067–2069 (2003).
[CrossRef] [PubMed]

Pircher, M.

B.  Grajciar, M.  Pircher, A.  Fercher, R.  Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye.” Opt Express 13, 1131–1137 (2005).
[CrossRef] [PubMed]

Piston, D. W.

A. D.  Elliott, L.  Gao, A.  Ustione, N.  Bedard, R.  Kester, D. W.  Piston, T. S.  Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer (IMS).” J Cell Sci (2012).
[CrossRef]

Saftoiu, A.

E.  Osiac, A.  Saftoiu, D. I.  Gheonea, I.  Mandrila, R.  Angelescu, “Optical coherence tomography and Doppler optical coherence tomography in the gastrointestinal tract.” World J Gastroenterol 17, 15–20 (2011).
[CrossRef] [PubMed]

Sahel, J.

K.  Grieve, A.  Dubois, M.  Simonutti, M.  Paques, J.  Sahel, J.-F. L.  Gargasson, C.  Boccara, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography.” Opt Express 13, 6286–6295 (2005).
[CrossRef] [PubMed]

Sato, M.

M. S.  Hrebesh, R.  Dabu, M.  Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt Comm 282, 674–683 (2009).
[CrossRef]

Y.  Watanabe, K.  Yamada, M.  Sato, “Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography.” Opt Express 14, 5201–5209 (2006).
[CrossRef] [PubMed]

Schmitt, J.

D. C.  Adler, C.  Zhou, T.-H.  Tsai, J.  Schmitt, Q.  Huang, H.  Mashimo, J. G.  Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography.” Opt Express 17, 784–796 (2009).
[CrossRef] [PubMed]

Schmitt, J. M.

Y.  Chen, A. D.  Aguirre, P.-L.  Hsiung, S.  Desai, P. R.  Herz, M.  Pedrosa, Q.  Huang, M.  Figueiredo, S.-W.  Huang, A.  Koski, J. M.  Schmitt, J. G.  Fujimoto, H.  Mashimo, “Ultrahigh resolution optical coherence tomography of Barrett’s esophagus: preliminary descriptive clinical study correlating images with histology.” Endoscopy 39, 599–605 (2007).
[CrossRef] [PubMed]

Schraa, O.

R.  de Kinkelder, J.  Kalkman, D. J.  Faber, O.  Schraa, P. H. B.  Kok, F. D.  Verbraak, T. G.  van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina.” Invest Ophthalmol Vis Sci 52, 3908–3913 (2011).
[CrossRef] [PubMed]

Seddon, J. M.

K.  Yi, M.  Mujat, B. H.  Park, W.  Sun, J. W.  Miller, J. M.  Seddon, L. H.  Young, J. F.  de Boer, T. C.  Chen, “Spectral domain optical coherence tomography for quantitative evaluation of drusen and associated structural changes in non-neovascular age-related macular degeneration.” Br J Ophthalmol 93, 176–181 (2009).
[CrossRef]

Simonutti, M.

K.  Grieve, A.  Dubois, M.  Simonutti, M.  Paques, J.  Sahel, J.-F. L.  Gargasson, C.  Boccara, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography.” Opt Express 13, 6286–6295 (2005).
[CrossRef] [PubMed]

Srinivasan, V.

M.  Wojtkowski, V.  Srinivasan, T.  Ko, J.  Fujimoto, A.  Kowalczyk, J.  Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation.” Opt Express 12, 2404–2422 (2004).
[CrossRef] [PubMed]

Subhash, H. M.

H. M.  Subhash, “Review article: Full-field and single-shot full-field optical coherence tomography: A novel technique for biomedical imaging applications,” Advances in Optical Technologies 2012(2012).
[CrossRef]

Sun, W.

K.  Yi, M.  Mujat, B. H.  Park, W.  Sun, J. W.  Miller, J. M.  Seddon, L. H.  Young, J. F.  de Boer, T. C.  Chen, “Spectral domain optical coherence tomography for quantitative evaluation of drusen and associated structural changes in non-neovascular age-related macular degeneration.” Br J Ophthalmol 93, 176–181 (2009).
[CrossRef]

Tearney, G. J.

J. F.  de Boer, B.  Cense, B. H.  Park, M. C.  Pierce, G. J.  Tearney, B. E.  Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography.” Opt Lett 28, 2067–2069 (2003).
[CrossRef] [PubMed]

Tkaczyk, T. S.

