Abstract

Tunable lattice resonances are demonstrated in a hybrid plasmonic crystal incorporating the phase-change material Ge2Sb2Te5 (GST) as a 20-nm-thick layer sandwiched between a gold nanodisk array and a quartz substrate. Non-volatile tuning of lattice resonances over a range Δλ of about 500 nm (1.89 µm to 2.27 µm) is achieved experimentally via intermediate phase states of the GST layer. This work demonstrates the efficacy and ease of resonance tuning via GST in the near infrared, suggesting the possibility to design broadband non-volatile tunable devices for optical modulation, switching, sensing and nonlinear optical devices.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ng, S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. F. Liew, N. Klein, M. H. Hong, and S. A. Maier, “Lattice resonances in antenna arrays for liquid sensing in the terahertz regime,” Opt. Express19(15), 14653–14661 (2011).
    [CrossRef] [PubMed]
  2. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009).
    [CrossRef] [PubMed]
  3. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005).
    [CrossRef] [PubMed]
  4. J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol.8(4), 252–255 (2013).
    [CrossRef] [PubMed]
  5. J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011).
    [CrossRef] [PubMed]
  6. Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano6(3), 2385–2393 (2012).
    [CrossRef] [PubMed]
  7. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett.103(14), 147401 (2009).
    [CrossRef] [PubMed]
  8. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010).
    [CrossRef] [PubMed]
  9. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
    [CrossRef] [PubMed]
  10. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
    [CrossRef] [PubMed]
  11. T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett.93(2), 024101 (2008).
    [CrossRef]
  12. D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science336(6088), 1566–1569 (2012).
    [CrossRef] [PubMed]
  13. J.-W. Park, S. H. Baek, T. D. Kang, H. Lee, Y.-S. Kang, T.-Y. Lee, D.-S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, J. L. F. Da Silva, and S.-H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett.93(2), 021914 (2008).
    [CrossRef]
  14. T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science325(5947), 1518–1521 (2009).
    [CrossRef] [PubMed]
  15. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express17(20), 18330–18339 (2009).
    [CrossRef] [PubMed]
  16. K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund., “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett.12(2), 780–786 (2012).
    [CrossRef] [PubMed]
  17. D. Y. Lei, K. Appavoo, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide,” Opt. Lett.35(23), 3988–3990 (2010).
    [CrossRef] [PubMed]
  18. H. Verleur, A. B. Jr, and C. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev.172(3), 788–798 (1968).
    [CrossRef]
  19. N. Yamada, M. Otoba, K. Kawahara, N. Miyagawa, H. Ohta, N. Akahira, and T. Matsunaga, “Phase-change optical disk having a nitride interface layer,” Jpn. J. Appl. Phys.37(Part 1, No. 4B), 2104–2110 (1998).
    [CrossRef]
  20. N. Yamada, “Development of materials for third generation optical storage media,” in Phase Change Materials: Science and Applications, S. Raoux and M. Wuttig, eds. (Springer, 2009).
  21. C. H. Chu, C. D. Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express18(17), 18383–18393 (2010).
    [CrossRef] [PubMed]
  22. C. M. Chang, C. H. Chu, M. L. Tseng, H. P. Chiang, M. Mansuripur, and D. P. Tsai, “Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films,” Opt. Express19(10), 9492–9504 (2011).
    [CrossRef] [PubMed]
  23. M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express19(18), 16975–16984 (2011).
    [CrossRef] [PubMed]
  24. P. K. Khulbe, E. M. Wright, and M. Mansuripur, “Crystallization behavior of as-deposited, melt quenched, and primed amorphous states of Ge2Sb2.3Te5 films,” J. Appl. Phys.88(7), 3926–3933 (2000).
    [CrossRef]
  25. L. Shi, T. Chong, P. K. Tan, X. S. Miao, Y. M. Huang, and R. Zhao, “Study of the partial crystallization properties of phase-change optical recording disks,” J. Appl. Phys.38, 1645–1648 (1999).
  26. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008).
    [CrossRef] [PubMed]
  27. H. Li, X. Luo, C. Du, X. Chen, and Y. Fu, “Ag dots array fabricated using laser interference technique for biosensing,” Sens. Actuators B Chem.134(2), 940–944 (2008).
    [CrossRef]
  28. Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
    [CrossRef]
  29. U. Russo, D. Ielmini, and A. Lacaita, “Analytical modeling of chalcogenide crystallization for PCM data-retention extrapolation,” IEEE Trans. Electron. Dev.54(10), 2769–2777 (2007).
    [CrossRef]
  30. N. V. Voshchinnikov, G. Videen, and T. Henning, “Effective medium theories for irregular fluffy structures: aggregation of small particles,” Appl. Opt.46(19), 4065–4072 (2007).
    [CrossRef] [PubMed]
  31. D. Aspnes, “Local-field effects and effective-medium theory: A microscopic perspective,” Am. J. Phys.50(8), 704–709 (1982).
    [CrossRef]
  32. V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Atomic force microscopy study of laser induced phase transitions in Ge2Sb2Te5,” J. Appl. Phys.86(10), 5879–5887 (1999).
    [CrossRef]
  33. M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Wełnic, M. Gillessen, and R. Dronskowski, “The role of vacancies and local distortions in the design of new phase-change materials,” Nat. Mater.6(2), 122–128 (2007).
    [CrossRef] [PubMed]
  34. L. Gross, R. R. Schlittler, G. Meyer, A. Vanhaverbeke, and R. Allenspach, “Fabrication of ultrathin magnetic structures by nanostencil lithography in dynamic mode,” Appl. Phys. Lett.90(9), 093121 (2007).
    [CrossRef]
  35. P. Němec, A. Moreac, V. Nazabal, M. Pavlišta, J. Přikryl, and M. Frumar, “Ge–Sb–Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys.106(10), 103509 (2009).
    [CrossRef]
  36. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80(20), 201401 (2009).
    [CrossRef]

