Abstract

The first supercontinuum (SC) absorption spectroscopy measurements showing the feasibility of quantitative temperature evaluation are presented to the best of the authors’ knowledge. Temperature and multi-species measurements were carried out at a detection rate of ∼2 MHz in a high-temperature flow cell within a temperature range from 450 K to 750 K at 0.22 MPa, representing conditions during the suction and compression stroke in an internal combustion (IC) engine. The broadband SC pulses were temporally dispersed into fast wavelength sweeps, covering the overtone absorption bands 2ν1, 2ν3, ν1 + ν3 of H2O and 3ν3 of CO2 in the near-infrared region from 1330 nm to 1500 nm. The temperature information is inferred from the peak ratio of a temperature sensitive (1362.42 nm) and insensitive (1418.91 nm) absorption feature in the ν1 + ν3 overtone bands of water. The experimental results are in very good agreement with theoretical intensity ratios calculated from absorption spectra based on HiTran data.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Walewski and S. T. Sanders, “High-resolution wavelength-agile laser source based on pulsed super-continua,” Appl. Phys. B79,415–418 (2004).
    [CrossRef]
  2. S. T. Sanders, D. W. Mattison, L. Ma, and R. K. Hanson, “Diode-laser sensors for pulse detonation engines” in 2nd Joint Meeting of the US Sections of the Combustion Institute, Oakland, CA, 2001, paper 2001–143.
  3. L. Ma, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, “Monitoring and control of a pulse detonation engine using a diode-laser fuel concentration and temperature sensor,” Proc. Combust. Inst.29,161–166 (2002).
    [CrossRef]
  4. R. Engelbrecht, “A compact NIR fiber-optic diode laser spectrometer for CO and CO2: Analysis of observed 2f wavelength modulation spectroscopy line shapes,” Spectrochim. Acta, Part A60,3291–3298 (2004).
    [CrossRef]
  5. S. Gersen, A. V. Mokhov, and H. B. Levinsky, “Extractive probe/TDLAS measurements of acetylene in atmospheric-pressure fuel-rich premixed methane/air flames,” Combust. Flame143,333–336 (2005).
    [CrossRef]
  6. X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B81,711–722 (2005).
    [CrossRef]
  7. D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: Sensor development and initial demonstration,” Proc. Combust. Inst.31,791–798 (2007).
    [CrossRef]
  8. O. Witzel, A. Klein, S. Wagner, C. Meffert, C. Schulz, and V. Ebert, “High-speed tunable diode laser absorption spectroscopy for sampling-free in-cylinder water vapor concentration measurements in an optical IC engine,” Appl. Phys. B109,521–532 (2012).
    [CrossRef]
  9. S. T. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B75,799–802 (2002).
    [CrossRef]
  10. A. R. Alfano, (ed.), The Supercontinuum Laser Source (Springer, 2006).
    [CrossRef]
  11. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21,1547–1549 (1996).
    [CrossRef] [PubMed]
  12. S. Roy and P. R. Chaudhuri, “Supercontinuum generation in visible to mid-infrared region in square-lattice photonic crystal fiber made from highly nonlinear glasses,” Opt. Commun.282,3448–3455 (2009).
    [CrossRef]
  13. F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, “Spectrally smooth supercontinuum from 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers,” Opt. Express14,4928–4934 (2006).
    [CrossRef] [PubMed]
  14. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett.31,2553–2555 (2006).
    [CrossRef] [PubMed]
  15. J. H. Kim, M.-K. Chen, C.-E. Yang, J. Lee, K. Shi, Z. Liu, S. Yin, K. Reichard, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Broadband supercontinuum generation covering UV to mid-IR region by using three pumping sources in single crystal sapphire fiber,” Opt. Express16,14792–14800 (2008).
    [CrossRef] [PubMed]
  16. J. Geng, Q. Wang, and S. Jiang, “High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier,” Appl. Opt.51,834–840 (2012).
    [CrossRef] [PubMed]
  17. J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express15,11385–11395 (2007).
    [CrossRef] [PubMed]
  18. C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B92,367–378 (2008).
    [CrossRef]
  19. Y. Sych, R. Engelbrecht, B. Schmauss, D. Kozlov, T. Seeger, and A. Leipertz, “Broadband time-domain absorption spectroscopy with a ns-pulse supercontinuum source,” Opt. Express18,22762–22771 (2010).
    [CrossRef] [PubMed]
  20. B. Schenkel, “Supercontinuum Generation and Compression,” Ph.D. Thesis, Swiss Federal Institute of Technology Zurich (2004).
  21. J. W. Walewski, J. A. Filipa, C. L. Hagen, and S. T. Sanders, “Standard single-mode fibers as convenient means for the generation of ultrafast high-pulse-energy super-continua,” Appl. Phys. B83,75–79 (2006).
    [CrossRef]
  22. R. S. Watt and J. Hult, “Development of a broadband supercontinuum source for high-speed combustion diagnostics,” in Proceedings of the European Combustion Meeting, Chania, Greece, (2007).
  23. R. S. Watt, C. F. Kaminski, and J. Hult, “Generation of supercontinuum radiation in conventional single-mode fibre and its application to broadband absorption spectroscopy,” Appl. Phys. B90,47–53 (2008).
    [CrossRef]
  24. R. S. Watt, C. F. Kaminski, and J. Hult, “High bandwidth H2O absorption spectroscopy in a flame using a dispersed supercontinuum source,” in Conference on Lasers and Electro-Optics, San Jose, CA, 2008, paper CMH4.
  25. J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express16,10178–10188 (2008).
    [CrossRef] [PubMed]
  26. M. Schnippering, P. R. Unwin, J. Hult, T. Laurila, C. F. Kaminski, J. M. Langridge, R. L. Jones, M. Mazurenka, and S. R. Mackenzie, “Evanescent wave broadband cavity enhanced absorption spectroscopy using supercontinuum radiation: A new probe of electrochemical processes,” Electrochem. commun.10,1827–1830 (2008).
    [CrossRef]
  27. C. F. Kaminski, J. Hult, and T. Laurila, “Supercontinuum radiation for optical sensing,” in Conference on Lasers and Electro-Optics, Baltimore, MD, 2010, paper CMJ1.
  28. T. Laurila, I. S. Burns, J. Hult, J. H. Miller, and C. F. Kaminski, “A calibration method for broad-bandwidth cavity enhanced absorption spectroscopy performed with supercontinuum radiation,” Appl. Phys. B102,271–278 (2011).
    [CrossRef]
  29. L. A. Kranendonk, A. W. Caswell, and S. T. Sanders, “Robust method for calculating temperature, pressure, and absorber mole fraction from broadband spectra,” Appl. Opt.46,4117–4124 (2007).
    [CrossRef] [PubMed]
  30. X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines,” Meas. Sci. Technol.16,2437–2445 (2005).
    [CrossRef]
  31. http://cfa-www.harvard.edu/HITRAN/
  32. L. Gruener-Nielsen, M. Wandel, P. Kristensen, C. Jorgensen, L. V. Jorgensen, B. Evold, B. Pálsdóttier, and D. Jakobson, “Dispersion-compensating fibers,” J. Lightwave Technol.23,3566–3579 (2005).
    [CrossRef]
  33. J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst.34,3645–3652 (2013).
    [CrossRef]
  34. R. R. Gamache and L. Rothmann, “Extension of HiTran database to non-LTE applications,” J. Quant. Spectrosc. Radiat. Transfer48,519–529 (1992).
    [CrossRef]
  35. J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review” J. Quant. Spectrosc. Radiat. Transfer17,233–236 (1977).
    [CrossRef]
  36. L. S. Rothmann, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HiTemp, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer111,2139–2150 (2010).
    [CrossRef]
  37. V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemom. Intell. Lab. Syst.76,121–133 (2005).
    [CrossRef]
  38. J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78,1135–1184 (2006).
    [CrossRef]

