Abstract

Compact multi-frequency lasers are realized by combining III-V based optical amplifiers with silicon waveguide optical demultiplexers using a heterogeneous integration process based on adhesive wafer bonding. Both devices using arrayed waveguide grating routers as well as devices using ring resonators as the demultiplexer showed lasing with threshold currents between 30 and 40 mA and output powers in the order of a few mW. Laser operation up to 60°C is demonstrated. The small bending radius allowable for the silicon waveguides results in a short cavity length, ensuring stable lasing in a single longitudinal mode, even with relaxed values for the intra-cavity filter bandwidths.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Monnard, C. R. Doerr, C. H. Joyner, M. Zirngibl, and L. W. Stulz, “Direct modulation of a multifrequency laser up to 16 x 622 Mb/s,” IEEE Photon. Technol. Lett.9(6), 815–817 (1997).
    [CrossRef]
  2. C. R. Doerr, C. H. Joyner, and L. W. Stulz, “40-wavelength rapidly digitally tunable laser,” IEEE Photon. Technol. Lett.11(11), 1348–1350 (1999).
    [CrossRef]
  3. K. Lawniczuk, I. G. Knight, P. J. Williams, M. J. Wale, R. Piramidowicz, P. Szczepanski, M. K. Smit, and X. J. M. Leijtens, “Multiwavelength photonic transmitters in a multi-project wafer run” in Proceedings Symposium IEEE Photonics Society Benelux, 2011, Ghent, Belgium (2011), 173–176.
  4. G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Top. Quantum Electron.17(6), 1521–1527 (2011).
    [CrossRef]
  5. S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express21(3), 3784–3792 (2013).
    [CrossRef] [PubMed]
  6. M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. Fedeli, G. H. Duan, and S. Member, “Low-threshold heterogeneously integrated InP / SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
    [CrossRef]
  7. W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
    [CrossRef]
  8. C. R. Doerr, M. Zirngibl, and C. H. Joyner, “Single longitudinal-mode stability via wave mixing in long-cavity semiconductor lasers,” IEEE Photon. Technol. Lett.7(9), 962–964 (1995).
    [CrossRef]
  9. C. Doerr, C. Joyner, M. Zirngibl, and L. W. Stulz, “Chirped waveguide grating router multifrequency laser with absolute wavelength control,” IEEE Photon. Technol. Lett.8(12), 1606–1608 (1996).
    [CrossRef]
  10. F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett.19(23), 1919–1921 (2007).
    [CrossRef]
  11. S. Keyvaninia, M. Muneeb, S. Stanković, P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express3(1), 35–46 (2013).
    [CrossRef]
  12. D. Derrickson, Fiber Optic Test and Measurement (Prentice Hall, 1998), pp. 185.

2013 (2)

2012 (1)

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. Fedeli, G. H. Duan, and S. Member, “Low-threshold heterogeneously integrated InP / SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

2011 (1)

G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Top. Quantum Electron.17(6), 1521–1527 (2011).
[CrossRef]

2010 (1)

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

2007 (1)

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett.19(23), 1919–1921 (2007).
[CrossRef]

1999 (1)

C. R. Doerr, C. H. Joyner, and L. W. Stulz, “40-wavelength rapidly digitally tunable laser,” IEEE Photon. Technol. Lett.11(11), 1348–1350 (1999).
[CrossRef]

1997 (1)

R. Monnard, C. R. Doerr, C. H. Joyner, M. Zirngibl, and L. W. Stulz, “Direct modulation of a multifrequency laser up to 16 x 622 Mb/s,” IEEE Photon. Technol. Lett.9(6), 815–817 (1997).
[CrossRef]

1996 (1)

C. Doerr, C. Joyner, M. Zirngibl, and L. W. Stulz, “Chirped waveguide grating router multifrequency laser with absolute wavelength control,” IEEE Photon. Technol. Lett.8(12), 1606–1608 (1996).
[CrossRef]

1995 (1)

C. R. Doerr, M. Zirngibl, and C. H. Joyner, “Single longitudinal-mode stability via wave mixing in long-cavity semiconductor lasers,” IEEE Photon. Technol. Lett.7(9), 962–964 (1995).
[CrossRef]

Baets, R.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett.19(23), 1919–1921 (2007).
[CrossRef]

Bogaerts, W.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett.19(23), 1919–1921 (2007).
[CrossRef]

Bordel, D.

Bowers, J. E.

G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Top. Quantum Electron.17(6), 1521–1527 (2011).
[CrossRef]

Brouckaert, J.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

Claes, T.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett.19(23), 1919–1921 (2007).
[CrossRef]

De Valicourt, G.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. Fedeli, G. H. Duan, and S. Member, “Low-threshold heterogeneously integrated InP / SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

De Vos, K.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

Doerr, C.

C. Doerr, C. Joyner, M. Zirngibl, and L. W. Stulz, “Chirped waveguide grating router multifrequency laser with absolute wavelength control,” IEEE Photon. Technol. Lett.8(12), 1606–1608 (1996).
[CrossRef]

Doerr, C. R.