2013

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol.8(4), 252–255 (2013).
[CrossRef] [PubMed]

2012

Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano6(3), 2385–2393 (2012).
[CrossRef] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund., “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett.12(2), 780–786 (2012).
[CrossRef] [PubMed]

2011

2010

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

C. H. Chu, C. D. Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express18(17), 18383–18393 (2010).
[CrossRef] [PubMed]

D. Y. Lei, K. Appavoo, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide,” Opt. Lett.35(23), 3988–3990 (2010).
[CrossRef] [PubMed]

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

2009

P. Němec, A. Moreac, V. Nazabal, M. Pavlišta, J. Přikryl, and M. Frumar, “Ge–Sb–Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys.106(10), 103509 (2009).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80(20), 201401 (2009).
[CrossRef]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett.103(14), 147401 (2009).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009).
[CrossRef] [PubMed]

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express17(20), 18330–18339 (2009).
[CrossRef] [PubMed]

2008

J.-W. Park, S. H. Baek, T. D. Kang, H. Lee, Y.-S. Kang, T.-Y. Lee, D.-S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, J. L. F. Da Silva, and S.-H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett.93(2), 021914 (2008).
[CrossRef]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett.93(2), 024101 (2008).
[CrossRef]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008).
[CrossRef] [PubMed]

H. Li, X. Luo, C. Du, X. Chen, and Y. Fu, “Ag dots array fabricated using laser interference technique for biosensing,” Sens. Actuators B Chem.134(2), 940–944 (2008).
[CrossRef]

2007

U. Russo, D. Ielmini, and A. Lacaita, “Analytical modeling of chalcogenide crystallization for PCM data-retention extrapolation,” IEEE Trans. Electron. Dev.54(10), 2769–2777 (2007).
[CrossRef]

M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Wełnic, M. Gillessen, and R. Dronskowski, “The role of vacancies and local distortions in the design of new phase-change materials,” Nat. Mater.6(2), 122–128 (2007).
[CrossRef] [PubMed]

L. Gross, R. R. Schlittler, G. Meyer, A. Vanhaverbeke, and R. Allenspach, “Fabrication of ultrathin magnetic structures by nanostencil lithography in dynamic mode,” Appl. Phys. Lett.90(9), 093121 (2007).
[CrossRef]

N. V. Voshchinnikov, G. Videen, and T. Henning, “Effective medium theories for irregular fluffy structures: aggregation of small particles,” Appl. Opt.46(19), 4065–4072 (2007).
[CrossRef] [PubMed]

2006

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

2005

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

2000

P. K. Khulbe, E. M. Wright, and M. Mansuripur, “Crystallization behavior of as-deposited, melt quenched, and primed amorphous states of Ge2Sb2.3Te5 films,” J. Appl. Phys.88(7), 3926–3933 (2000).
[CrossRef]

1999

L. Shi, T. Chong, P. K. Tan, X. S. Miao, Y. M. Huang, and R. Zhao, “Study of the partial crystallization properties of phase-change optical recording disks,” J. Appl. Phys.38, 1645–1648 (1999).