2013 (1)

J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst.34,3645–3652 (2013).
[CrossRef]

2012 (2)

O. Witzel, A. Klein, S. Wagner, C. Meffert, C. Schulz, and V. Ebert, “High-speed tunable diode laser absorption spectroscopy for sampling-free in-cylinder water vapor concentration measurements in an optical IC engine,” Appl. Phys. B109,521–532 (2012).
[CrossRef]

J. Geng, Q. Wang, and S. Jiang, “High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier,” Appl. Opt.51,834–840 (2012).
[CrossRef] [PubMed]

2011 (1)

T. Laurila, I. S. Burns, J. Hult, J. H. Miller, and C. F. Kaminski, “A calibration method for broad-bandwidth cavity enhanced absorption spectroscopy performed with supercontinuum radiation,” Appl. Phys. B102,271–278 (2011).
[CrossRef]

2010 (2)

L. S. Rothmann, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HiTemp, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer111,2139–2150 (2010).
[CrossRef]

Y. Sych, R. Engelbrecht, B. Schmauss, D. Kozlov, T. Seeger, and A. Leipertz, “Broadband time-domain absorption spectroscopy with a ns-pulse supercontinuum source,” Opt. Express18,22762–22771 (2010).
[CrossRef] [PubMed]

2009 (1)

S. Roy and P. R. Chaudhuri, “Supercontinuum generation in visible to mid-infrared region in square-lattice photonic crystal fiber made from highly nonlinear glasses,” Opt. Commun.282,3448–3455 (2009).
[CrossRef]

2008 (5)

J. H. Kim, M.-K. Chen, C.-E. Yang, J. Lee, K. Shi, Z. Liu, S. Yin, K. Reichard, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Broadband supercontinuum generation covering UV to mid-IR region by using three pumping sources in single crystal sapphire fiber,” Opt. Express16,14792–14800 (2008).
[CrossRef] [PubMed]

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B92,367–378 (2008).
[CrossRef]

R. S. Watt, C. F. Kaminski, and J. Hult, “Generation of supercontinuum radiation in conventional single-mode fibre and its application to broadband absorption spectroscopy,” Appl. Phys. B90,47–53 (2008).
[CrossRef]

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express16,10178–10188 (2008).
[CrossRef] [PubMed]

M. Schnippering, P. R. Unwin, J. Hult, T. Laurila, C. F. Kaminski, J. M. Langridge, R. L. Jones, M. Mazurenka, and S. R. Mackenzie, “Evanescent wave broadband cavity enhanced absorption spectroscopy using supercontinuum radiation: A new probe of electrochemical processes,” Electrochem. commun.10,1827–1830 (2008).
[CrossRef]