A. D.  Elliott, L.  Gao, A.  Ustione, N.  Bedard, R.  Kester, D. W.  Piston, T. S.  Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer (IMS).” J Cell Sci (2012).
[CrossRef]

N.  Bedard, N.  Hagen, L.  Gao, T. S.  Tkaczyk, “Image mapping spectrometry: calibration and characterization.” Opt Eng 51(2012).
[CrossRef] [PubMed]

N.  Hagen, R. T.  Kester, L.  Gao, T. S.  Tkaczyk, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems.” Opt Eng 51(2012).
[CrossRef]

L. S.  Gao T. S.  Tkaczyk, “Correction of vignetting and distortion errors induced by two-axis light beam steering,” Optical Engineering 51(2012).
[CrossRef]

L.  Gao, N.  Bedard, N.  Hagen, R. T.  Kester, T. S.  Tkaczyk, “Depth-resolved image mapping spectrometer (IMS) with structured illumination.” Opt Express 19, 17439–17452 (2011).
[CrossRef] [PubMed]

L.  Gao, R. T.  Kester, N.  Hagen, T. S.  Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy.” Opt Express 18, 14330–14344 (2010).
[CrossRef] [PubMed]

R. T.  Kester, L.  Gao, T. S.  Tkaczyk, “Development of image mappers for hyperspectral biomedical imaging applications.” Appl Opt 49, 1886–1899 (2010).
[CrossRef] [PubMed]

L.  Gao, R. T.  Kester, T. S.  Tkaczyk, “Compact image slicing spectrometer (ISS) for hyperspectral fluorescence microscopy.” Opt Express 17, 12293–12308 (2009).
[CrossRef] [PubMed]

Toonen, R. F. G.

S.  Witte, M.  Baclayon, E. J. G.  Peterman, R. F. G.  Toonen, H. D.  Mansvelder, M. L.  Groot, “Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control.” Opt Express 17, 11335–11349 (2009).
[CrossRef] [PubMed]

Tsai, T.-H.

D. C.  Adler, C.  Zhou, T.-H.  Tsai, J.  Schmitt, Q.  Huang, H.  Mashimo, J. G.  Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography.” Opt Express 17, 784–796 (2009).
[CrossRef] [PubMed]

Ustione, A.

A. D.  Elliott, L.  Gao, A.  Ustione, N.  Bedard, R.  Kester, D. W.  Piston, T. S.  Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer (IMS).” J Cell Sci (2012).
[CrossRef]

van Leeuwen, T. G.

R.  de Kinkelder, J.  Kalkman, D. J.  Faber, O.  Schraa, P. H. B.  Kok, F. D.  Verbraak, T. G.  van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina.” Invest Ophthalmol Vis Sci 52, 3908–3913 (2011).
[CrossRef] [PubMed]

Verbraak, F. D.

R.  de Kinkelder, J.  Kalkman, D. J.  Faber, O.  Schraa, P. H. B.  Kok, F. D.  Verbraak, T. G.  van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina.” Invest Ophthalmol Vis Sci 52, 3908–3913 (2011).
[CrossRef] [PubMed]

Volin, C. E.

B. K.  Ford, C. E.  Volin, S. M.  Murphy, R. M.  Lynch, M. R.  Descour, “Computed tomography-based spectral imaging for fluorescence microscopy.” Biophys J 80, 986–993 (2001).
[CrossRef] [PubMed]

Wagadarikar, A.

C. A.  Fernandez, A.  Wagadarikar, D. J.  Brady, S. C.  McCain, T.  Oliver, “Fluorescence microscopy with a coded aperture snapshot spectral imager,” 7184, 71840Z–71840Z-11 (2009).

Watanabe, Y.

Y.  Watanabe, K.  Yamada, M.  Sato, “Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography.” Opt Express 14, 5201–5209 (2006).
[CrossRef] [PubMed]

Witte, S.

S.  Witte, M.  Baclayon, E. J. G.  Peterman, R. F. G.  Toonen, H. D.  Mansvelder, M. L.  Groot, “Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control.” Opt Express 17, 11335–11349 (2009).
[CrossRef] [PubMed]

Wojtkowski, M.

M.  Wojtkowski, V.  Srinivasan, T.  Ko, J.  Fujimoto, A.  Kowalczyk, J.  Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation.” Opt Express 12, 2404–2422 (2004).
[CrossRef] [PubMed]

Yamada, K.

Y.  Watanabe, K.  Yamada, M.  Sato, “Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography.” Opt Express 14, 5201–5209 (2006).
[CrossRef] [PubMed]

Yamanari, M.

Y.  Nakamura, S.  Makita, M.  Yamanari, M.  Itoh, T.  Yatagai, Y.  Yasuno, “High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography,” Opt. Express 15, 7103–7116 (2007).
[CrossRef] [PubMed]

Yasuno, Y.

