Abstract

We report the generation of squeezed vacuum states of light at 1550 nm with a broadband quantum noise reduction of up to 4.8 dB ranging from 5 MHz to 1.2 GHz sideband frequency. We used a custom-designed 2.6 mm long biconvex periodically-poled potassium titanyl phosphate (PPKTP) crystal. It featured reflectively coated end surfaces, 2.26 GHz of linewidth and generated the squeezing via optical parametric amplification. Two homodyne detectors with different quantum efficiencies and bandwidths were used to characterize the non-classical noise suppression. We measured squeezing values of up to 4.8 dB from 5 to 100 MHz and up to 3 dB from 100 MHz to 1.2 GHz. The squeezed vacuum measurements were limited by detection loss. We propose an improved detection scheme to measure up to 10 dB squeezing over 1 GHz. Our results of GHz bandwidth squeezed light generation provide new prospects for high-speed quantum key distribution.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. C. Ralph, “Continuous variable quantum cryptography,” Phys. Rev. A61, 010303 (1999).
    [CrossRef]
  2. L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Com.3, 1083 (2012).
    [CrossRef]
  3. M. Hillery, “Quantum cryptography with squeezed states,” Phys. Rev. A61, 022309 (2000).
    [CrossRef]
  4. C. Silberhorn, N. Korolkova, and G. Leuchs, “Quantum key distribution with bright entangled beams,” Phys. Rev. Lett.88, 167902 (2002).
    [CrossRef] [PubMed]
  5. N.J. Cerf, J. Clavareau, C. Macchiavello, and J. Roland, “Quantum entanglement enhances the capacity of bosonic channels with memory,” Phys. Rev. A72, 042330 (2005).
    [CrossRef]
  6. J. Lodewyck, M. Bloch, R. García-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
    [CrossRef]
  7. M. Mehmet, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Demonstration of a quantum-enhanced fiber Sagnac interferometer,” Opt. Lett.35, 1665 (2010).
    [CrossRef] [PubMed]
  8. T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Gaussian entanglement for quantum key distribution from a single-mode squeezing source,” arXiv:1110.3977v1.
  9. R. García-Patrón and N. J. Cerf, “Continuous-variable quantum key distribution protocols over noisy channels,” Phys. Rev. Lett.102, 130501 (2009).
    [CrossRef] [PubMed]
  10. R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett.55, 2409 (1985).
    [CrossRef] [PubMed]
  11. B. Yurke, “Use of cavities in squeezed-state generation,” Phys. Rev. A29, 408 (1984).
    [CrossRef]
  12. L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett.57, 2520 (1986).
    [CrossRef] [PubMed]
  13. M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Exp.19, 25763 (2011).
    [CrossRef]
  14. S. Ast, A. Samblowski, M. Mehmet, S. Steinlechner, T. Eberle, and R. Schnabel, “Continuous-wave nonclassical light with gigahertz squeezing bandwidth,” Opt. Lett.37, 2367 (2012).
    [CrossRef] [PubMed]
  15. M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, and R. Schnabel, “Observation of squeezed states with strong photon-number oscillations,” Phys. Rev. A81, 013814 (2010).
    [CrossRef]
  16. R. J. Senior, G. N. Milford, J. Janousek, A. E. Dunlop, K. Wagner, H-A. Bachor, T. C. Ralph, E. H. Huntington, and C. C. Harb, “Observation of a comb of optical squeezing over many gigahertz of bandwidth,” Opt. Exp.15, 5310 (2007).
    [CrossRef]
  17. J. Steinlechner, S. Ast, C. Krüger, A. P. Singh, T. Eberle, V. Händchen, and R. Schnabel, “Absorption measurements of periodically poled potassium titanyl phosphate (PPKTP) at 775 nm and 1550 nm,” Sensors13, 565–573, (2013).
    [CrossRef] [PubMed]
  18. K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett.93, 161105 (2004).
    [CrossRef] [PubMed]
  19. G. Breitenbach, T. Müller, S. F. Pereira, J.-Ph. Poizat, S. Schiller, and J. Mlynek, “Squeezed vacuum from a monolithic optical parametric oscillator,” J. Opt. Soc. Am. B12, 2304 (1995).
    [CrossRef]
  20. C. Rodò, O. Romero-Isart, K. Eckert, and A. Sanpera, “Efficiency in quantum key distribution protocols with entangled gaussian states,” Open Systs. Inf. Dyn.14, 69 (2007).
    [CrossRef]
  21. X. Su, W. Wang, Y. Wang, X. Jia, C. Xie, and K. Peng, “Continuous variable quantum key distribution based on optical entangled states without signal modulation,” EPL87, 20005 (2009).
    [CrossRef]
  22. F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett.109, 100502 (2012).
    [CrossRef] [PubMed]