2007 (3)

L. A. Kranendonk, A. W. Caswell, and S. T. Sanders, “Robust method for calculating temperature, pressure, and absorber mole fraction from broadband spectra,” Appl. Opt.46,4117–4124 (2007).
[CrossRef] [PubMed]

J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express15,11385–11395 (2007).
[CrossRef] [PubMed]

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: Sensor development and initial demonstration,” Proc. Combust. Inst.31,791–798 (2007).
[CrossRef]

2006 (4)

2005 (5)

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemom. Intell. Lab. Syst.76,121–133 (2005).
[CrossRef]

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines,” Meas. Sci. Technol.16,2437–2445 (2005).
[CrossRef]

L. Gruener-Nielsen, M. Wandel, P. Kristensen, C. Jorgensen, L. V. Jorgensen, B. Evold, B. Pálsdóttier, and D. Jakobson, “Dispersion-compensating fibers,” J. Lightwave Technol.23,3566–3579 (2005).
[CrossRef]

S. Gersen, A. V. Mokhov, and H. B. Levinsky, “Extractive probe/TDLAS measurements of acetylene in atmospheric-pressure fuel-rich premixed methane/air flames,” Combust. Flame143,333–336 (2005).
[CrossRef]

X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B81,711–722 (2005).
[CrossRef]

2004 (2)

J. W. Walewski and S. T. Sanders, “High-resolution wavelength-agile laser source based on pulsed super-continua,” Appl. Phys. B79,415–418 (2004).
[CrossRef]

R. Engelbrecht, “A compact NIR fiber-optic diode laser spectrometer for CO and CO2: Analysis of observed 2f wavelength modulation spectroscopy line shapes,” Spectrochim. Acta, Part A60,3291–3298 (2004).
[CrossRef]

2002 (2)

S. T. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B75,799–802 (2002).
[CrossRef]

L. Ma, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, “Monitoring and control of a pulse detonation engine using a diode-laser fuel concentration and temperature sensor,” Proc. Combust. Inst.29,161–166 (2002).
[CrossRef]

1996 (1)

1992 (1)

R. R. Gamache and L. Rothmann, “Extension of HiTran database to non-LTE applications,” J. Quant. Spectrosc. Radiat. Transfer48,519–529 (1992).
[CrossRef]

1977 (1)

J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review” J. Quant. Spectrosc. Radiat. Transfer17,233–236 (1977).
[CrossRef]

Atkin, D. M.

Barber, R. J.

L. S. Rothmann, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HiTemp, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer111,2139–2150 (2010).
[CrossRef]

Birks, T. A.

Brantley, C.

Brie, D.

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemom. Intell. Lab. Syst.76,121–133 (2005).
[CrossRef]

Burns, I. S.

T. Laurila, I. S. Burns, J. Hult, J. H. Miller, and C. F. Kaminski, “A calibration method for broad-bandwidth cavity enhanced absorption spectroscopy performed with supercontinuum radiation,” Appl. Phys. B102,271–278 (2011).
[CrossRef]

Carteret, C.

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemom. Intell. Lab. Syst.76,121–133 (2005).
[CrossRef]

Caswell, A. W.

Chaudhuri, P. R.

S. Roy and P. R. Chaudhuri, “Supercontinuum generation in visible to mid-infrared region in square-lattice photonic crystal fiber made from highly nonlinear glasses,” Opt. Commun.282,3448–3455 (2009).
[CrossRef]

Chen, M.-K.

Coen, S.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78,1135–1184 (2006).
[CrossRef]

De Zilwa, S.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: Sensor development and initial demonstration,” Proc. Combust. Inst.31,791–798 (2007).
[CrossRef]

Dec, J. E.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: Sensor development and initial demonstration,” Proc. Combust. Inst.31,791–798 (2007).
[CrossRef]

Dothe, H.

L. S. Rothmann, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HiTemp, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer111,2139–2150 (2010).
[CrossRef]

Dudley, J.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78,1135–1184 (2006).
[CrossRef]

Ebert, V.

O. Witzel, A. Klein, S. Wagner, C. Meffert, C. Schulz, and V. Ebert, “High-speed tunable diode laser absorption spectroscopy for sampling-free in-cylinder water vapor concentration measurements in an optical IC engine,” Appl. Phys. B109,521–532 (2012).
[CrossRef]

Edwards, E.

Efimov, A.

Elder, A. D.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B92,367–378 (2008).
[CrossRef]

Engelbrecht, R.

Y. Sych, R. Engelbrecht, B. Schmauss, D. Kozlov, T. Seeger, and A. Leipertz, “Broadband time-domain absorption spectroscopy with a ns-pulse supercontinuum source,” Opt. Express18,22762–22771 (2010).
[CrossRef] [PubMed]

R. Engelbrecht, “A compact NIR fiber-optic diode laser spectrometer for CO and CO2: Analysis of observed 2f wavelength modulation spectroscopy line shapes,” Spectrochim. Acta, Part A60,3291–3298 (2004).
[CrossRef]

Evold, B.

Filipa, J. A.

J. W. Walewski, J. A. Filipa, C. L. Hagen, and S. T. Sanders, “Standard single-mode fibers as convenient means for the generation of ultrafast high-pulse-energy super-continua,” Appl. Phys. B83,75–79 (2006).
[CrossRef]

Frank, J. H.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B92,367–378 (2008).
[CrossRef]

Freeman, M. J.