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Atomic force microscopy study of laser induced phase transitions in Ge2Sb2Te5,” J. Appl. Phys.86(10), 5879–5887 (1999).
[CrossRef]

1998

N. Yamada, M. Otoba, K. Kawahara, N. Miyagawa, H. Ohta, N. Akahira, and T. Matsunaga, “Phase-change optical disk having a nitride interface layer,” Jpn. J. Appl. Phys.37(Part 1, No. 4B), 2104–2110 (1998).
[CrossRef]

1982

D. Aspnes, “Local-field effects and effective-medium theory: A microscopic perspective,” Am. J. Phys.50(8), 704–709 (1982).
[CrossRef]

1968

H. Verleur, A. B. Jr, and C. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev.172(3), 788–798 (1968).
[CrossRef]

Akahira, N.

N. Yamada, M. Otoba, K. Kawahara, N. Miyagawa, H. Ohta, N. Akahira, and T. Matsunaga, “Phase-change optical disk having a nitride interface layer,” Jpn. J. Appl. Phys.37(Part 1, No. 4B), 2104–2110 (1998).
[CrossRef]

Allenspach, R.

L. Gross, R. R. Schlittler, G. Meyer, A. Vanhaverbeke, and R. Allenspach, “Fabrication of ultrathin magnetic structures by nanostencil lithography in dynamic mode,” Appl. Phys. Lett.90(9), 093121 (2007).
[CrossRef]

Appavoo, K.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund., “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett.12(2), 780–786 (2012).
[CrossRef] [PubMed]

D. Y. Lei, K. Appavoo, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide,” Opt. Lett.35(23), 3988–3990 (2010).
[CrossRef] [PubMed]

Aspnes, D.

D. Aspnes, “Local-field effects and effective-medium theory: A microscopic perspective,” Am. J. Phys.50(8), 704–709 (1982).
[CrossRef]

Atwater, H. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express17(20), 18330–18339 (2009).
[CrossRef] [PubMed]

Auguié, B.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008).
[CrossRef] [PubMed]

Averitt, R. D.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett.103(14), 147401 (2009).
[CrossRef] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Aydin, K.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express17(20), 18330–18339 (2009).
[CrossRef] [PubMed]

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Baek, S. H.

J.-W. Park, S. H. Baek, T. D. Kang, H. Lee, Y.-S. Kang, T.-Y. Lee, D.-S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, J. L. F. Da Silva, and S.-H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett.93(2), 021914 (2008).
[CrossRef]

Barnes, W. L.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008).
[CrossRef] [PubMed]

Basov, D. N.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett.93(2), 024101 (2008).
[CrossRef]

Berglund, C.

H. Verleur, A. B. Jr, and C. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev.172(3), 788–798 (1968).
[CrossRef]

Boyd, E. M.

Brehm, M.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett.93(2), 024101 (2008).
[CrossRef]

Briggs, R. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

Chae, B. G.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett.93(2), 024101 (2008).
[CrossRef]

Chang, C. M.

Chen, B. H.

Chen, H. T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Chen, X.

H. Li, X. Luo, C. Du, X. Chen, and Y. Fu, “Ag dots array fabricated using laser interference technique for biosensing,” Sens. Actuators B Chem.134(2), 940–944 (2008).
[CrossRef]

Chen, Z. C.

Cheng, H. W.

Chiang, H. P.

Chiang, H.-P.

Cho, S. Y.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett.93(2), 024101 (2008).
[CrossRef]

Chong, T.

L. Shi, T. Chong, P. K. Tan, X. S. Miao, Y. M. Huang, and R. Zhao, “Study of the partial crystallization properties of phase-change optical recording disks,” J. Appl. Phys.38, 1645–1648 (1999).

Chong, T. C.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

Chu, C. H.

Chu, N. N.

Cui, Y.

Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano6(3), 2385–2393 (2012).
[CrossRef] [PubMed]

Da Silva, J. L. F.

J.-W. Park, S. H. Baek, T. D. Kang, H. Lee, Y.-S. Kang, T.-Y. Lee, D.-S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, J. L. F. Da Silva, and S.-H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett.93(2), 021914 (2008).
[CrossRef]

De Angelis, F.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Di Fabrizio, E.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Di Ventra, M.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

Dicken, M. J.

Driscoll, T.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett.93(2), 024101 (2008).
[CrossRef]

Dronskowski, R.

M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Wełnic, M. Gillessen, and R. Dronskowski, “The role of vacancies and local distortions in the design of new phase-change materials,” Nat. Mater.6(2), 122–128 (2007).
[CrossRef] [PubMed]

Du, C.

H. Li, X. Luo, C. Du, X. Chen, and Y. Fu, “Ag dots array fabricated using laser interference technique for biosensing,” Sens. Actuators B Chem.134(2), 940–944 (2008).
[CrossRef]

Elliott, S. R.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

Fan, K.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett.103(14), 147401 (2009).
[CrossRef] [PubMed]

Friedrich, I.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Atomic force microscopy study of laser induced phase transitions in Ge2Sb2Te5,” J. Appl. Phys.86(10), 5879–5887 (1999).
[CrossRef]

Frumar, M.