2013

J. Steinlechner, S. Ast, C. Krüger, A. P. Singh, T. Eberle, V. Händchen, and R. Schnabel, “Absorption measurements of periodically poled potassium titanyl phosphate (PPKTP) at 775 nm and 1550 nm,” Sensors13, 565–573, (2013).
[CrossRef] [PubMed]

2012

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett.109, 100502 (2012).
[CrossRef] [PubMed]

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Com.3, 1083 (2012).
[CrossRef]

S. Ast, A. Samblowski, M. Mehmet, S. Steinlechner, T. Eberle, and R. Schnabel, “Continuous-wave nonclassical light with gigahertz squeezing bandwidth,” Opt. Lett.37, 2367 (2012).
[CrossRef] [PubMed]

2011

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Exp.19, 25763 (2011).
[CrossRef]

2010

M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, and R. Schnabel, “Observation of squeezed states with strong photon-number oscillations,” Phys. Rev. A81, 013814 (2010).
[CrossRef]

M. Mehmet, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Demonstration of a quantum-enhanced fiber Sagnac interferometer,” Opt. Lett.35, 1665 (2010).
[CrossRef] [PubMed]

2009

X. Su, W. Wang, Y. Wang, X. Jia, C. Xie, and K. Peng, “Continuous variable quantum key distribution based on optical entangled states without signal modulation,” EPL87, 20005 (2009).
[CrossRef]

R. García-Patrón and N. J. Cerf, “Continuous-variable quantum key distribution protocols over noisy channels,” Phys. Rev. Lett.102, 130501 (2009).
[CrossRef] [PubMed]

2007

J. Lodewyck, M. Bloch, R. García-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
[CrossRef]

R. J. Senior, G. N. Milford, J. Janousek, A. E. Dunlop, K. Wagner, H-A. Bachor, T. C. Ralph, E. H. Huntington, and C. C. Harb, “Observation of a comb of optical squeezing over many gigahertz of bandwidth,” Opt. Exp.15, 5310 (2007).
[CrossRef]

C. Rodò, O. Romero-Isart, K. Eckert, and A. Sanpera, “Efficiency in quantum key distribution protocols with entangled gaussian states,” Open Systs. Inf. Dyn.14, 69 (2007).
[CrossRef]

2005

N.J. Cerf, J. Clavareau, C. Macchiavello, and J. Roland, “Quantum entanglement enhances the capacity of bosonic channels with memory,” Phys. Rev. A72, 042330 (2005).
[CrossRef]

2004

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett.93, 161105 (2004).
[CrossRef] [PubMed]

2002

C. Silberhorn, N. Korolkova, and G. Leuchs, “Quantum key distribution with bright entangled beams,” Phys. Rev. Lett.88, 167902 (2002).
[CrossRef] [PubMed]

2000

M. Hillery, “Quantum cryptography with squeezed states,” Phys. Rev. A61, 022309 (2000).
[CrossRef]

1999

T. C. Ralph, “Continuous variable quantum cryptography,” Phys. Rev. A61, 010303 (1999).
[CrossRef]

1995

1986

L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett.57, 2520 (1986).
[CrossRef] [PubMed]

1985

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett.55, 2409 (1985).
[CrossRef] [PubMed]

1984

B. Yurke, “Use of cavities in squeezed-state generation,” Phys. Rev. A29, 408 (1984).
[CrossRef]

Andersen, U. L.