Gamache, R. R.

L. S. Rothmann, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HiTemp, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer111,2139–2150 (2010).
[CrossRef]

R. R. Gamache and L. Rothmann, “Extension of HiTran database to non-LTE applications,” J. Quant. Spectrosc. Radiat. Transfer48,519–529 (1992).
[CrossRef]

Geng, J.

Genty, G.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78,1135–1184 (2006).
[CrossRef]

George, A. K.

Gersen, S.

S. Gersen, A. V. Mokhov, and H. B. Levinsky, “Extractive probe/TDLAS measurements of acetylene in atmospheric-pressure fuel-rich premixed methane/air flames,” Combust. Flame143,333–336 (2005).
[CrossRef]

Goldman, A.

L. S. Rothmann, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HiTemp, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer111,2139–2150 (2010).
[CrossRef]

Gordon, I. E.

L. S. Rothmann, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HiTemp, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer111,2139–2150 (2010).
[CrossRef]

Gruener-Nielsen, L.

Hagen, C. L.

J. W. Walewski, J. A. Filipa, C. L. Hagen, and S. T. Sanders, “Standard single-mode fibers as convenient means for the generation of ultrafast high-pulse-energy super-continua,” Appl. Phys. B83,75–79 (2006).
[CrossRef]

Hanson, R. K.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: Sensor development and initial demonstration,” Proc. Combust. Inst.31,791–798 (2007).
[CrossRef]

X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B81,711–722 (2005).
[CrossRef]

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines,” Meas. Sci. Technol.16,2437–2445 (2005).
[CrossRef]

L. Ma, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, “Monitoring and control of a pulse detonation engine using a diode-laser fuel concentration and temperature sensor,” Proc. Combust. Inst.29,161–166 (2002).
[CrossRef]

S. T. Sanders, D. W. Mattison, L. Ma, and R. K. Hanson, “Diode-laser sensors for pulse detonation engines” in 2nd Joint Meeting of the US Sections of the Combustion Institute, Oakland, CA, 2001, paper 2001–143.

Hult, J.

T. Laurila, I. S. Burns, J. Hult, J. H. Miller, and C. F. Kaminski, “A calibration method for broad-bandwidth cavity enhanced absorption spectroscopy performed with supercontinuum radiation,” Appl. Phys. B102,271–278 (2011).
[CrossRef]

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express16,10178–10188 (2008).
[CrossRef] [PubMed]

M. Schnippering, P. R. Unwin, J. Hult, T. Laurila, C. F. Kaminski, J. M. Langridge, R. L. Jones, M. Mazurenka, and S. R. Mackenzie, “Evanescent wave broadband cavity enhanced absorption spectroscopy using supercontinuum radiation: A new probe of electrochemical processes,” Electrochem. commun.10,1827–1830 (2008).
[CrossRef]

R. S. Watt, C. F. Kaminski, and J. Hult, “Generation of supercontinuum radiation in conventional single-mode fibre and its application to broadband absorption spectroscopy,” Appl. Phys. B90,47–53 (2008).
[CrossRef]

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B92,367–378 (2008).
[CrossRef]

J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express15,11385–11395 (2007).
[CrossRef] [PubMed]

R. S. Watt, C. F. Kaminski, and J. Hult, “High bandwidth H2O absorption spectroscopy in a flame using a dispersed supercontinuum source,” in Conference on Lasers and Electro-Optics, San Jose, CA, 2008, paper CMH4.

R. S. Watt and J. Hult, “Development of a broadband supercontinuum source for high-speed combustion diagnostics,” in Proceedings of the European Combustion Meeting, Chania, Greece, (2007).

C. F. Kaminski, J. Hult, and T. Laurila, “Supercontinuum radiation for optical sensing,” in Conference on Lasers and Electro-Optics, Baltimore, MD, 2010, paper CMJ1.

Humbert, B.

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemom. Intell. Lab. Syst.76,121–133 (2005).
[CrossRef]

Hwang, W.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: Sensor development and initial demonstration,” Proc. Combust. Inst.31,791–798 (2007).
[CrossRef]

Idier, J.

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemom. Intell. Lab. Syst.76,121–133 (2005).
[CrossRef]

Islam, M. N.

Jakobson, D.

Jeffries, J. B.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: Sensor development and initial demonstration,” Proc. Combust. Inst.31,791–798 (2007).
[CrossRef]

X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B81,711–722 (2005).
[CrossRef]

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines,” Meas. Sci. Technol.16,2437–2445 (2005).
[CrossRef]

L. Ma, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, “Monitoring and control of a pulse detonation engine using a diode-laser fuel concentration and temperature sensor,” Proc. Combust. Inst.29,161–166 (2002).
[CrossRef]

Jiang, S.

Joly, N. Y.

Jones, R. L.

M. Schnippering, P. R. Unwin, J. Hult, T. Laurila, C. F. Kaminski, J. M. Langridge, R. L. Jones, M. Mazurenka, and S. R. Mackenzie, “Evanescent wave broadband cavity enhanced absorption spectroscopy using supercontinuum radiation: A new probe of electrochemical processes,” Electrochem. commun.10,1827–1830 (2008).
[CrossRef]

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express16,10178–10188 (2008).
[CrossRef] [PubMed]

Jorgensen, C.

