C. Y. Wu, C. T. Kuo, C. Y. Wang, C. L. He, M. H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett. 11, 4256–4260 (2011).
[Crossref]
[PubMed]
D. P. Arnold, F. Cros, I. Zana, D. R. Veazie, and M. G. Allen, “Electroplated metal microstructures embedded in fusion-bonded silicon: conductors and magnetic materials,” J. Microelectromech. Syst. 13, 791–798 (2004).
[Crossref]
D. P. Arnold, F. Cros, I. Zana, D. R. Veazie, and M. G. Allen, “Electroplated metal microstructures embedded in fusion-bonded silicon: conductors and magnetic materials,” J. Microelectromech. Syst. 13, 791–798 (2004).
[Crossref]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
[PubMed]
M. J. H. Marell, B. Smalbrugge, E. J. Geluk, P. J. van Veldhoven, B. Barcones, B. Koopmans, R. Nötzel, M. K. Smit, and M. T. Hill, “Plasmonic distributed feedback lasers at telecommunications wavelengths,” Opt. Express 19, 15109–15118 (2011).
[Crossref]
[PubMed]
J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[Crossref]
R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nature Mater. 10, 110–113 (2011).
[Crossref]
R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]
[PubMed]
R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[Crossref]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
[PubMed]
C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, U. W. Pohl, and D. Bimberg, “Low thermal impedance of substrate-free metal cavity surface-emitting microlasers,” IEEE Photon. Technol. Lett. 23, 1031–1033 (2011).
[Crossref]
C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010).
[Crossref]
T. D. Visser, H. Blok, B. Demeulenaere, and D. Lenstra, “Confinement factors and gain in optical amplifiers,” IEEE J. Quantum Electron. 33, 1763–1766 (1997).
[Crossref]
J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[Crossref]
[PubMed]
J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[Crossref]
R. A. Flynn, C. S. Kim, I. Vurgaftman, M. Kim, J. R. Meyer, A. J. Mak̈inen, K. Bussmann, L. Cheng, F. S. Choa, and J. P. Long, “A room-temperature semiconductor spaser operating near 1.5 μm,” Opt. Express 19, 8954–8961 (2011).
[Crossref]
[PubMed]
J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[Crossref]
P. J. Cheng, C. Y. Weng, S. W. Chang, T. R. Lin, and C. H. Tien, “Cladding effect on hybrid plasmonic nanowire cavity at telecommunication wavelengths,” IEEE J. Sel. Top. Quantum Electron. 19, 4800306 (2013).
[Crossref]
C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, U. W. Pohl, and D. Bimberg, “Low thermal impedance of substrate-free metal cavity surface-emitting microlasers,” IEEE Photon. Technol. Lett. 23, 1031–1033 (2011).
[Crossref]
T. R. Lin, S. W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97, 063106 (2010).
[Crossref]
C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010).
[Crossref]
S. W. Chang, T. R. Lin, and S. L. Chuang, “Theory of plasmonic Fabry-Perot nanolasers,” Opt. Express 18, 15039–15053 (2010).
[Crossref]
[PubMed]
S. W. Chang and S. L. Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron. 45, 1014–1023 (2009).
[Crossref]
R. A. Flynn, C. S. Kim, I. Vurgaftman, M. Kim, J. R. Meyer, A. J. Mak̈inen, K. Bussmann, L. Cheng, F. S. Choa, and J. P. Long, “A room-temperature semiconductor spaser operating near 1.5 μm,” Opt. Express 19, 8954–8961 (2011).
[Crossref]
[PubMed]
P. J. Cheng, C. Y. Weng, S. W. Chang, T. R. Lin, and C. H. Tien, “Cladding effect on hybrid plasmonic nanowire cavity at telecommunication wavelengths,” IEEE J. Sel. Top. Quantum Electron. 19, 4800306 (2013).
[Crossref]
R. A. Flynn, C. S. Kim, I. Vurgaftman, M. Kim, J. R. Meyer, A. J. Mak̈inen, K. Bussmann, L. Cheng, F. S. Choa, and J. P. Long, “A room-temperature semiconductor spaser operating near 1.5 μm,” Opt. Express 19, 8954–8961 (2011).
[Crossref]
[PubMed]
P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]
C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, U. W. Pohl, and D. Bimberg, “Low thermal impedance of substrate-free metal cavity surface-emitting microlasers,” IEEE Photon. Technol. Lett. 23, 1031–1033 (2011).
[Crossref]
C. Y. Lu and S. L. Chuang, “A surface-emitting 3D metal-nanocavity laser: proposal and theory,” Opt. Express 19, 13225–13244 (2011).
[Crossref]
[PubMed]
S. W. Chang, T. R. Lin, and S. L. Chuang, “Theory of plasmonic Fabry-Perot nanolasers,” Opt. Express 18, 15039–15053 (2010).
[Crossref]
[PubMed]
T. R. Lin, S. W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97, 063106 (2010).
[Crossref]
C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010).
[Crossref]
S. W. Chang and S. L. Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron. 45, 1014–1023 (2009).
[Crossref]
D. P. Arnold, F. Cros, I. Zana, D. R. Veazie, and M. G. Allen, “Electroplated metal microstructures embedded in fusion-bonded silicon: conductors and magnetic materials,” J. Microelectromech. Syst. 13, 791–798 (2004).