C. R. Doerr, C. H. Joyner, and L. W. Stulz, “40-wavelength rapidly digitally tunable laser,” IEEE Photon. Technol. Lett.11(11), 1348–1350 (1999).
[CrossRef]

R. Monnard, C. R. Doerr, C. H. Joyner, M. Zirngibl, and L. W. Stulz, “Direct modulation of a multifrequency laser up to 16 x 622 Mb/s,” IEEE Photon. Technol. Lett.9(6), 815–817 (1997).
[CrossRef]

C. R. Doerr, M. Zirngibl, and C. H. Joyner, “Single longitudinal-mode stability via wave mixing in long-cavity semiconductor lasers,” IEEE Photon. Technol. Lett.7(9), 962–964 (1995).
[CrossRef]

Duan, G. H.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. Fedeli, G. H. Duan, and S. Member, “Low-threshold heterogeneously integrated InP / SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Duan, G.-H.

Dumon, P.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

Fedeli, J.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. Fedeli, G. H. Duan, and S. Member, “Low-threshold heterogeneously integrated InP / SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Fedeli, J.-M.

Garcia, J. M.

G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Top. Quantum Electron.17(6), 1521–1527 (2011).
[CrossRef]

Heck, M. J.

G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Top. Quantum Electron.17(6), 1521–1527 (2011).
[CrossRef]

Jany, C.

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express21(3), 3784–3792 (2013).
[CrossRef] [PubMed]

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. Fedeli, G. H. Duan, and S. Member, “Low-threshold heterogeneously integrated InP / SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Joyner, C.

C. Doerr, C. Joyner, M. Zirngibl, and L. W. Stulz, “Chirped waveguide grating router multifrequency laser with absolute wavelength control,” IEEE Photon. Technol. Lett.8(12), 1606–1608 (1996).
[CrossRef]

Joyner, C. H.

C. R. Doerr, C. H. Joyner, and L. W. Stulz, “40-wavelength rapidly digitally tunable laser,” IEEE Photon. Technol. Lett.11(11), 1348–1350 (1999).
[CrossRef]

R. Monnard, C. R. Doerr, C. H. Joyner, M. Zirngibl, and L. W. Stulz, “Direct modulation of a multifrequency laser up to 16 x 622 Mb/s,” IEEE Photon. Technol. Lett.9(6), 815–817 (1997).
[CrossRef]

C. R. Doerr, M. Zirngibl, and C. H. Joyner, “Single longitudinal-mode stability via wave mixing in long-cavity semiconductor lasers,” IEEE Photon. Technol. Lett.7(9), 962–964 (1995).
[CrossRef]

Keyvaninia, S.

Kurczveil, G.

G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Top. Quantum Electron.17(6), 1521–1527 (2011).
[CrossRef]

Lamponi, M.

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express21(3), 3784–3792 (2013).
[CrossRef] [PubMed]

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. Fedeli, G. H. Duan, and S. Member, “Low-threshold heterogeneously integrated InP / SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Le Liepvre, A.

Lelarge, F.

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express21(3), 3784–3792 (2013).
[CrossRef] [PubMed]

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. Fedeli, G. H. Duan, and S. Member, “Low-threshold heterogeneously integrated InP / SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Make, D.

Member, S.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. Fedeli, G. H. Duan, and S. Member, “Low-threshold heterogeneously integrated InP / SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Messaoudene, S.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. Fedeli, G. H. Duan, and S. Member, “Low-threshold heterogeneously integrated InP / SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Monnard, R.

R. Monnard, C. R. Doerr, C. H. Joyner, M. Zirngibl, and L. W. Stulz, “Direct modulation of a multifrequency laser up to 16 x 622 Mb/s,” IEEE Photon. Technol. Lett.9(6), 815–817 (1997).
[CrossRef]

Muneeb, M.

O'Faolain, L.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett.19(23), 1919–1921 (2007).
[CrossRef]

Peters, J. D.

G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Top. Quantum Electron.17(6), 1521–1527 (2011).
[CrossRef]

Poingt, F.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. Fedeli, G. H. Duan, and S. Member, “Low-threshold heterogeneously integrated InP / SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Roelkens, G.

Scheerlinck, S.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett.19(23), 1919–1921 (2007).
[CrossRef]

Schrauwen, J.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett.19(23), 1919–1921 (2007).
[CrossRef]

Selvaraja, S.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

Spencer, D.

G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Top. Quantum Electron.17(6), 1521–1527 (2011).
[CrossRef]

Stankovic, S.

Stulz, L. W.

C. R. Doerr, C. H. Joyner, and L. W. Stulz, “40-wavelength rapidly digitally tunable laser,” IEEE Photon. Technol. Lett.11(11), 1348–1350 (1999).
[CrossRef]

R. Monnard, C. R. Doerr, C. H. Joyner, M. Zirngibl, and L. W. Stulz, “Direct modulation of a multifrequency laser up to 16 x 622 Mb/s,” IEEE Photon. Technol. Lett.9(6), 815–817 (1997).
[CrossRef]

C. Doerr, C. Joyner, M. Zirngibl, and L. W. Stulz, “Chirped waveguide grating router multifrequency laser with absolute wavelength control,” IEEE Photon. Technol. Lett.8(12), 1606–1608 (1996).
[CrossRef]

Taillaert, D.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett.19(23), 1919–1921 (2007).
[CrossRef]

Van Laere, F.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett.19(23), 1919–1921 (2007).
[CrossRef]

Van Thourhout, D.