Jorgensen, L. V.

Kaminski, C. F.

T. Laurila, I. S. Burns, J. Hult, J. H. Miller, and C. F. Kaminski, “A calibration method for broad-bandwidth cavity enhanced absorption spectroscopy performed with supercontinuum radiation,” Appl. Phys. B102,271–278 (2011).
[CrossRef]

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express16,10178–10188 (2008).
[CrossRef] [PubMed]

M. Schnippering, P. R. Unwin, J. Hult, T. Laurila, C. F. Kaminski, J. M. Langridge, R. L. Jones, M. Mazurenka, and S. R. Mackenzie, “Evanescent wave broadband cavity enhanced absorption spectroscopy using supercontinuum radiation: A new probe of electrochemical processes,” Electrochem. commun.10,1827–1830 (2008).
[CrossRef]

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B92,367–378 (2008).
[CrossRef]

R. S. Watt, C. F. Kaminski, and J. Hult, “Generation of supercontinuum radiation in conventional single-mode fibre and its application to broadband absorption spectroscopy,” Appl. Phys. B90,47–53 (2008).
[CrossRef]

J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express15,11385–11395 (2007).
[CrossRef] [PubMed]

R. S. Watt, C. F. Kaminski, and J. Hult, “High bandwidth H2O absorption spectroscopy in a flame using a dispersed supercontinuum source,” in Conference on Lasers and Electro-Optics, San Jose, CA, 2008, paper CMH4.

C. F. Kaminski, J. Hult, and T. Laurila, “Supercontinuum radiation for optical sensing,” in Conference on Lasers and Electro-Optics, Baltimore, MD, 2010, paper CMJ1.

Kim, J. H.

Klein, A.

O. Witzel, A. Klein, S. Wagner, C. Meffert, C. Schulz, and V. Ebert, “High-speed tunable diode laser absorption spectroscopy for sampling-free in-cylinder water vapor concentration measurements in an optical IC engine,” Appl. Phys. B109,521–532 (2012).
[CrossRef]

Knight, J. C.

Kozlov, D.

Kranendonk, L. A.

Kristensen, P.

Kulkarni, O. P.

Kumar, M.

Kumar, V. V. R. K.

Langridge, J. M.

M. Schnippering, P. R. Unwin, J. Hult, T. Laurila, C. F. Kaminski, J. M. Langridge, R. L. Jones, M. Mazurenka, and S. R. Mackenzie, “Evanescent wave broadband cavity enhanced absorption spectroscopy using supercontinuum radiation: A new probe of electrochemical processes,” Electrochem. commun.10,1827–1830 (2008).
[CrossRef]

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express16,10178–10188 (2008).
[CrossRef] [PubMed]

Laurila, T.

T. Laurila, I. S. Burns, J. Hult, J. H. Miller, and C. F. Kaminski, “A calibration method for broad-bandwidth cavity enhanced absorption spectroscopy performed with supercontinuum radiation,” Appl. Phys. B102,271–278 (2011).
[CrossRef]

M. Schnippering, P. R. Unwin, J. Hult, T. Laurila, C. F. Kaminski, J. M. Langridge, R. L. Jones, M. Mazurenka, and S. R. Mackenzie, “Evanescent wave broadband cavity enhanced absorption spectroscopy using supercontinuum radiation: A new probe of electrochemical processes,” Electrochem. commun.10,1827–1830 (2008).
[CrossRef]

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express16,10178–10188 (2008).
[CrossRef] [PubMed]

C. F. Kaminski, J. Hult, and T. Laurila, “Supercontinuum radiation for optical sensing,” in Conference on Lasers and Electro-Optics, Baltimore, MD, 2010, paper CMJ1.

Lee, J.

Leipertz, A.

J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst.34,3645–3652 (2013).
[CrossRef]

Y. Sych, R. Engelbrecht, B. Schmauss, D. Kozlov, T. Seeger, and A. Leipertz, “Broadband time-domain absorption spectroscopy with a ns-pulse supercontinuum source,” Opt. Express18,22762–22771 (2010).
[CrossRef] [PubMed]

Levinsky, H. B.

S. Gersen, A. V. Mokhov, and H. B. Levinsky, “Extractive probe/TDLAS measurements of acetylene in atmospheric-pressure fuel-rich premixed methane/air flames,” Combust. Flame143,333–336 (2005).
[CrossRef]

Liu, X.

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines,” Meas. Sci. Technol.16,2437–2445 (2005).
[CrossRef]

Liu, Z.

Longbothum, R. L.

J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review” J. Quant. Spectrosc. Radiat. Transfer17,233–236 (1977).
[CrossRef]

Luo, C.

Ma, L.

L. Ma, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, “Monitoring and control of a pulse detonation engine using a diode-laser fuel concentration and temperature sensor,” Proc. Combust. Inst.29,161–166 (2002).
[CrossRef]

S. T. Sanders, D. W. Mattison, L. Ma, and R. K. Hanson, “Diode-laser sensors for pulse detonation engines” in 2nd Joint Meeting of the US Sections of the Combustion Institute, Oakland, CA, 2001, paper 2001–143.

Mackenzie, S. R.