Y.  Nakamura, S.  Makita, M.  Yamanari, M.  Itoh, T.  Yatagai, Y.  Yasuno, “High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography,” Opt. Express 15, 7103–7116 (2007).
[CrossRef] [PubMed]

Yatagai, T.

Y.  Nakamura, S.  Makita, M.  Yamanari, M.  Itoh, T.  Yatagai, Y.  Yasuno, “High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography,” Opt. Express 15, 7103–7116 (2007).
[CrossRef] [PubMed]

Yi, K.

K.  Yi, M.  Mujat, B. H.  Park, W.  Sun, J. W.  Miller, J. M.  Seddon, L. H.  Young, J. F.  de Boer, T. C.  Chen, “Spectral domain optical coherence tomography for quantitative evaluation of drusen and associated structural changes in non-neovascular age-related macular degeneration.” Br J Ophthalmol 93, 176–181 (2009).
[CrossRef]

Young, L. H.

K.  Yi, M.  Mujat, B. H.  Park, W.  Sun, J. W.  Miller, J. M.  Seddon, L. H.  Young, J. F.  de Boer, T. C.  Chen, “Spectral domain optical coherence tomography for quantitative evaluation of drusen and associated structural changes in non-neovascular age-related macular degeneration.” Br J Ophthalmol 93, 176–181 (2009).
[CrossRef]

Zhou, C.

D. C.  Adler, C.  Zhou, T.-H.  Tsai, J.  Schmitt, Q.  Huang, H.  Mashimo, J. G.  Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography.” Opt Express 17, 784–796 (2009).
[CrossRef] [PubMed]

Advances in Optical Technologies

H. M.  Subhash, “Review article: Full-field and single-shot full-field optical coherence tomography: A novel technique for biomedical imaging applications,” Advances in Optical Technologies 2012(2012).
[CrossRef]

Appl Opt

C. F.  Cull, K.  Choi, D. J.  Brady, T.  Oliver, “Identification of fluorescent beads using a coded aperture snapshot spectral imager.” Appl Opt 49, B59–B70 (2010).
[CrossRef] [PubMed]

R. T.  Kester, L.  Gao, T. S.  Tkaczyk, “Development of image mappers for hyperspectral biomedical imaging applications.” Appl Opt 49, 1886–1899 (2010).
[CrossRef] [PubMed]

Biophys J

B. K.  Ford, C. E.  Volin, S. M.  Murphy, R. M.  Lynch, M. R.  Descour, “Computed tomography-based spectral imaging for fluorescence microscopy.” Biophys J 80, 986–993 (2001).
[CrossRef] [PubMed]

Br J Ophthalmol

K.  Yi, M.  Mujat, B. H.  Park, W.  Sun, J. W.  Miller, J. M.  Seddon, L. H.  Young, J. F.  de Boer, T. C.  Chen, “Spectral domain optical coherence tomography for quantitative evaluation of drusen and associated structural changes in non-neovascular age-related macular degeneration.” Br J Ophthalmol 93, 176–181 (2009).
[CrossRef]

Endoscopy

Y.  Chen, A. D.  Aguirre, P.-L.  Hsiung, S.  Desai, P. R.  Herz, M.  Pedrosa, Q.  Huang, M.  Figueiredo, S.-W.  Huang, A.  Koski, J. M.  Schmitt, J. G.  Fujimoto, H.  Mashimo, “Ultrahigh resolution optical coherence tomography of Barrett’s esophagus: preliminary descriptive clinical study correlating images with histology.” Endoscopy 39, 599–605 (2007).
[CrossRef] [PubMed]

Invest Ophthalmol Vis Sci

R.  de Kinkelder, J.  Kalkman, D. J.  Faber, O.  Schraa, P. H. B.  Kok, F. D.  Verbraak, T. G.  van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina.” Invest Ophthalmol Vis Sci 52, 3908–3913 (2011).
[CrossRef] [PubMed]

J Biomed Opt

M.  Mujat, B. H.  Park, B.  Cense, T. C.  Chen, J. F.  de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination.” J Biomed Opt 12, 041205 (2007).
[CrossRef] [PubMed]

J Cell Sci

A. D.  Elliott, L.  Gao, A.  Ustione, N.  Bedard, R.  Kester, D. W.  Piston, T. S.  Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer (IMS).” J Cell Sci (2012).
[CrossRef]

J. Opt. Soc. Am. B

L.  Lepetit, G.  Chriaux, M.  Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995).
[CrossRef]

J. Opt. Soc. Am. B

Journal of Optics A: Pure and Applied Optics

I.  Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy,” Journal of Optics A: Pure and Applied Optics 8(2006).
[CrossRef]

