Abstract

The effect of intra-cavity phase anisotropy on polarization flipping induced by optical feedback is experimentally and theoretically investigated. In experiments, we place a polarizer in feedback cavity to induce polarization flipping. The polarization flipping doesn’t occur when the angle between polarizer axis and laser polarization approaches 45°. It is found that the larger the phase anisotropy is, the more easily the polarization flipping happens. As the intra-cavity phase anisotropy is increased, polarization flipping always occurs when the angle between polarizer axis and laser polarization is changed from 0° to 90°. This indicates that the phase anisotropy of the laser cavity contributes to the polarization flipping. It is necessary to keep certain phase anisotropy for the lasers used for polarization control.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface emitting lasers,” Appl. Phys. Lett.84(15), 2763–2765 (2004).
    [CrossRef]
  2. B. M. Holmes, M. A. Naeem, D. C. Hutchings, J. H. Marsh, and A. E. Kelly, “A semiconductor laser with monolithically integrated dynamic polarization control,” Opt. Express20(18), 20545–20550 (2012).
    [CrossRef] [PubMed]
  3. T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Polarization control of vertical-cavity surface emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed Bragg reflector,” IEEE J. Sel. Top. Quant.1(2), 667–673 (1995).
    [CrossRef]
  4. K. Panajotov, B. Ryvkin, J. Danckaert, M. Peeters, H. Thienpont, and I. Veretennicoff, “Polarization switching in VCSEL's due to thermal lensing,” IEEE Photon. Technol. Lett.10(1), 6–8 (1998).
    [CrossRef]
  5. K. D. Choquette and R. E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries,” IEEE Photon. Technol. Lett.6(1), 40–42 (1994).
    [CrossRef]
  6. G. Stephan and D. Hugon, “Light polarization of a quasi-isotropic laser with optical feedback,” Phys. Rev. Lett.55(7), 703–706 (1985).
    [CrossRef] [PubMed]
  7. P. Paddon, E. Sjerve, A. D. May, M. Bourouis, and G. Stephan, “Polarization modes in a quasi-isotropic laser: a general anisotropy model with applications,” J. Opt. Soc. Am. B9(4), 574–589 (1992).
    [CrossRef]
  8. P. Besnard, X. L. Jia, R. Dalgliesh, A. D. May, and G. Stéphan, “Polarization switching in a microchip Nd:YAG laser using polarized feedback,” J. Opt. Soc. Am. B10(9), 1605–1609 (1993).
    [CrossRef]
  9. M. Sciamanna, K. Panajotov, H. Thienpont, I. Veretennicoff, P. Mégret, and M. Blondel, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Opt. Lett.28(17), 1543–1545 (2003).
    [CrossRef] [PubMed]
  10. W. Liu, W. Holzapfel, J. Zhu, and S. Zhang, “Differential variation of laser longitudinal mode spacing induced by small intra-cavity phase anisotropies,” Opt. Commun.282(8), 1602–1606 (2009).
    [CrossRef]
  11. S. Zhang and T. Xu, “Orthogonally linear polarized lasers (I)—principle and devices,” Prog. Nat. Sci.15(7), 586–595 (2005).
    [CrossRef]
  12. G. A. Acket, D. Lenstra, A. D. Boef, and B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. QE.20(10), 1163–1169 (1984).
    [CrossRef]
  13. R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol.4(11), 1655–1661 (1986).
    [CrossRef]
  14. W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol.12(9), 1577–1587 (1994).
    [CrossRef]

2012 (1)

2009 (1)

W. Liu, W. Holzapfel, J. Zhu, and S. Zhang, “Differential variation of laser longitudinal mode spacing induced by small intra-cavity phase anisotropies,” Opt. Commun.282(8), 1602–1606 (2009).
[CrossRef]

2005 (1)

S. Zhang and T. Xu, “Orthogonally linear polarized lasers (I)—principle and devices,” Prog. Nat. Sci.15(7), 586–595 (2005).
[CrossRef]

2004 (1)

K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface emitting lasers,” Appl. Phys. Lett.84(15), 2763–2765 (2004).
[CrossRef]

2003 (1)

1998 (1)