M. Schnippering, P. R. Unwin, J. Hult, T. Laurila, C. F. Kaminski, J. M. Langridge, R. L. Jones, M. Mazurenka, and S. R. Mackenzie, “Evanescent wave broadband cavity enhanced absorption spectroscopy using supercontinuum radiation: A new probe of electrochemical processes,” Electrochem. commun.10,1827–1830 (2008).
[CrossRef]

Mattison, D. W.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: Sensor development and initial demonstration,” Proc. Combust. Inst.31,791–798 (2007).
[CrossRef]

S. T. Sanders, D. W. Mattison, L. Ma, and R. K. Hanson, “Diode-laser sensors for pulse detonation engines” in 2nd Joint Meeting of the US Sections of the Combustion Institute, Oakland, CA, 2001, paper 2001–143.

Mazé, G.

Mazet, V.

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemom. Intell. Lab. Syst.76,121–133 (2005).
[CrossRef]

Mazurenka, M.

M. Schnippering, P. R. Unwin, J. Hult, T. Laurila, C. F. Kaminski, J. M. Langridge, R. L. Jones, M. Mazurenka, and S. R. Mackenzie, “Evanescent wave broadband cavity enhanced absorption spectroscopy using supercontinuum radiation: A new probe of electrochemical processes,” Electrochem. commun.10,1827–1830 (2008).
[CrossRef]

Meffert, C.

O. Witzel, A. Klein, S. Wagner, C. Meffert, C. Schulz, and V. Ebert, “High-speed tunable diode laser absorption spectroscopy for sampling-free in-cylinder water vapor concentration measurements in an optical IC engine,” Appl. Phys. B109,521–532 (2012).
[CrossRef]

Miller, J. H.

T. Laurila, I. S. Burns, J. Hult, J. H. Miller, and C. F. Kaminski, “A calibration method for broad-bandwidth cavity enhanced absorption spectroscopy performed with supercontinuum radiation,” Appl. Phys. B102,271–278 (2011).
[CrossRef]

Mokhov, A. V.

S. Gersen, A. V. Mokhov, and H. B. Levinsky, “Extractive probe/TDLAS measurements of acetylene in atmospheric-pressure fuel-rich premixed methane/air flames,” Combust. Flame143,333–336 (2005).
[CrossRef]

Olivero, J. J.

J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review” J. Quant. Spectrosc. Radiat. Transfer17,233–236 (1977).
[CrossRef]

Omenetto, F. G.

Pálsdóttier, B.

Perevalov, V. I.

L. S. Rothmann, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HiTemp, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer111,2139–2150 (2010).
[CrossRef]

Poulain, M.

Reichard, K.

Ross, M.

Rothmann, L.

R. R. Gamache and L. Rothmann, “Extension of HiTran database to non-LTE applications,” J. Quant. Spectrosc. Radiat. Transfer48,519–529 (1992).
[CrossRef]

Rothmann, L. S.

L. S. Rothmann, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HiTemp, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer111,2139–2150 (2010).
[CrossRef]

Roy, S.

S. Roy and P. R. Chaudhuri, “Supercontinuum generation in visible to mid-infrared region in square-lattice photonic crystal fiber made from highly nonlinear glasses,” Opt. Commun.282,3448–3455 (2009).
[CrossRef]

Ruffin, P.

Russell, P. St. J.

Sanders, S. T.

L. A. Kranendonk, A. W. Caswell, and S. T. Sanders, “Robust method for calculating temperature, pressure, and absorber mole fraction from broadband spectra,” Appl. Opt.46,4117–4124 (2007).
[CrossRef] [PubMed]

J. W. Walewski, J. A. Filipa, C. L. Hagen, and S. T. Sanders, “Standard single-mode fibers as convenient means for the generation of ultrafast high-pulse-energy super-continua,” Appl. Phys. B83,75–79 (2006).
[CrossRef]

J. W. Walewski and S. T. Sanders, “High-resolution wavelength-agile laser source based on pulsed super-continua,” Appl. Phys. B79,415–418 (2004).
[CrossRef]

L. Ma, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, “Monitoring and control of a pulse detonation engine using a diode-laser fuel concentration and temperature sensor,” Proc. Combust. Inst.29,161–166 (2002).
[CrossRef]

S. T. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B75,799–802 (2002).
[CrossRef]

S. T. Sanders, D. W. Mattison, L. Ma, and R. K. Hanson, “Diode-laser sensors for pulse detonation engines” in 2nd Joint Meeting of the US Sections of the Combustion Institute, Oakland, CA, 2001, paper 2001–143.

Schenkel, B.

B. Schenkel, “Supercontinuum Generation and Compression,” Ph.D. Thesis, Swiss Federal Institute of Technology Zurich (2004).

Schmauss, B.

Schnippering, M.

M. Schnippering, P. R. Unwin, J. Hult, T. Laurila, C. F. Kaminski, J. M. Langridge, R. L. Jones, M. Mazurenka, and S. R. Mackenzie, “Evanescent wave broadband cavity enhanced absorption spectroscopy using supercontinuum radiation: A new probe of electrochemical processes,” Electrochem. commun.10,1827–1830 (2008).
[CrossRef]

Schulz, C.

O. Witzel, A. Klein, S. Wagner, C. Meffert, C. Schulz, and V. Ebert, “High-speed tunable diode laser absorption spectroscopy for sampling-free in-cylinder water vapor concentration measurements in an optical IC engine,” Appl. Phys. B109,521–532 (2012).
[CrossRef]

Seeger, T.