P. Němec, A. Moreac, V. Nazabal, M. Pavlišta, J. Přikryl, and M. Frumar, “Ge–Sb–Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys.106(10), 103509 (2009).
[CrossRef]

Fu, Y.

H. Li, X. Luo, C. Du, X. Chen, and Y. Fu, “Ag dots array fabricated using laser interference technique for biosensing,” Sens. Actuators B Chem.134(2), 940–944 (2008).
[CrossRef]

Gholipour, B.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Giannini, V.

B. Ng, S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. F. Liew, N. Klein, M. H. Hong, and S. A. Maier, “Lattice resonances in antenna arrays for liquid sensing in the terahertz regime,” Opt. Express19(15), 14653–14661 (2011).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80(20), 201401 (2009).
[CrossRef]

Gillessen, M.

M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Wełnic, M. Gillessen, and R. Dronskowski, “The role of vacancies and local distortions in the design of new phase-change materials,” Nat. Mater.6(2), 122–128 (2007).
[CrossRef] [PubMed]

Gómez Rivas, J.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80(20), 201401 (2009).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009).
[CrossRef] [PubMed]

Gossard, A. C.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Gross, L.

L. Gross, R. R. Schlittler, G. Meyer, A. Vanhaverbeke, and R. Allenspach, “Fabrication of ultrathin magnetic structures by nanostencil lithography in dynamic mode,” Appl. Phys. Lett.90(9), 093121 (2007).
[CrossRef]

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Gunnarsson, L.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Haglund, R. F.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund., “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett.12(2), 780–786 (2012).
[CrossRef] [PubMed]

D. Y. Lei, K. Appavoo, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide,” Opt. Lett.35(23), 3988–3990 (2010).
[CrossRef] [PubMed]

Han, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Hanham, S. M.

Henning, T.

Hewak, D. W.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Hicks, E. M.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Hong, M. H.

Huang, C. C.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Huang, Y. M.

L. Shi, T. Chong, P. K. Tan, X. S. Miao, Y. M. Huang, and R. Zhao, “Study of the partial crystallization properties of phase-change optical recording disks,” J. Appl. Phys.38, 1645–1648 (1999).

Ielmini, D.

U. Russo, D. Ielmini, and A. Lacaita, “Analytical modeling of chalcogenide crystallization for PCM data-retention extrapolation,” IEEE Trans. Electron. Dev.54(10), 2769–2777 (2007).
[CrossRef]

Jiang, L.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

Jokerst, N. M.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett.93(2), 024101 (2008).
[CrossRef]

Jr, A. B.

H. Verleur, A. B. Jr, and C. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev.172(3), 788–798 (1968).
[CrossRef]

Käll, M.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Kang, T. D.

J.-W. Park, S. H. Baek, T. D. Kang, H. Lee, Y.-S. Kang, T.-Y. Lee, D.-S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, J. L. F. Da Silva, and S.-H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett.93(2), 021914 (2008).
[CrossRef]

Kang, Y.-S.

J.-W. Park, S. H. Baek, T. D. Kang, H. Lee, Y.-S. Kang, T.-Y. Lee, D.-S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, J. L. F. Da Silva, and S.-H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett.93(2), 021914 (2008).
[CrossRef]

Kasemo, B.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Kawahara, K.

N. Yamada, M. Otoba, K. Kawahara, N. Miyagawa, H. Ohta, N. Akahira, and T. Matsunaga, “Phase-change optical disk having a nitride interface layer,” Jpn. J. Appl. Phys.37(Part 1, No. 4B), 2104–2110 (1998).
[CrossRef]

Keilmann, F.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett.93(2), 024101 (2008).
[CrossRef]

Kelaita, Y. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

Khang, Y. H.

J.-W. Park, S. H. Baek, T. D. Kang, H. Lee, Y.-S. Kang, T.-Y. Lee, D.-S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, J. L. F. Da Silva, and S.-H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett.93(2), 021914 (2008).
[CrossRef]

Khulbe, P. K.

P. K. Khulbe, E. M. Wright, and M. Mansuripur, “Crystallization behavior of as-deposited, melt quenched, and primed amorphous states of Ge2Sb2.3Te5 films,” J. Appl. Phys.88(7), 3926–3933 (2000).
[CrossRef]

Kim, B. J.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

Kim, C. K.

J.-W. Park, S. H. Baek, T. D. Kang, H. Lee, Y.-S. Kang, T.-Y. Lee, D.-S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, J. L. F. Da Silva, and S.-H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett.93(2), 021914 (2008).
[CrossRef]

Kim, H. T.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett.93(2), 024101 (2008).
[CrossRef]

Kim, K. J.