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Com.3, 1083 (2012).
[CrossRef]

Ast, S.

J. Steinlechner, S. Ast, C. Krüger, A. P. Singh, T. Eberle, V. Händchen, and R. Schnabel, “Absorption measurements of periodically poled potassium titanyl phosphate (PPKTP) at 775 nm and 1550 nm,” Sensors13, 565–573, (2013).
[CrossRef] [PubMed]

S. Ast, A. Samblowski, M. Mehmet, S. Steinlechner, T. Eberle, and R. Schnabel, “Continuous-wave nonclassical light with gigahertz squeezing bandwidth,” Opt. Lett.37, 2367 (2012).
[CrossRef] [PubMed]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Exp.19, 25763 (2011).
[CrossRef]

Bachor, H-A.

R. J. Senior, G. N. Milford, J. Janousek, A. E. Dunlop, K. Wagner, H-A. Bachor, T. C. Ralph, E. H. Huntington, and C. C. Harb, “Observation of a comb of optical squeezing over many gigahertz of bandwidth,” Opt. Exp.15, 5310 (2007).
[CrossRef]

Berta, M.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett.109, 100502 (2012).
[CrossRef] [PubMed]

Bloch, M.

J. Lodewyck, M. Bloch, R. García-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
[CrossRef]

Bowen, W. P.

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett.93, 161105 (2004).
[CrossRef] [PubMed]

Breitenbach, G.

Cerf, N. J.

R. García-Patrón and N. J. Cerf, “Continuous-variable quantum key distribution protocols over noisy channels,” Phys. Rev. Lett.102, 130501 (2009).
[CrossRef] [PubMed]

J. Lodewyck, M. Bloch, R. García-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
[CrossRef]

Cerf, N.J.

N.J. Cerf, J. Clavareau, C. Macchiavello, and J. Roland, “Quantum entanglement enhances the capacity of bosonic channels with memory,” Phys. Rev. A72, 042330 (2005).
[CrossRef]

Clavareau, J.

N.J. Cerf, J. Clavareau, C. Macchiavello, and J. Roland, “Quantum entanglement enhances the capacity of bosonic channels with memory,” Phys. Rev. A72, 042330 (2005).
[CrossRef]

Danzmann, K.

M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, and R. Schnabel, “Observation of squeezed states with strong photon-number oscillations,” Phys. Rev. A81, 013814 (2010).
[CrossRef]

Debuisschert, T.

J. Lodewyck, M. Bloch, R. García-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
[CrossRef]

Diamanti, E.

J. Lodewyck, M. Bloch, R. García-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
[CrossRef]

Duhme, J.

T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Gaussian entanglement for quantum key distribution from a single-mode squeezing source,” arXiv:1110.3977v1.

Dunlop, A. E.

R. J. Senior, G. N. Milford, J. Janousek, A. E. Dunlop, K. Wagner, H-A. Bachor, T. C. Ralph, E. H. Huntington, and C. C. Harb, “Observation of a comb of optical squeezing over many gigahertz of bandwidth,” Opt. Exp.15, 5310 (2007).
[CrossRef]

Eberle, T.

J. Steinlechner, S. Ast, C. Krüger, A. P. Singh, T. Eberle, V. Händchen, and R. Schnabel, “Absorption measurements of periodically poled potassium titanyl phosphate (PPKTP) at 775 nm and 1550 nm,” Sensors13, 565–573, (2013).
[CrossRef] [PubMed]

S. Ast, A. Samblowski, M. Mehmet, S. Steinlechner, T. Eberle, and R. Schnabel, “Continuous-wave nonclassical light with gigahertz squeezing bandwidth,” Opt. Lett.37, 2367 (2012).
[CrossRef] [PubMed]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Exp.19, 25763 (2011).
[CrossRef]

M. Mehmet, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Demonstration of a quantum-enhanced fiber Sagnac interferometer,” Opt. Lett.35, 1665 (2010).
[CrossRef] [PubMed]

T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Gaussian entanglement for quantum key distribution from a single-mode squeezing source,” arXiv:1110.3977v1.