Shi, K.

Sjoberg, M.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: Sensor development and initial demonstration,” Proc. Combust. Inst.31,791–798 (2007).
[CrossRef]

Steeper, R. R.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: Sensor development and initial demonstration,” Proc. Combust. Inst.31,791–798 (2007).
[CrossRef]

Sych, Y.

Tashkun, S. A.

L. S. Rothmann, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HiTemp, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer111,2139–2150 (2010).
[CrossRef]

Taylor, A. J.

Tennyson, J.

L. S. Rothmann, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HiTemp, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer111,2139–2150 (2010).
[CrossRef]

Terry, F. L.

Trost, J.

J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst.34,3645–3652 (2013).
[CrossRef]

Unwin, P. R.

M. Schnippering, P. R. Unwin, J. Hult, T. Laurila, C. F. Kaminski, J. M. Langridge, R. L. Jones, M. Mazurenka, and S. R. Mackenzie, “Evanescent wave broadband cavity enhanced absorption spectroscopy using supercontinuum radiation: A new probe of electrochemical processes,” Electrochem. commun.10,1827–1830 (2008).
[CrossRef]

Wagner, S.

O. Witzel, A. Klein, S. Wagner, C. Meffert, C. Schulz, and V. Ebert, “High-speed tunable diode laser absorption spectroscopy for sampling-free in-cylinder water vapor concentration measurements in an optical IC engine,” Appl. Phys. B109,521–532 (2012).
[CrossRef]

Walewski, J. W.

J. W. Walewski, J. A. Filipa, C. L. Hagen, and S. T. Sanders, “Standard single-mode fibers as convenient means for the generation of ultrafast high-pulse-energy super-continua,” Appl. Phys. B83,75–79 (2006).
[CrossRef]

J. W. Walewski and S. T. Sanders, “High-resolution wavelength-agile laser source based on pulsed super-continua,” Appl. Phys. B79,415–418 (2004).
[CrossRef]

Wandel, M.

Wang, Q.

Watt, R. S.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B92,367–378 (2008).
[CrossRef]

R. S. Watt, C. F. Kaminski, and J. Hult, “Generation of supercontinuum radiation in conventional single-mode fibre and its application to broadband absorption spectroscopy,” Appl. Phys. B90,47–53 (2008).
[CrossRef]

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express16,10178–10188 (2008).
[CrossRef] [PubMed]

J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express15,11385–11395 (2007).
[CrossRef] [PubMed]

R. S. Watt, C. F. Kaminski, and J. Hult, “High bandwidth H2O absorption spectroscopy in a flame using a dispersed supercontinuum source,” in Conference on Lasers and Electro-Optics, San Jose, CA, 2008, paper CMH4.

R. S. Watt and J. Hult, “Development of a broadband supercontinuum source for high-speed combustion diagnostics,” in Proceedings of the European Combustion Meeting, Chania, Greece, (2007).

Wehner, M. R.

Witzel, O.

O. Witzel, A. Klein, S. Wagner, C. Meffert, C. Schulz, and V. Ebert, “High-speed tunable diode laser absorption spectroscopy for sampling-free in-cylinder water vapor concentration measurements in an optical IC engine,” Appl. Phys. B109,521–532 (2012).
[CrossRef]

Wolchover, N. A.

Xia, C.

Yang, C.-E.

Yin, S.

Zhou, X.

X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B81,711–722 (2005).
[CrossRef]

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines,” Meas. Sci. Technol.16,2437–2445 (2005).
[CrossRef]

Zigan, L.

J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst.34,3645–3652 (2013).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (8)

T. Laurila, I. S. Burns, J. Hult, J. H. Miller, and C. F. Kaminski, “A calibration method for broad-bandwidth cavity enhanced absorption spectroscopy performed with supercontinuum radiation,” Appl. Phys. B102,271–278 (2011).
[CrossRef]

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B92,367–378 (2008).
[CrossRef]

J. W. Walewski and S. T. Sanders, “High-resolution wavelength-agile laser source based on pulsed super-continua,” Appl. Phys. B79,415–418 (2004).
[CrossRef]

X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B81,711–722 (2005).
[CrossRef]

O. Witzel, A. Klein, S. Wagner, C. Meffert, C. Schulz, and V. Ebert, “High-speed tunable diode laser absorption spectroscopy for sampling-free in-cylinder water vapor concentration measurements in an optical IC engine,” Appl. Phys. B109,521–532 (2012).
[CrossRef]

S. T. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B75,799–802 (2002).
[CrossRef]

J. W. Walewski, J. A. Filipa, C. L. Hagen, and S. T. Sanders, “Standard single-mode fibers as convenient means for the generation of ultrafast high-pulse-energy super-continua,” Appl. Phys. B83,75–79 (2006).
[CrossRef]

R. S. Watt, C. F. Kaminski, and J. Hult, “Generation of supercontinuum radiation in conventional single-mode fibre and its application to broadband absorption spectroscopy,” Appl. Phys. B90,47–53 (2008).
[CrossRef]

Chemom. Intell. Lab. Syst. (1)