J.-W. Park, S. H. Baek, T. D. Kang, H. Lee, Y.-S. Kang, T.-Y. Lee, D.-S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, J. L. F. Da Silva, and S.-H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett.93(2), 021914 (2008).
[CrossRef]

Klein, N.

Knight, K.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Lacaita, A.

U. Russo, D. Ielmini, and A. Lacaita, “Analytical modeling of chalcogenide crystallization for PCM data-retention extrapolation,” IEEE Trans. Electron. Dev.54(10), 2769–2777 (2007).
[CrossRef]

Lee, H.

J.-W. Park, S. H. Baek, T. D. Kang, H. Lee, Y.-S. Kang, T.-Y. Lee, D.-S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, J. L. F. Da Silva, and S.-H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett.93(2), 021914 (2008).
[CrossRef]

Lee, T. H.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

Lee, T.-Y.

J.-W. Park, S. H. Baek, T. D. Kang, H. Lee, Y.-S. Kang, T.-Y. Lee, D.-S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, J. L. F. Da Silva, and S.-H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett.93(2), 021914 (2008).
[CrossRef]

Lee, Y. W.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

Lei, D. Y.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund., “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett.12(2), 780–786 (2012).
[CrossRef] [PubMed]

D. Y. Lei, K. Appavoo, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide,” Opt. Lett.35(23), 3988–3990 (2010).
[CrossRef] [PubMed]

Li, H.

H. Li, X. Luo, C. Du, X. Chen, and Y. Fu, “Ag dots array fabricated using laser interference technique for biosensing,” Sens. Actuators B Chem.134(2), 940–944 (2008).
[CrossRef]

Liew, Y. F.

Lin, W. C.

Liu, A. Q.

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Loke, D.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

Luo, X.

H. Li, X. Luo, C. Du, X. Chen, and Y. Fu, “Ag dots array fabricated using laser interference technique for biosensing,” Sens. Actuators B Chem.134(2), 940–944 (2008).
[CrossRef]

Lüsebrink, D.

M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Wełnic, M. Gillessen, and R. Dronskowski, “The role of vacancies and local distortions in the design of new phase-change materials,” Nat. Mater.6(2), 122–128 (2007).
[CrossRef] [PubMed]

Ma, J.

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

MacDonald, K. F.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund., “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett.12(2), 780–786 (2012).
[CrossRef] [PubMed]

B. Ng, S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. F. Liew, N. Klein, M. H. Hong, and S. A. Maier, “Lattice resonances in antenna arrays for liquid sensing in the terahertz regime,” Opt. Express19(15), 14653–14661 (2011).
[CrossRef] [PubMed]

D. Y. Lei, K. Appavoo, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide,” Opt. Lett.35(23), 3988–3990 (2010).
[CrossRef] [PubMed]

Mansuripur, M.

Matsunaga, T.

N. Yamada, M. Otoba, K. Kawahara, N. Miyagawa, H. Ohta, N. Akahira, and T. Matsunaga, “Phase-change optical disk having a nitride interface layer,” Jpn. J. Appl. Phys.37(Part 1, No. 4B), 2104–2110 (1998).
[CrossRef]

Meyer, G.

L. Gross, R. R. Schlittler, G. Meyer, A. Vanhaverbeke, and R. Allenspach, “Fabrication of ultrathin magnetic structures by nanostencil lithography in dynamic mode,” Appl. Phys. Lett.90(9), 093121 (2007).
[CrossRef]

Miao, X. S.

L. Shi, T. Chong, P. K. Tan, X. S. Miao, Y. M. Huang, and R. Zhao, “Study of the partial crystallization properties of phase-change optical recording disks,” J. Appl. Phys.38, 1645–1648 (1999).

Miyagawa, N.

N. Yamada, M. Otoba, K. Kawahara, N. Miyagawa, H. Ohta, N. Akahira, and T. Matsunaga, “Phase-change optical disk having a nitride interface layer,” Jpn. J. Appl. Phys.37(Part 1, No. 4B), 2104–2110 (1998).
[CrossRef]

Moreac, A.

P. Němec, A. Moreac, V. Nazabal, M. Pavlišta, J. Přikryl, and M. Frumar, “Ge–Sb–Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys.106(10), 103509 (2009).
[CrossRef]

Nazabal, V.

P. Němec, A. Moreac, V. Nazabal, M. Pavlišta, J. Přikryl, and M. Frumar, “Ge–Sb–Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys.106(10), 103509 (2009).
[CrossRef]

Nemec, P.