Eckert, K.

C. Rodò, O. Romero-Isart, K. Eckert, and A. Sanpera, “Efficiency in quantum key distribution protocols with entangled gaussian states,” Open Systs. Inf. Dyn.14, 69 (2007).
[CrossRef]

Filip, R.

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Com.3, 1083 (2012).
[CrossRef]

Fossier, S.

J. Lodewyck, M. Bloch, R. García-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
[CrossRef]

Franz, T.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett.109, 100502 (2012).
[CrossRef] [PubMed]

T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Gaussian entanglement for quantum key distribution from a single-mode squeezing source,” arXiv:1110.3977v1.

Furrer, F.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett.109, 100502 (2012).
[CrossRef] [PubMed]

García-Patrón, R.

R. García-Patrón and N. J. Cerf, “Continuous-variable quantum key distribution protocols over noisy channels,” Phys. Rev. Lett.102, 130501 (2009).
[CrossRef] [PubMed]

J. Lodewyck, M. Bloch, R. García-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
[CrossRef]

Grangier, P.

J. Lodewyck, M. Bloch, R. García-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
[CrossRef]

Gray, M. B.

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett.93, 161105 (2004).
[CrossRef] [PubMed]

Grosse, N.

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett.93, 161105 (2004).
[CrossRef] [PubMed]

Hall, J. L.

L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett.57, 2520 (1986).
[CrossRef] [PubMed]

Händchen, V.

J. Steinlechner, S. Ast, C. Krüger, A. P. Singh, T. Eberle, V. Händchen, and R. Schnabel, “Absorption measurements of periodically poled potassium titanyl phosphate (PPKTP) at 775 nm and 1550 nm,” Sensors13, 565–573, (2013).
[CrossRef] [PubMed]

T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Gaussian entanglement for quantum key distribution from a single-mode squeezing source,” arXiv:1110.3977v1.

Harb, C. C.

R. J. Senior, G. N. Milford, J. Janousek, A. E. Dunlop, K. Wagner, H-A. Bachor, T. C. Ralph, E. H. Huntington, and C. C. Harb, “Observation of a comb of optical squeezing over many gigahertz of bandwidth,” Opt. Exp.15, 5310 (2007).
[CrossRef]

Hillery, M.

M. Hillery, “Quantum cryptography with squeezed states,” Phys. Rev. A61, 022309 (2000).
[CrossRef]

Hollberg, L. W.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett.55, 2409 (1985).
[CrossRef] [PubMed]

Huntington, E. H.

R. J. Senior, G. N. Milford, J. Janousek, A. E. Dunlop, K. Wagner, H-A. Bachor, T. C. Ralph, E. H. Huntington, and C. C. Harb, “Observation of a comb of optical squeezing over many gigahertz of bandwidth,” Opt. Exp.15, 5310 (2007).
[CrossRef]

Janousek, J.

R. J. Senior, G. N. Milford, J. Janousek, A. E. Dunlop, K. Wagner, H-A. Bachor, T. C. Ralph, E. H. Huntington, and C. C. Harb, “Observation of a comb of optical squeezing over many gigahertz of bandwidth,” Opt. Exp.15, 5310 (2007).
[CrossRef]

Jia, X.

X. Su, W. Wang, Y. Wang, X. Jia, C. Xie, and K. Peng, “Continuous variable quantum key distribution based on optical entangled states without signal modulation,” EPL87, 20005 (2009).
[CrossRef]

Karpov, E.

J. Lodewyck, M. Bloch, R. García-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
[CrossRef]

Kimble, H. J.

L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett.57, 2520 (1986).
[CrossRef] [PubMed]

Korolkova, N.