V. Mazet, C. Carteret, D. Brie, J. Idier, and B. Humbert, “Background removal from spectra by designing and minimising a non-quadratic cost function,” Chemom. Intell. Lab. Syst.76,121–133 (2005).
[CrossRef]

Combust. Flame (1)

S. Gersen, A. V. Mokhov, and H. B. Levinsky, “Extractive probe/TDLAS measurements of acetylene in atmospheric-pressure fuel-rich premixed methane/air flames,” Combust. Flame143,333–336 (2005).
[CrossRef]

Electrochem. commun. (1)

M. Schnippering, P. R. Unwin, J. Hult, T. Laurila, C. F. Kaminski, J. M. Langridge, R. L. Jones, M. Mazurenka, and S. R. Mackenzie, “Evanescent wave broadband cavity enhanced absorption spectroscopy using supercontinuum radiation: A new probe of electrochemical processes,” Electrochem. commun.10,1827–1830 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Quant. Spectrosc. Radiat. Transfer (3)

R. R. Gamache and L. Rothmann, “Extension of HiTran database to non-LTE applications,” J. Quant. Spectrosc. Radiat. Transfer48,519–529 (1992).
[CrossRef]

J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review” J. Quant. Spectrosc. Radiat. Transfer17,233–236 (1977).
[CrossRef]

L. S. Rothmann, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HiTemp, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer111,2139–2150 (2010).
[CrossRef]

Meas. Sci. Technol. (1)

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines,” Meas. Sci. Technol.16,2437–2445 (2005).
[CrossRef]

Opt. Commun. (1)

S. Roy and P. R. Chaudhuri, “Supercontinuum generation in visible to mid-infrared region in square-lattice photonic crystal fiber made from highly nonlinear glasses,” Opt. Commun.282,3448–3455 (2009).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Proc. Combust. Inst. (3)

J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst.34,3645–3652 (2013).
[CrossRef]

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: Sensor development and initial demonstration,” Proc. Combust. Inst.31,791–798 (2007).
[CrossRef]

L. Ma, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, “Monitoring and control of a pulse detonation engine using a diode-laser fuel concentration and temperature sensor,” Proc. Combust. Inst.29,161–166 (2002).
[CrossRef]

Rev. Mod. Phys. (1)

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78,1135–1184 (2006).
[CrossRef]

Spectrochim. Acta, Part A (1)

R. Engelbrecht, “A compact NIR fiber-optic diode laser spectrometer for CO and CO2: Analysis of observed 2f wavelength modulation spectroscopy line shapes,” Spectrochim. Acta, Part A60,3291–3298 (2004).
[CrossRef]

Other (7)

S. T. Sanders, D. W. Mattison, L. Ma, and R. K. Hanson, “Diode-laser sensors for pulse detonation engines” in 2nd Joint Meeting of the US Sections of the Combustion Institute, Oakland, CA, 2001, paper 2001–143.

A. R. Alfano, (ed.), The Supercontinuum Laser Source (Springer, 2006).
[CrossRef]

B. Schenkel, “Supercontinuum Generation and Compression,” Ph.D. Thesis, Swiss Federal Institute of Technology Zurich (2004).

R. S. Watt and J. Hult, “Development of a broadband supercontinuum source for high-speed combustion diagnostics,” in Proceedings of the European Combustion Meeting, Chania, Greece, (2007).

C. F. Kaminski, J. Hult, and T. Laurila, “Supercontinuum radiation for optical sensing,” in Conference on Lasers and Electro-Optics, Baltimore, MD, 2010, paper CMJ1.

R. S. Watt, C. F. Kaminski, and J. Hult, “High bandwidth H2O absorption spectroscopy in a flame using a dispersed supercontinuum source,” in Conference on Lasers and Electro-Optics, San Jose, CA, 2008, paper CMH4.

http://cfa-www.harvard.edu/HITRAN/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Supercontinuum absorption spectroscopy setup for temperature and multi-species measurements (PCF: photonic crystal fiber; DC: dichroic mirror; DCM: dispersion compensation module; AC: achromatic collimator; M: mirror; AL: achromatic lens; PD: photodiode; Osc: oscilloscope).

Fig. 2
Fig. 2

SC absorption spectra for a ns- and ps-pumped SC source.

Fig. 3
Fig. 3

Influence of the spectral resolution on the peak ratio and precision of the temperature evaluation. Extract of theoretical absorption spectra with different resolutions for a temperature of 443 K (left) and the relative standard deviations of 32 calculated peak ratios (1362.42 nm/1418.91 nm) as function of the spectral resolution (right).

Fig. 4
Fig. 4

Experimental (top) and theoretical (bottom) normalized absorption spectra for 633 K.

Fig. 5
Fig. 5

Extract (1360 nm to 1366 nm and 1416 nm to 1430 nm) of the experimental (top) and theoretical (bottom) normalized absorption spectra for 763 K (left) and 443 K (right).

Fig. 6
Fig. 6

Experimental data points and theoretical curve obtained from the peak ratios at 1362.42 nm and 1418.91 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A = 1 T = 1 I ( ν , L ) I 0 ( ν ) = 1 e S ( T ) g ( ν ν 0 ) n L
S ( T ) = S ( T 0 ) Q T 0 Q T e h c E k B T e h c E k B T 0 1 e h c ν 0 k B T 1 e h c ν 0 k B T 0

Metrics