Opt Comm

M. S.  Hrebesh, R.  Dabu, M.  Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt Comm 282, 674–683 (2009).
[CrossRef]

Opt Eng

N.  Hagen, R. T.  Kester, L.  Gao, T. S.  Tkaczyk, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems.” Opt Eng 51(2012).
[CrossRef]

Opt Express

K.  Grieve, A.  Dubois, M.  Simonutti, M.  Paques, J.  Sahel, J.-F. L.  Gargasson, C.  Boccara, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography.” Opt Express 13, 6286–6295 (2005).
[CrossRef] [PubMed]

M.  Wojtkowski, V.  Srinivasan, T.  Ko, J.  Fujimoto, A.  Kowalczyk, J.  Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation.” Opt Express 12, 2404–2422 (2004).
[CrossRef] [PubMed]

Y.  Watanabe, K.  Yamada, M.  Sato, “Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography.” Opt Express 14, 5201–5209 (2006).
[CrossRef] [PubMed]

Opt Eng

N.  Bedard, N.  Hagen, L.  Gao, T. S.  Tkaczyk, “Image mapping spectrometry: calibration and characterization.” Opt Eng 51(2012).
[CrossRef] [PubMed]

Opt Express

L.  Gao, R. T.  Kester, N.  Hagen, T. S.  Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy.” Opt Express 18, 14330–14344 (2010).
[CrossRef] [PubMed]

L.  Gao, R. T.  Kester, T. S.  Tkaczyk, “Compact image slicing spectrometer (ISS) for hyperspectral fluorescence microscopy.” Opt Express 17, 12293–12308 (2009).
[CrossRef] [PubMed]

L.  Gao, N.  Bedard, N.  Hagen, R. T.  Kester, T. S.  Tkaczyk, “Depth-resolved image mapping spectrometer (IMS) with structured illumination.” Opt Express 19, 17439–17452 (2011).
[CrossRef] [PubMed]

A.  Gorman, D. W.  Fletcher-Holmes, A. R.  Harvey, “Generalization of the Lyot filter and its application to snapshot spectral imaging.” Opt Express 18, 5602–5608 (2010).
[CrossRef] [PubMed]

S.  Witte, M.  Baclayon, E. J. G.  Peterman, R. F. G.  Toonen, H. D.  Mansvelder, M. L.  Groot, “Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control.” Opt Express 17, 11335–11349 (2009).
[CrossRef] [PubMed]

A.  Dubois, J.  Moreau, C.  Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy.” Opt Express 16, 17082–17091 (2008).
[CrossRef] [PubMed]

B.  Grajciar, M.  Pircher, A.  Fercher, R.  Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye.” Opt Express 13, 1131–1137 (2005).
[CrossRef] [PubMed]

B.  Ford, M.  Descour, R.  Lynch, “Large-image-format computed tomography imaging spectrometer for fluorescence microscopy.” Opt Express 9, 444–453 (2001).
[CrossRef] [PubMed]

D. C.  Adler, C.  Zhou, T.-H.  Tsai, J.  Schmitt, Q.  Huang, H.  Mashimo, J. G.  Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography.” Opt Express 17, 784–796 (2009).
[CrossRef] [PubMed]

R.  Leitgeb, C.  Hitzenberger, A.  Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography.” Opt Express 11, 889–894 (2003).
[CrossRef] [PubMed]

Opt Lett

J. F.  de Boer, B.  Cense, B. H.  Park, M. C.  Pierce, G. J.  Tearney, B. E.  Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography.” Opt Lett 28, 2067–2069 (2003).
[CrossRef] [PubMed]

Opt. Express

Y.  Nakamura, S.  Makita, M.  Yamanari, M.  Itoh, T.  Yatagai, Y.  Yasuno, “High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography,” Opt. Express 15, 7103–7116 (2007).
[CrossRef] [PubMed]

Optical Engineering

L. S.  Gao T. S.  Tkaczyk, “Correction of vignetting and distortion errors induced by two-axis light beam steering,” Optical Engineering 51(2012).
[CrossRef]

World J Gastroenterol

E.  Osiac, A.  Saftoiu, D. I.  Gheonea, I.  Mandrila, R.  Angelescu, “Optical coherence tomography and Doppler optical coherence tomography in the gastrointestinal tract.” World J Gastroenterol 17, 15–20 (2011).
[CrossRef] [PubMed]

Other

C. A.  Fernandez, A.  Wagadarikar, D. J.  Brady, S. C.  McCain, T.  Oliver, “Fluorescence microscopy with a coded aperture snapshot spectral imager,” 7184, 71840Z–71840Z-11 (2009).