C. Silberhorn, N. Korolkova, and G. Leuchs, “Quantum key distribution with bright entangled beams,” Phys. Rev. Lett.88, 167902 (2002).
[CrossRef] [PubMed]

Krüger, C.

J. Steinlechner, S. Ast, C. Krüger, A. P. Singh, T. Eberle, V. Händchen, and R. Schnabel, “Absorption measurements of periodically poled potassium titanyl phosphate (PPKTP) at 775 nm and 1550 nm,” Sensors13, 565–573, (2013).
[CrossRef] [PubMed]

Lam, P. K.

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett.93, 161105 (2004).
[CrossRef] [PubMed]

Lassen, M.

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Com.3, 1083 (2012).
[CrossRef]

Lastzka, N.

M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, and R. Schnabel, “Observation of squeezed states with strong photon-number oscillations,” Phys. Rev. A81, 013814 (2010).
[CrossRef]

Leuchs, G.

C. Silberhorn, N. Korolkova, and G. Leuchs, “Quantum key distribution with bright entangled beams,” Phys. Rev. Lett.88, 167902 (2002).
[CrossRef] [PubMed]

Leverrier, A.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett.109, 100502 (2012).
[CrossRef] [PubMed]

Lodewyck, J.

J. Lodewyck, M. Bloch, R. García-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
[CrossRef]

Macchiavello, C.

N.J. Cerf, J. Clavareau, C. Macchiavello, and J. Roland, “Quantum entanglement enhances the capacity of bosonic channels with memory,” Phys. Rev. A72, 042330 (2005).
[CrossRef]

Madsen, L. S.

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Com.3, 1083 (2012).
[CrossRef]

McClelland, D. E.

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett.93, 161105 (2004).
[CrossRef] [PubMed]

McKenzie, K.

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett.93, 161105 (2004).
[CrossRef] [PubMed]

McLaughlin, S. W.

J. Lodewyck, M. Bloch, R. García-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
[CrossRef]

Mehmet, M.

S. Ast, A. Samblowski, M. Mehmet, S. Steinlechner, T. Eberle, and R. Schnabel, “Continuous-wave nonclassical light with gigahertz squeezing bandwidth,” Opt. Lett.37, 2367 (2012).
[CrossRef] [PubMed]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Exp.19, 25763 (2011).
[CrossRef]

M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, and R. Schnabel, “Observation of squeezed states with strong photon-number oscillations,” Phys. Rev. A81, 013814 (2010).
[CrossRef]

M. Mehmet, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Demonstration of a quantum-enhanced fiber Sagnac interferometer,” Opt. Lett.35, 1665 (2010).
[CrossRef] [PubMed]

Mertz, J. C.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett.55, 2409 (1985).
[CrossRef] [PubMed]

Milford, G. N.

R. J. Senior, G. N. Milford, J. Janousek, A. E. Dunlop, K. Wagner, H-A. Bachor, T. C. Ralph, E. H. Huntington, and C. C. Harb, “Observation of a comb of optical squeezing over many gigahertz of bandwidth,” Opt. Exp.15, 5310 (2007).
[CrossRef]

Mlynek, J.

Müller, T.

Peng, K.

X. Su, W. Wang, Y. Wang, X. Jia, C. Xie, and K. Peng, “Continuous variable quantum key distribution based on optical entangled states without signal modulation,” EPL87, 20005 (2009).
[CrossRef]

Pereira, S. F.

Poizat, J.-Ph.

Ralph, T. C.

R. J. Senior, G. N. Milford, J. Janousek, A. E. Dunlop, K. Wagner, H-A. Bachor, T. C. Ralph, E. H. Huntington, and C. C. Harb, “Observation of a comb of optical squeezing over many gigahertz of bandwidth,” Opt. Exp.15, 5310 (2007).
[CrossRef]

T. C. Ralph, “Continuous variable quantum cryptography,” Phys. Rev. A61, 010303 (1999).
[CrossRef]

Rodò, C.

C. Rodò, O. Romero-Isart, K. Eckert, and A. Sanpera, “Efficiency in quantum key distribution protocols with entangled gaussian states,” Open Systs. Inf. Dyn.14, 69 (2007).
[CrossRef]

Roland, J.