S. Keyvaninia, M. Muneeb, S. Stanković, P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express3(1), 35–46 (2013).
[CrossRef]

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express21(3), 3784–3792 (2013).
[CrossRef] [PubMed]

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. Fedeli, G. H. Duan, and S. Member, “Low-threshold heterogeneously integrated InP / SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett.19(23), 1919–1921 (2007).
[CrossRef]

Van Veldhoven, P. J.

Zirngibl, M.

R. Monnard, C. R. Doerr, C. H. Joyner, M. Zirngibl, and L. W. Stulz, “Direct modulation of a multifrequency laser up to 16 x 622 Mb/s,” IEEE Photon. Technol. Lett.9(6), 815–817 (1997).
[CrossRef]

C. Doerr, C. Joyner, M. Zirngibl, and L. W. Stulz, “Chirped waveguide grating router multifrequency laser with absolute wavelength control,” IEEE Photon. Technol. Lett.8(12), 1606–1608 (1996).
[CrossRef]

C. R. Doerr, M. Zirngibl, and C. H. Joyner, “Single longitudinal-mode stability via wave mixing in long-cavity semiconductor lasers,” IEEE Photon. Technol. Lett.7(9), 962–964 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Top. Quantum Electron.17(6), 1521–1527 (2011).
[CrossRef]

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

C. R. Doerr, M. Zirngibl, and C. H. Joyner, “Single longitudinal-mode stability via wave mixing in long-cavity semiconductor lasers,” IEEE Photon. Technol. Lett.7(9), 962–964 (1995).
[CrossRef]

C. Doerr, C. Joyner, M. Zirngibl, and L. W. Stulz, “Chirped waveguide grating router multifrequency laser with absolute wavelength control,” IEEE Photon. Technol. Lett.8(12), 1606–1608 (1996).
[CrossRef]

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett.19(23), 1919–1921 (2007).
[CrossRef]

R. Monnard, C. R. Doerr, C. H. Joyner, M. Zirngibl, and L. W. Stulz, “Direct modulation of a multifrequency laser up to 16 x 622 Mb/s,” IEEE Photon. Technol. Lett.9(6), 815–817 (1997).
[CrossRef]

C. R. Doerr, C. H. Joyner, and L. W. Stulz, “40-wavelength rapidly digitally tunable laser,” IEEE Photon. Technol. Lett.11(11), 1348–1350 (1999).
[CrossRef]

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. Fedeli, G. H. Duan, and S. Member, “Low-threshold heterogeneously integrated InP / SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Opt. Express (1)

Opt. Mater. Express (1)

Other (2)

D. Derrickson, Fiber Optic Test and Measurement (Prentice Hall, 1998), pp. 185.

K. Lawniczuk, I. G. Knight, P. J. Williams, M. J. Wale, R. Piramidowicz, P. Szczepanski, M. K. Smit, and X. J. M. Leijtens, “Multiwavelength photonic transmitters in a multi-project wafer run” in Proceedings Symposium IEEE Photonics Society Benelux, 2011, Ghent, Belgium (2011), 173–176.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

a) Schematic structure of a multi-frequency laser; b) Heterogeneous III-V/silicon MFL based on ring resonator demux; c) Heterogeneous III-V/silicon MFL based on AWG demux.

Fig. 2
Fig. 2

Microscope picture of fabricated devices: a) overview picture showing two 4-channel ring MFL and a 4-channel AWG MFL; b) 4-channel ring MFL; c) Detail of ring demultiplexer.

Fig. 3
Fig. 3

(a) Filter characteristic for ring resonator demultiplexer measured using a tunable laser and the SOA as detector. The curve is normalized to its maximum and contains the response of the ring resonator itself, the DBR-front mirror and a focusing grating coupler. (b) Filter characteristic of the AWG by measuring the ASE from the SOA’s filtered through the device. The black curve shows the response of the fiber-to-chip grating coupler. The blue and red curves show the response of two neighboring AWG-channels and the grating coupler.

Fig. 4
Fig. 4

a) LIV curves for the ring based demultiplexer. The output power refers to the amount of light coupled in the silicon waveguide b) Superimposed spectra for the 4 channels (resolution bandwidth 0.1 nm). The inset shows the spectra measured with a resolution bandwidth of 0.2 pm.

Fig. 5
Fig. 5

Output power as a function of current for different stage temperatures for the RMFL (a) and AMFL (b). Lasing up to temperatures of 60°C is obtained in both cases.

Fig. 6
Fig. 6

Linewidth measurement of the ring-resonator based multi-frequency laser

Fig. 7
Fig. 7

a) LIV curves for the ring based demultiplexer. The output power refers to the amount of light coupled in the silicon waveguide b) Superimposed spectra for the 4 channels (resolution bandwidth 0.1 nm). The inset shows the spectra measured with a resolution bandwidth of 0.2 pm.

Metrics