A.  Bodkin, A.  Sheinis, A.  Norton, J.  Daly, C.  Roberts, S.  Beaven, J.  Weinheimer, eds., Video-rate chemical identification and visualization with snapshot hyperspectral imaging, vol. 8374 (2012).

J.  Kriesel, G.  Scriven, N.  Gat, S.  Nagaraj, P.  Willson, V.  Swaminathan, eds., Snapshot hyperspectral fovea vision system (HyperVideo)(2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

The concept of combining Full-field OCT (FF-OCT) and IMS systems to develop snapshot 3D-OCT. A low coherence source travels to both sample and reference arms. Back-scattered light creates interference and is fed into the the IMS system. The mapper slices the image and regroups different regions into separate pupils. A large camera captures spectral and spatial data imaged by a lenslet array.

Fig. 2
Fig. 2

System layout. (a): System schematic. BS: beam splitter, IO: interferometry objective, LA: lenslet array, PP: pupil plane, RC: reference camera, RA: reference arm, SA: sample arm. (b): Complete system on optical table.

Fig. 3
Fig. 3

Image mapper fabrication. (a): Mapper in fabrication. The substrate is mounted on the Nanotech milling machine. Two tools are placed on spindle prior to cutting facets. (b): Reflection of ruler’s straight edge on the finished mapper. (c): Mapper looking from the top. Different facet tilts are shown as variations in depth of cuts. (d): Examination of mapper’s facets with white-light interferometer. (e): Mapper looking from the front. (f): Enlarged section of mapper looking from the front showing finer cuts for individual facets.

Fig. 4
Fig. 4

Mapper facet and pupil distribution. (a): Facet tilt directions relative to mapper. (b): Pupil distribution from one block of mapper (100 facets). Facets whose numbers are not shown are discarded in the leftmost and rightmost columns. (c): Grouping and order of facets. Facet of the same y-tilt correspond to light grouped in the same row; and those of the same x-tilt correspond to the same columns. Thus two facets which are 100 facets apart have the exact same x and y tilts.

Fig. 5
Fig. 5

Initial calibration steps. This one-time calibration series is to performed to convert the raw 2D image into a (x,y,λ) datacube for subsequent image acquisitions.

Fig. 6
Fig. 6

OCT calibration steps. a: A segment of a raw sub-image with horizontal features from sample and vertical interferometric fringes. b: One spectral cross-section taken from (a). c: Calibrated spectra corresponding to the raw image in (a). Spectra along the facets form a gradient from black (610 nm) to white (640 nm). d: The initial wavelength-pixel relationship is fitted to a third-order polynomial. e: The calibrated wavelength after zero-padding to 512 data points to prepare for depth reconstruction. f: A spectrum of inteferometric fringes with DC components removed. g: Depth profile reconstructed from the fringes shown in f. h: Relationship between wavelengths and the array indices. For a narrow spectral band such as that used here, this relationship is almost linear.

Fig. 7
Fig. 7

Snapshot 3D-OCT system’s depth assessment. a: Different depth positions of a flat, reflecting mirror mounted on a translation stage. b: Measured axial resolution from one representative transverse location. c: Relationship between peak pixel position and mirror physical position. Note that at the position around 400 μm, peak positions become undetectable, indicating the end of the imaging depth. d: Linear regression of the relationship between peak pixel position and mirror position.

Fig. 8
Fig. 8

Simultaneous spatial and spectral visualization. a: Spatial features from resolution target. b: Interferometric fringes caused by resolution target. c: Interferometric fringes caused by clear tape.

Fig. 9
Fig. 9

3D structure recorded in snapshot mode from the 3D-OCT system. a: Reconstructed structure of clear tape on USAF target. b,c: Its XZ and YZ cross-sections. d: Transverse image from the reference camera.

Fig. 10
Fig. 10

System evaluation with simple 3D structural sample. a: A 2D image of an US dime taken with reference camera. b: Corresponding transverse surface acquired with snapshot 3D-OCT system. c: Transverse surfaces at different depths. d: Cross-sections along the depth range.

Fig. 11
Fig. 11

3D snapshot of a layer of onion placed on top of a highly scattering metal surface. a: Image of a layer of onion (bottom) on a metal surface (top) acquired with the reference camera. b: Transverse surface acquired with snapshot 3D-OCT system. c: Representative transverse sections at different (z) depths.

Fig. 12
Fig. 12

Effect of camera pixel count on 3D datacube size for a system operating at 10 μm axial resolution.

Metrics