N.J. Cerf, J. Clavareau, C. Macchiavello, and J. Roland, “Quantum entanglement enhances the capacity of bosonic channels with memory,” Phys. Rev. A72, 042330 (2005).
[CrossRef]

Romero-Isart, O.

C. Rodò, O. Romero-Isart, K. Eckert, and A. Sanpera, “Efficiency in quantum key distribution protocols with entangled gaussian states,” Open Systs. Inf. Dyn.14, 69 (2007).
[CrossRef]

Samblowski, A.

Sanpera, A.

C. Rodò, O. Romero-Isart, K. Eckert, and A. Sanpera, “Efficiency in quantum key distribution protocols with entangled gaussian states,” Open Systs. Inf. Dyn.14, 69 (2007).
[CrossRef]

Schiller, S.

Schnabel, R.

J. Steinlechner, S. Ast, C. Krüger, A. P. Singh, T. Eberle, V. Händchen, and R. Schnabel, “Absorption measurements of periodically poled potassium titanyl phosphate (PPKTP) at 775 nm and 1550 nm,” Sensors13, 565–573, (2013).
[CrossRef] [PubMed]

S. Ast, A. Samblowski, M. Mehmet, S. Steinlechner, T. Eberle, and R. Schnabel, “Continuous-wave nonclassical light with gigahertz squeezing bandwidth,” Opt. Lett.37, 2367 (2012).
[CrossRef] [PubMed]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Exp.19, 25763 (2011).
[CrossRef]

M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, and R. Schnabel, “Observation of squeezed states with strong photon-number oscillations,” Phys. Rev. A81, 013814 (2010).
[CrossRef]

M. Mehmet, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Demonstration of a quantum-enhanced fiber Sagnac interferometer,” Opt. Lett.35, 1665 (2010).
[CrossRef] [PubMed]

T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Gaussian entanglement for quantum key distribution from a single-mode squeezing source,” arXiv:1110.3977v1.

Scholz, V. B.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett.109, 100502 (2012).
[CrossRef] [PubMed]

Senior, R. J.

R. J. Senior, G. N. Milford, J. Janousek, A. E. Dunlop, K. Wagner, H-A. Bachor, T. C. Ralph, E. H. Huntington, and C. C. Harb, “Observation of a comb of optical squeezing over many gigahertz of bandwidth,” Opt. Exp.15, 5310 (2007).
[CrossRef]

Silberhorn, C.

C. Silberhorn, N. Korolkova, and G. Leuchs, “Quantum key distribution with bright entangled beams,” Phys. Rev. Lett.88, 167902 (2002).
[CrossRef] [PubMed]

Singh, A. P.

J. Steinlechner, S. Ast, C. Krüger, A. P. Singh, T. Eberle, V. Händchen, and R. Schnabel, “Absorption measurements of periodically poled potassium titanyl phosphate (PPKTP) at 775 nm and 1550 nm,” Sensors13, 565–573, (2013).
[CrossRef] [PubMed]

Slusher, R. E.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett.55, 2409 (1985).
[CrossRef] [PubMed]

Steinlechner, J.

J. Steinlechner, S. Ast, C. Krüger, A. P. Singh, T. Eberle, V. Händchen, and R. Schnabel, “Absorption measurements of periodically poled potassium titanyl phosphate (PPKTP) at 775 nm and 1550 nm,” Sensors13, 565–573, (2013).
[CrossRef] [PubMed]

Steinlechner, S.

Su, X.

X. Su, W. Wang, Y. Wang, X. Jia, C. Xie, and K. Peng, “Continuous variable quantum key distribution based on optical entangled states without signal modulation,” EPL87, 20005 (2009).
[CrossRef]

Tomamichel, M.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett.109, 100502 (2012).
[CrossRef] [PubMed]

Tualle-Brouri, R.

J. Lodewyck, M. Bloch, R. García-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
[CrossRef]

Usenko, V. C.