P. Němec, A. Moreac, V. Nazabal, M. Pavlišta, J. Přikryl, and M. Frumar, “Ge–Sb–Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys.106(10), 103509 (2009).
[CrossRef]

Ng, B.

Ohta, H.

N. Yamada, M. Otoba, K. Kawahara, N. Miyagawa, H. Ohta, N. Akahira, and T. Matsunaga, “Phase-change optical disk having a nitride interface layer,” Jpn. J. Appl. Phys.37(Part 1, No. 4B), 2104–2110 (1998).
[CrossRef]

Otoba, M.

N. Yamada, M. Otoba, K. Kawahara, N. Miyagawa, H. Ohta, N. Akahira, and T. Matsunaga, “Phase-change optical disk having a nitride interface layer,” Jpn. J. Appl. Phys.37(Part 1, No. 4B), 2104–2110 (1998).
[CrossRef]

Ou, J. Y.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol.8(4), 252–255 (2013).
[CrossRef] [PubMed]

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

Padilla, W. J.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett.103(14), 147401 (2009).
[CrossRef] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Palit, S.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett.93(2), 024101 (2008).
[CrossRef]

Pantelides, S. T.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund., “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett.12(2), 780–786 (2012).
[CrossRef] [PubMed]

Park, J.-W.

J.-W. Park, S. H. Baek, T. D. Kang, H. Lee, Y.-S. Kang, T.-Y. Lee, D.-S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, J. L. F. Da Silva, and S.-H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett.93(2), 021914 (2008).
[CrossRef]

Park, W.

Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano6(3), 2385–2393 (2012).
[CrossRef] [PubMed]

Pavlišta, M.

P. Němec, A. Moreac, V. Nazabal, M. Pavlišta, J. Přikryl, and M. Frumar, “Ge–Sb–Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys.106(10), 103509 (2009).
[CrossRef]

Plum, E.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol.8(4), 252–255 (2013).
[CrossRef] [PubMed]

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

Prikryl, J.

P. Němec, A. Moreac, V. Nazabal, M. Pavlišta, J. Přikryl, and M. Frumar, “Ge–Sb–Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys.106(10), 103509 (2009).
[CrossRef]

Pryce, I. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express17(20), 18330–18339 (2009).
[CrossRef] [PubMed]

Qazilbash, M. M.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett.93(2), 024101 (2008).
[CrossRef]

Rindzevicius, T.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Russo, U.

U. Russo, D. Ielmini, and A. Lacaita, “Analytical modeling of chalcogenide crystallization for PCM data-retention extrapolation,” IEEE Trans. Electron. Dev.54(10), 2769–2777 (2007).
[CrossRef]

Sámson, Z. L.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Schatz, G. C.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Schlittler, R. R.

L. Gross, R. R. Schlittler, G. Meyer, A. Vanhaverbeke, and R. Allenspach, “Fabrication of ultrathin magnetic structures by nanostencil lithography in dynamic mode,” Appl. Phys. Lett.90(9), 093121 (2007).
[CrossRef]

Shi, L.

L. Shi, T. Chong, P. K. Tan, X. S. Miao, Y. M. Huang, and R. Zhao, “Study of the partial crystallization properties of phase-change optical recording disks,” J. Appl. Phys.38, 1645–1648 (1999).

Shi, L. P.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

Shiue, C. D.

Singh, R.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Smith, D. R.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett.93(2), 024101 (2008).
[CrossRef]

Sonnefraud, Y.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund., “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett.12(2), 780–786 (2012).
[CrossRef] [PubMed]

D. Y. Lei, K. Appavoo, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide,” Opt. Lett.35(23), 3988–3990 (2010).
[CrossRef] [PubMed]

Spears, K. G.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Strikwerda, A. C.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett.103(14), 147401 (2009).
[CrossRef] [PubMed]

Suh, D.-S.

J.-W. Park, S. H. Baek, T. D. Kang, H. Lee, Y.-S. Kang, T.-Y. Lee, D.-S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, J. L. F. Da Silva, and S.-H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett.93(2), 021914 (2008).
[CrossRef]

Sweatlock, L. A.

Tamma, V. A.

Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano6(3), 2385–2393 (2012).
[CrossRef] [PubMed]

Tan, P. K.

L. Shi, T. Chong, P. K. Tan, X. S. Miao, Y. M. Huang, and R. Zhao, “Study of the partial crystallization properties of phase-change optical recording disks,” J. Appl. Phys.38, 1645–1648 (1999).

Tang, M.

Tao, H.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett.103(14), 147401 (2009).
[CrossRef] [PubMed]

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Tsai, D. P.

Tseng, M. L.