K. Panajotov, B. Ryvkin, J. Danckaert, M. Peeters, H. Thienpont, and I. Veretennicoff, “Polarization switching in VCSEL's due to thermal lensing,” IEEE Photon. Technol. Lett.10(1), 6–8 (1998).
[CrossRef]

1995 (1)

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Polarization control of vertical-cavity surface emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed Bragg reflector,” IEEE J. Sel. Top. Quant.1(2), 667–673 (1995).
[CrossRef]

1994 (2)

K. D. Choquette and R. E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries,” IEEE Photon. Technol. Lett.6(1), 40–42 (1994).
[CrossRef]

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol.12(9), 1577–1587 (1994).
[CrossRef]

1993 (1)

1992 (1)

1986 (1)

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol.4(11), 1655–1661 (1986).
[CrossRef]

1985 (1)

G. Stephan and D. Hugon, “Light polarization of a quasi-isotropic laser with optical feedback,” Phys. Rev. Lett.55(7), 703–706 (1985).
[CrossRef] [PubMed]

1984 (1)

G. A. Acket, D. Lenstra, A. D. Boef, and B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. QE.20(10), 1163–1169 (1984).
[CrossRef]

Acket, G. A.

G. A. Acket, D. Lenstra, A. D. Boef, and B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. QE.20(10), 1163–1169 (1984).
[CrossRef]

Arizaleta, M.

K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface emitting lasers,” Appl. Phys. Lett.84(15), 2763–2765 (2004).
[CrossRef]

Besnard, P.

Blondel, M.

Boef, A. D.

G. A. Acket, D. Lenstra, A. D. Boef, and B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. QE.20(10), 1163–1169 (1984).
[CrossRef]

Bourouis, M.

Boyle, W. J. O.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol.12(9), 1577–1587 (1994).
[CrossRef]

Camarena, M.

K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface emitting lasers,” Appl. Phys. Lett.84(15), 2763–2765 (2004).
[CrossRef]

Choquette, K. D.

K. D. Choquette and R. E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries,” IEEE Photon. Technol. Lett.6(1), 40–42 (1994).
[CrossRef]

Chraplyvy, A. R.

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol.4(11), 1655–1661 (1986).
[CrossRef]

Dalgliesh, R.

Danckaert, J.

K. Panajotov, B. Ryvkin, J. Danckaert, M. Peeters, H. Thienpont, and I. Veretennicoff, “Polarization switching in VCSEL's due to thermal lensing,” IEEE Photon. Technol. Lett.10(1), 6–8 (1998).
[CrossRef]

Grattan, K. T. V.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol.12(9), 1577–1587 (1994).
[CrossRef]

Hatori, N.

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Polarization control of vertical-cavity surface emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed Bragg reflector,” IEEE J. Sel. Top. Quant.1(2), 667–673 (1995).
[CrossRef]

Hayashi, Y.

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Polarization control of vertical-cavity surface emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed Bragg reflector,” IEEE J. Sel. Top. Quant.1(2), 667–673 (1995).
[CrossRef]

Holmes, B. M.

Holzapfel, W.

W. Liu, W. Holzapfel, J. Zhu, and S. Zhang, “Differential variation of laser longitudinal mode spacing induced by small intra-cavity phase anisotropies,” Opt. Commun.282(8), 1602–1606 (2009).
[CrossRef]

Hugon, D.

G. Stephan and D. Hugon, “Light polarization of a quasi-isotropic laser with optical feedback,” Phys. Rev. Lett.55(7), 703–706 (1985).
[CrossRef] [PubMed]

Hutchings, D. C.

Iga, K.

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Polarization control of vertical-cavity surface emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed Bragg reflector,” IEEE J. Sel. Top. Quant.1(2), 667–673 (1995).
[CrossRef]

Jia, X. L.

Kelly, A. E.

Koyama, F.

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Polarization control of vertical-cavity surface emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed Bragg reflector,” IEEE J. Sel. Top. Quant.1(2), 667–673 (1995).
[CrossRef]

Leibenguth, R. E.

K. D. Choquette and R. E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries,” IEEE Photon. Technol. Lett.6(1), 40–42 (1994).
[CrossRef]

Lenstra, D.

G. A. Acket, D. Lenstra, A. D. Boef, and B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. QE.20(10), 1163–1169 (1984).
[CrossRef]

Liu, W.