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Com.3, 1083 (2012).
[CrossRef]

Vahlbruch, H.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Exp.19, 25763 (2011).
[CrossRef]

M. Mehmet, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Demonstration of a quantum-enhanced fiber Sagnac interferometer,” Opt. Lett.35, 1665 (2010).
[CrossRef] [PubMed]

M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, and R. Schnabel, “Observation of squeezed states with strong photon-number oscillations,” Phys. Rev. A81, 013814 (2010).
[CrossRef]

Valley, J. F.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett.55, 2409 (1985).
[CrossRef] [PubMed]

Wagner, K.

R. J. Senior, G. N. Milford, J. Janousek, A. E. Dunlop, K. Wagner, H-A. Bachor, T. C. Ralph, E. H. Huntington, and C. C. Harb, “Observation of a comb of optical squeezing over many gigahertz of bandwidth,” Opt. Exp.15, 5310 (2007).
[CrossRef]

Wang, W.

X. Su, W. Wang, Y. Wang, X. Jia, C. Xie, and K. Peng, “Continuous variable quantum key distribution based on optical entangled states without signal modulation,” EPL87, 20005 (2009).
[CrossRef]

Wang, Y.

X. Su, W. Wang, Y. Wang, X. Jia, C. Xie, and K. Peng, “Continuous variable quantum key distribution based on optical entangled states without signal modulation,” EPL87, 20005 (2009).
[CrossRef]

Werner, R. F.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett.109, 100502 (2012).
[CrossRef] [PubMed]

T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Gaussian entanglement for quantum key distribution from a single-mode squeezing source,” arXiv:1110.3977v1.

Whitcomb, S. E.

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett.93, 161105 (2004).
[CrossRef] [PubMed]

Wu, H.

L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett.57, 2520 (1986).
[CrossRef] [PubMed]

Wu, L.-A.

L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett.57, 2520 (1986).
[CrossRef] [PubMed]

Xie, C.

X. Su, W. Wang, Y. Wang, X. Jia, C. Xie, and K. Peng, “Continuous variable quantum key distribution based on optical entangled states without signal modulation,” EPL87, 20005 (2009).
[CrossRef]

Yurke, B.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett.55, 2409 (1985).
[CrossRef] [PubMed]

B. Yurke, “Use of cavities in squeezed-state generation,” Phys. Rev. A29, 408 (1984).
[CrossRef]

EPL

X. Su, W. Wang, Y. Wang, X. Jia, C. Xie, and K. Peng, “Continuous variable quantum key distribution based on optical entangled states without signal modulation,” EPL87, 20005 (2009).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Com.

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Com.3, 1083 (2012).
[CrossRef]

Open Systs. Inf. Dyn.

C. Rodò, O. Romero-Isart, K. Eckert, and A. Sanpera, “Efficiency in quantum key distribution protocols with entangled gaussian states,” Open Systs. Inf. Dyn.14, 69 (2007).
[CrossRef]

Opt. Exp.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Exp.19, 25763 (2011).
[CrossRef]

R. J. Senior, G. N. Milford, J. Janousek, A. E. Dunlop, K. Wagner, H-A. Bachor, T. C. Ralph, E. H. Huntington, and C. C. Harb, “Observation of a comb of optical squeezing over many gigahertz of bandwidth,” Opt. Exp.15, 5310 (2007).
[CrossRef]

Opt. Lett.

Phys. Rev. A

M. Hillery, “Quantum cryptography with squeezed states,” Phys. Rev. A61, 022309 (2000).
[CrossRef]

N.J. Cerf, J. Clavareau, C. Macchiavello, and J. Roland, “Quantum entanglement enhances the capacity of bosonic channels with memory,” Phys. Rev. A72, 042330 (2005).
[CrossRef]

J. Lodewyck, M. Bloch, R. García-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007).
[CrossRef]

M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, and R. Schnabel, “Observation of squeezed states with strong photon-number oscillations,” Phys. Rev. A81, 013814 (2010).
[CrossRef]

B. Yurke, “Use of cavities in squeezed-state generation,” Phys. Rev. A29, 408 (1984).
[CrossRef]

T. C. Ralph, “Continuous variable quantum cryptography,” Phys. Rev. A61, 010303 (1999).
[CrossRef]

Phys. Rev. Lett.