Van Duyne, R. P.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Vanhaverbeke, A.

L. Gross, R. R. Schlittler, G. Meyer, A. Vanhaverbeke, and R. Allenspach, “Fabrication of ultrathin magnetic structures by nanostencil lithography in dynamic mode,” Appl. Phys. Lett.90(9), 093121 (2007).
[CrossRef]

Vecchi, G.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80(20), 201401 (2009).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009).
[CrossRef] [PubMed]

Verleur, H.

H. Verleur, A. B. Jr, and C. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev.172(3), 788–798 (1968).
[CrossRef]

Videen, G.

Voshchinnikov, N. V.

Walavalkar, S.

Wamwangi, D.

M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Wełnic, M. Gillessen, and R. Dronskowski, “The role of vacancies and local distortions in the design of new phase-change materials,” Nat. Mater.6(2), 122–128 (2007).
[CrossRef] [PubMed]

Wang, B.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund., “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett.12(2), 780–786 (2012).
[CrossRef] [PubMed]

Wang, W. J.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

Wei, S.-H.

J.-W. Park, S. H. Baek, T. D. Kang, H. Lee, Y.-S. Kang, T.-Y. Lee, D.-S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, J. L. F. Da Silva, and S.-H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett.93(2), 021914 (2008).
[CrossRef]

Weidenhof, V.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Atomic force microscopy study of laser induced phase transitions in Ge2Sb2Te5,” J. Appl. Phys.86(10), 5879–5887 (1999).
[CrossRef]

Welnic, W.

M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Wełnic, M. Gillessen, and R. Dronskowski, “The role of vacancies and local distortions in the design of new phase-change materials,” Nat. Mater.6(2), 122–128 (2007).
[CrossRef] [PubMed]

Wright, E. M.

P. K. Khulbe, E. M. Wright, and M. Mansuripur, “Crystallization behavior of as-deposited, melt quenched, and primed amorphous states of Ge2Sb2.3Te5 films,” J. Appl. Phys.88(7), 3926–3933 (2000).
[CrossRef]

Wuttig, M.

M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Wełnic, M. Gillessen, and R. Dronskowski, “The role of vacancies and local distortions in the design of new phase-change materials,” Nat. Mater.6(2), 122–128 (2007).
[CrossRef] [PubMed]

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Atomic force microscopy study of laser induced phase transitions in Ge2Sb2Te5,” J. Appl. Phys.86(10), 5879–5887 (1999).
[CrossRef]

Yamada, N.

N. Yamada, M. Otoba, K. Kawahara, N. Miyagawa, H. Ohta, N. Akahira, and T. Matsunaga, “Phase-change optical disk having a nitride interface layer,” Jpn. J. Appl. Phys.37(Part 1, No. 4B), 2104–2110 (1998).
[CrossRef]

Yeo, Y. C.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

Yun, S. J.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett.93(2), 024101 (2008).
[CrossRef]

Zhang, J.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol.8(4), 252–255 (2013).
[CrossRef] [PubMed]

Zhang, S.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Zhang, W.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Zhang, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett.103(14), 147401 (2009).
[CrossRef] [PubMed]

Zhao, R.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

L. Shi, T. Chong, P. K. Tan, X. S. Miao, Y. M. Huang, and R. Zhao, “Study of the partial crystallization properties of phase-change optical recording disks,” J. Appl. Phys.38, 1645–1648 (1999).

Zheludev, N. I.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol.8(4), 252–255 (2013).
[CrossRef] [PubMed]

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Zhou, J.

Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano6(3), 2385–2393 (2012).
[CrossRef] [PubMed]

Zide, J. M. O.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Ziegler, S.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Atomic force microscopy study of laser induced phase transitions in Ge2Sb2Te5,” J. Appl. Phys.86(10), 5879–5887 (1999).
[CrossRef]

Zou, S.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

ACS Nano

Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano6(3), 2385–2393 (2012).
[CrossRef] [PubMed]

Am. J. Phys.

D. Aspnes, “Local-field effects and effective-medium theory: A microscopic perspective,” Am. J. Phys.50(8), 704–709 (1982).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

L. Gross, R. R. Schlittler, G. Meyer, A. Vanhaverbeke, and R. Allenspach, “Fabrication of ultrathin magnetic structures by nanostencil lithography in dynamic mode,” Appl. Phys. Lett.90(9), 093121 (2007).
[CrossRef]

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett.93(2), 024101 (2008).
[CrossRef]

J.-W. Park, S. H. Baek, T. D. Kang, H. Lee, Y.-S. Kang, T.-Y. Lee, D.-S. Suh, K. J. Kim, C. K. Kim, Y. H. Khang, J. L. F. Da Silva, and S.-H. Wei, “Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry,” Appl. Phys. Lett.93(2), 021914 (2008).
[CrossRef]

IEEE Trans. Electron. Dev.