W. Liu, W. Holzapfel, J. Zhu, and S. Zhang, “Differential variation of laser longitudinal mode spacing induced by small intra-cavity phase anisotropies,” Opt. Commun.282(8), 1602–1606 (2009).
[CrossRef]

Marsh, J. H.

May, A. D.

Mégret, P.

Michalzik, R.

K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface emitting lasers,” Appl. Phys. Lett.84(15), 2763–2765 (2004).
[CrossRef]

Mukaihara, T.

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Polarization control of vertical-cavity surface emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed Bragg reflector,” IEEE J. Sel. Top. Quant.1(2), 667–673 (1995).
[CrossRef]

Naeem, M. A.

Ohnoki, N.

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Polarization control of vertical-cavity surface emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed Bragg reflector,” IEEE J. Sel. Top. Quant.1(2), 667–673 (1995).
[CrossRef]

Ostermann, J. M.

K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface emitting lasers,” Appl. Phys. Lett.84(15), 2763–2765 (2004).
[CrossRef]

Paddon, P.

Palmer, A. W.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol.12(9), 1577–1587 (1994).
[CrossRef]

Panajotov, K.

K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface emitting lasers,” Appl. Phys. Lett.84(15), 2763–2765 (2004).
[CrossRef]

M. Sciamanna, K. Panajotov, H. Thienpont, I. Veretennicoff, P. Mégret, and M. Blondel, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Opt. Lett.28(17), 1543–1545 (2003).
[CrossRef] [PubMed]

K. Panajotov, B. Ryvkin, J. Danckaert, M. Peeters, H. Thienpont, and I. Veretennicoff, “Polarization switching in VCSEL's due to thermal lensing,” IEEE Photon. Technol. Lett.10(1), 6–8 (1998).
[CrossRef]

Peeters, M.

K. Panajotov, B. Ryvkin, J. Danckaert, M. Peeters, H. Thienpont, and I. Veretennicoff, “Polarization switching in VCSEL's due to thermal lensing,” IEEE Photon. Technol. Lett.10(1), 6–8 (1998).
[CrossRef]

Ryvkin, B.

K. Panajotov, B. Ryvkin, J. Danckaert, M. Peeters, H. Thienpont, and I. Veretennicoff, “Polarization switching in VCSEL's due to thermal lensing,” IEEE Photon. Technol. Lett.10(1), 6–8 (1998).
[CrossRef]

Sciamanna, M.

Sjerve, E.

Stephan, G.

Stéphan, G.

Thienpont, H.

K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface emitting lasers,” Appl. Phys. Lett.84(15), 2763–2765 (2004).
[CrossRef]

M. Sciamanna, K. Panajotov, H. Thienpont, I. Veretennicoff, P. Mégret, and M. Blondel, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Opt. Lett.28(17), 1543–1545 (2003).
[CrossRef] [PubMed]

K. Panajotov, B. Ryvkin, J. Danckaert, M. Peeters, H. Thienpont, and I. Veretennicoff, “Polarization switching in VCSEL's due to thermal lensing,” IEEE Photon. Technol. Lett.10(1), 6–8 (1998).
[CrossRef]

Tkach, R. W.

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol.4(11), 1655–1661 (1986).
[CrossRef]

Unold, H. J.

K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface emitting lasers,” Appl. Phys. Lett.84(15), 2763–2765 (2004).
[CrossRef]

Verbeek, B. H.

G. A. Acket, D. Lenstra, A. D. Boef, and B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. QE.20(10), 1163–1169 (1984).
[CrossRef]

Veretennicoff, I.

M. Sciamanna, K. Panajotov, H. Thienpont, I. Veretennicoff, P. Mégret, and M. Blondel, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Opt. Lett.28(17), 1543–1545 (2003).
[CrossRef] [PubMed]

K. Panajotov, B. Ryvkin, J. Danckaert, M. Peeters, H. Thienpont, and I. Veretennicoff, “Polarization switching in VCSEL's due to thermal lensing,” IEEE Photon. Technol. Lett.10(1), 6–8 (1998).
[CrossRef]

Wang, W. M.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol.12(9), 1577–1587 (1994).
[CrossRef]

Xu, T.