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, “Squeezing in the audio gravitational-wave detection band,” Phys. Rev. Lett.93, 161105 (2004).
[CrossRef] [PubMed]

L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett.57, 2520 (1986).
[CrossRef] [PubMed]

C. Silberhorn, N. Korolkova, and G. Leuchs, “Quantum key distribution with bright entangled beams,” Phys. Rev. Lett.88, 167902 (2002).
[CrossRef] [PubMed]

R. García-Patrón and N. J. Cerf, “Continuous-variable quantum key distribution protocols over noisy channels,” Phys. Rev. Lett.102, 130501 (2009).
[CrossRef] [PubMed]

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett.55, 2409 (1985).
[CrossRef] [PubMed]

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett.109, 100502 (2012).
[CrossRef] [PubMed]

Sensors

J. Steinlechner, S. Ast, C. Krüger, A. P. Singh, T. Eberle, V. Händchen, and R. Schnabel, “Absorption measurements of periodically poled potassium titanyl phosphate (PPKTP) at 775 nm and 1550 nm,” Sensors13, 565–573, (2013).
[CrossRef] [PubMed]

Other

T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Gaussian entanglement for quantum key distribution from a single-mode squeezing source,” arXiv:1110.3977v1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup. Mode cleaner: three-mirror ring cavity for spatial mode filtering; OPA: monolithic PPKTP cavity (squeezing resonator) with reflective coatings on crystal surfaces; control field: reference beam for alignment of the squeezed vacuum mode onto the balanced homodyne detector; PBS: polarizing beam splitter.

Fig. 2
Fig. 2

GHz bandwidth measurement. Squeezed-vacuum measurement from 10 MHz to 1.2 GHz sideband frequency using the balanced photo receiver New Focus type 1617-AC FS. We measured a squeezing (red) of up to 3 dB as well as anti-squeezing (blue) of up to 10.4 dB above vacuum noise (black). Squeezing decreased to 2 dB and anti-squeezing to 3.5 dB due to the finite cavity linewidth of the squeezing resonator. The measurements shown are dark-noise corrected. The dark-noise clearance was merely 7 dB at 5 MHz decreasing to 3 dB at 1 GHz. A typical squeezed light source as in [13, 16, 18, 19] yields a several ten-times smaller squeezing bandwidth, which is highlighted here in grey. The total detection efficiency of our system was fitted to be 53 %. A numerical simulation used all given parameters to fit the measured squeezing (dashed black).

Fig. 3
Fig. 3

MHz bandwidth measurement. Squeezed-vacuum measurement from 5 to 100 MHz sideband frequency using a homodyne detector with 99 % quantum efficiency. We measured squeezing (red) of 4.8 dB and anti-squeezing (blue) of 12.7 dB with respect to the vacuum noise level (black). The measurement is dark-noise corrected. The measured squeezing below 20 MHz is, however, not influenced by the dark noise correction due to the detector’s low dark noise at low frequencies. The total detection efficiency was fitted to be 72.5 %. The dashed black lines correspond to our numerical simulation. The peaks in the squeezing spectrum originated from electronic pick-up of the homodyne detector due to antenna effects and are also visible in the detector‘s dark noise.

Fig. 4
Fig. 4

Numerical simulation using N.L.C.S. for a typical squeezing resonator as in [13] (dashed lines) and the monolithic GHz bandwidth squeezing resonator reported in this experiment (solid lines). Our simulation assumes a total detection efficiency of 96 %, as realized in [13] for low bandwidths. The squeezing source reported here generates almost the same squeezing strengths as state of the art sources. Its bandwidth does, however, offer significantly increased data rates in entanglement-based continuous-variable quantum key distribution.

Metrics