U. Russo, D. Ielmini, and A. Lacaita, “Analytical modeling of chalcogenide crystallization for PCM data-retention extrapolation,” IEEE Trans. Electron. Dev.54(10), 2769–2777 (2007).
[CrossRef]

J. Appl. Phys.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Atomic force microscopy study of laser induced phase transitions in Ge2Sb2Te5,” J. Appl. Phys.86(10), 5879–5887 (1999).
[CrossRef]

P. K. Khulbe, E. M. Wright, and M. Mansuripur, “Crystallization behavior of as-deposited, melt quenched, and primed amorphous states of Ge2Sb2.3Te5 films,” J. Appl. Phys.88(7), 3926–3933 (2000).
[CrossRef]

L. Shi, T. Chong, P. K. Tan, X. S. Miao, Y. M. Huang, and R. Zhao, “Study of the partial crystallization properties of phase-change optical recording disks,” J. Appl. Phys.38, 1645–1648 (1999).

P. Němec, A. Moreac, V. Nazabal, M. Pavlišta, J. Přikryl, and M. Frumar, “Ge–Sb–Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys.106(10), 103509 (2009).
[CrossRef]

Jpn. J. Appl. Phys.

N. Yamada, M. Otoba, K. Kawahara, N. Miyagawa, H. Ohta, N. Akahira, and T. Matsunaga, “Phase-change optical disk having a nitride interface layer,” Jpn. J. Appl. Phys.37(Part 1, No. 4B), 2104–2110 (1998).
[CrossRef]

Nano Lett.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund., “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett.12(2), 780–786 (2012).
[CrossRef] [PubMed]

Nat Commun

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Nat. Mater.

M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Wełnic, M. Gillessen, and R. Dronskowski, “The role of vacancies and local distortions in the design of new phase-change materials,” Nat. Mater.6(2), 122–128 (2007).
[CrossRef] [PubMed]

Nat. Nanotechnol.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol.8(4), 252–255 (2013).
[CrossRef] [PubMed]

Nature

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev.

H. Verleur, A. B. Jr, and C. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev.172(3), 788–798 (1968).
[CrossRef]

Phys. Rev. B

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80(20), 201401 (2009).
[CrossRef]

Phys. Rev. Lett.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008).
[CrossRef] [PubMed]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett.103(14), 147401 (2009).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009).
[CrossRef] [PubMed]

Science

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

Sens. Actuators B Chem.

H. Li, X. Luo, C. Du, X. Chen, and Y. Fu, “Ag dots array fabricated using laser interference technique for biosensing,” Sens. Actuators B Chem.134(2), 940–944 (2008).
[CrossRef]

Other

N. Yamada, “Development of materials for third generation optical storage media,” in Phase Change Materials: Science and Applications, S. Raoux and M. Wuttig, eds. (Springer, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic diagram of the GST-Au hybrid plasmonic crystal (T = 40 nm, t = 20 nm, d = 280 nm, a = 1.2 µm). A GST phase-change thin film underneath an array of gold nanodisks is used for controlling the resonant frequencies. (b) Simulated transmission spectra of plasmonic crystals with the GST layer in amorphous and crystalline phases, and a plasmonic crystal without underneath GST. The three spectra are denoted in blue, red and black colors, respectively. Configurations of plasmonic crystals with the underneath GST layer and without the GST layer are illustrated in (c) and (d).

Fig. 2
Fig. 2

(a) Schematic diagrams of the fabrication procedure. Laser interference lithography with etch-down process was used to fabricate the samples. (b) The SEM image of the fabricated gold nanodisk array before the deposition of the capping layer.

Fig. 3
Fig. 3

(a) Experimental results of continuously tuning of the hybrid plasmonic crystals measured at different baking time during the crystallization process. (b) Simulation results of the hybrid plasmonic crystals with GST layer at the corresponding crystallization fraction to match the resonance shifts in the experiment. Dashed curves show the extinction cross-sections of a single unit cell at amorphous state (top) and 86% crystallized state (bottom). Experimental and simulation results are in good agreement, illustrating the evolution of the lattice resonance through intermediate states. (c) The optical constants of amorphous GST (na, ka) and crystalline GST (nc, kc) [20]. Based on the resonance shifts in the transmission spectra, the relation between the crystallization fraction and crystallization time (d) is obtained.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε eff (λ)1 ε eff (λ)+2 =m× ε c (λ)1 ε c (λ)+2 +(1m)× ε a (λ)1 ε a (λ)+2 ,

Metrics