S. Zhang and T. Xu, “Orthogonally linear polarized lasers (I)—principle and devices,” Prog. Nat. Sci.15(7), 586–595 (2005).
[CrossRef]

Zhang, S.

W. Liu, W. Holzapfel, J. Zhu, and S. Zhang, “Differential variation of laser longitudinal mode spacing induced by small intra-cavity phase anisotropies,” Opt. Commun.282(8), 1602–1606 (2009).
[CrossRef]

S. Zhang and T. Xu, “Orthogonally linear polarized lasers (I)—principle and devices,” Prog. Nat. Sci.15(7), 586–595 (2005).
[CrossRef]

Zhu, J.

W. Liu, W. Holzapfel, J. Zhu, and S. Zhang, “Differential variation of laser longitudinal mode spacing induced by small intra-cavity phase anisotropies,” Opt. Commun.282(8), 1602–1606 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface emitting lasers,” Appl. Phys. Lett.84(15), 2763–2765 (2004).
[CrossRef]

IEEE J. QE. (1)

G. A. Acket, D. Lenstra, A. D. Boef, and B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. QE.20(10), 1163–1169 (1984).
[CrossRef]

IEEE J. Sel. Top. Quant. (1)

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Polarization control of vertical-cavity surface emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed Bragg reflector,” IEEE J. Sel. Top. Quant.1(2), 667–673 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. Panajotov, B. Ryvkin, J. Danckaert, M. Peeters, H. Thienpont, and I. Veretennicoff, “Polarization switching in VCSEL's due to thermal lensing,” IEEE Photon. Technol. Lett.10(1), 6–8 (1998).
[CrossRef]

K. D. Choquette and R. E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries,” IEEE Photon. Technol. Lett.6(1), 40–42 (1994).
[CrossRef]

J. Lightwave Technol. (2)

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol.4(11), 1655–1661 (1986).
[CrossRef]

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol.12(9), 1577–1587 (1994).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

W. Liu, W. Holzapfel, J. Zhu, and S. Zhang, “Differential variation of laser longitudinal mode spacing induced by small intra-cavity phase anisotropies,” Opt. Commun.282(8), 1602–1606 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

G. Stephan and D. Hugon, “Light polarization of a quasi-isotropic laser with optical feedback,” Phys. Rev. Lett.55(7), 703–706 (1985).
[CrossRef] [PubMed]

Prog. Nat. Sci. (1)

S. Zhang and T. Xu, “Orthogonally linear polarized lasers (I)—principle and devices,” Prog. Nat. Sci.15(7), 586–595 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a)The layout of experimental setup and original coordinates. PZT, piezoelectric transducer; M3, feedback mirror; AT, attenuator; P1, polarizer; M1, M2, cavity mirrors; R, resistance coil; BS1, BS2, beam splitter; W, Wollaston prism; D1, D2, photo detectors; P2, polarizer; APD, avalanche photodiode; SP, spectrometer, SI, scanning interferometer. (b) the schematic diagram of exerting a force on M1

Fig. 2
Fig. 2

The intensities of I and I at different θ value. Δν equals to 8.8 MHz. The arrows mark the zero voltage of intensity signal. The horizonal axes represent zero voltage of PZT voltage.

Fig. 3
Fig. 3

Experiment results at different θ value. Δν equals to 8.8 MHz.

Fig. 4
Fig. 4

(a) G changes along with θ. (b) G changes along with Δν at different θ value.

Fig. 5
Fig. 5

Experiment results with different Δν.

Fig. 6
Fig. 6

The intensities of I and I at different θ value. Δν equals to 58.1 MHz. The arrows mark the zero voltage of intensity signal. The horizonal axes represent zero voltage of PZT voltage.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δv= 16λvF / πDL f 0 ,
E // (t)= E //0 (t),
E // (t)= r 1 r 2 exp( i4π ν // L /c +2 g // L) E //0 (t) + T AT T 1 r 2 r 3 t 1 2 M // ×exp[ i4π ν // (L+l) /c +2 g // L] E //0 (t) ,
Δ g // =β M // cos( 4π ν // l /c ),
Δ g =β M cos( 4π ν l /c ),
G Δ =β[ M // cos(α+ 2πΔνl /c ) M cosα].

Metrics