[Crossref]
K. J. Russell, T. L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6, 459–462 (2012).
[Crossref]
R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]
[PubMed]
M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
T. D. Visser, H. Blok, B. Demeulenaere, and D. Lenstra, “Confinement factors and gain in optical amplifiers,” IEEE J. Quantum Electron. 33, 1763–1766 (1997).
[Crossref]
J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[Crossref]
[PubMed]
J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[Crossref]
[PubMed]
M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[Crossref]
[PubMed]
R. A. Flynn, C. S. Kim, I. Vurgaftman, M. Kim, J. R. Meyer, A. J. Mak̈inen, K. Bussmann, L. Cheng, F. S. Choa, and J. P. Long, “A room-temperature semiconductor spaser operating near 1.5 μm,” Opt. Express 19, 8954–8961 (2011).
[Crossref]
[PubMed]
M. J. H. Marell, B. Smalbrugge, E. J. Geluk, P. J. van Veldhoven, B. Barcones, B. Koopmans, R. Nötzel, M. K. Smit, and M. T. Hill, “Plasmonic distributed feedback lasers at telecommunications wavelengths,” Opt. Express 19, 15109–15118 (2011).
[Crossref]
[PubMed]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]
[PubMed]
M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]
S. M. George, “Atomic layer deposition: an overview,” Chem. Rev. 110, 111–131 (2010).
[Crossref]
C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, U. W. Pohl, and D. Bimberg, “Low thermal impedance of substrate-free metal cavity surface-emitting microlasers,” IEEE Photon. Technol. Lett. 23, 1031–1033 (2011).
[Crossref]
C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010).
[Crossref]
R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]
[PubMed]
J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[Crossref]
[PubMed]
C. Y. Wu, C. T. Kuo, C. Y. Wang, C. L. He, M. H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett. 11, 4256–4260 (2011).
[Crossref]
[PubMed]
C. Y. Wu, C. T. Kuo, C. Y. Wang, C. L. He, M. H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett. 11, 4256–4260 (2011).
[Crossref]
[PubMed]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
[PubMed]
M. J. H. Marell, B. Smalbrugge, E. J. Geluk, P. J. van Veldhoven, B. Barcones, B. Koopmans, R. Nötzel, M. K. Smit, and M. T. Hill, “Plasmonic distributed feedback lasers at telecommunications wavelengths,” Opt. Express 19, 15109–15118 (2011).
[Crossref]
[PubMed]
M. T. Hill, “Status and prospects for metallic and plasmonic nano-lasers [invited],” J. Opt. Soc. B 27, B36–B44 (2010).
[Crossref]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]
[PubMed]
M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
K. J. Russell, T. L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6, 459–462 (2012).
[Crossref]
K. J. Russell and E. L. Hu, “Gap-mode plasmonic nanocavity,” Appl. Phys. Lett. 97, 163115 (2010).
[Crossref]
P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]
J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[Crossref]
S. H. Kwon, J. H. Kang, C. Seassal, S. K. Kim, P. Regreny, Y. H. Lee, C. M. Lieber, and H. G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10, 3679–3683 (2010).
[Crossref]
[PubMed]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]
[PubMed]
R. A. Flynn, C. S. Kim, I. Vurgaftman, M. Kim, J. R. Meyer, A. J. Mak̈inen, K. Bussmann, L. Cheng, F. S. Choa, and J. P. Long, “A room-temperature semiconductor spaser operating near 1.5 μm,” Opt. Express 19, 8954–8961 (2011).
[Crossref]
[PubMed]
R. A. Flynn, C. S. Kim, I. Vurgaftman, M. Kim, J. R. Meyer, A. J. Mak̈inen, K. Bussmann, L. Cheng, F. S. Choa, and J. P. Long, “A room-temperature semiconductor spaser operating near 1.5 μm,” Opt. Express 19, 8954–8961 (2011).
[Crossref]
[PubMed]
S. H. Kwon, J. H. Kang, C. Seassal, S. K. Kim, P. Regreny, Y. H. Lee, C. M. Lieber, and H. G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10, 3679–3683 (2010).
[Crossref]
[PubMed]
M. J. H. Marell, B. Smalbrugge, E. J. Geluk, P. J. van Veldhoven, B. Barcones, B. Koopmans, R. Nötzel, M. K. Smit, and M. T. Hill, “Plasmonic distributed feedback lasers at telecommunications wavelengths,” Opt. Express 19, 15109–15118 (2011).
[Crossref]
[PubMed]
R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[Crossref]
C. Y. Wu, C. T. Kuo, C. Y. Wang, C. L. He, M. H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett. 11, 4256–4260 (2011).
[Crossref]
[PubMed]
S. H. Kwon, J. H. Kang, C. Seassal, S. K. Kim, P. Regreny, Y. H. Lee, C. M. Lieber, and H. G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10, 3679–3683 (2010).
[Crossref]
[PubMed]
M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
S. H. Kwon, J. H. Kang, C. Seassal, S. K. Kim, P. Regreny, Y. H. Lee, C. M. Lieber, and H. G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10, 3679–3683 (2010).
[Crossref]
[PubMed]
M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
T. D. Visser, H. Blok, B. Demeulenaere, and D. Lenstra, “Confinement factors and gain in optical amplifiers,” IEEE J. Quantum Electron. 33, 1763–1766 (1997).
[Crossref]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]
[PubMed]
S. H. Kwon, J. H. Kang, C. Seassal, S. K. Kim, P. Regreny, Y. H. Lee, C. M. Lieber, and H. G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10, 3679–3683 (2010).
[Crossref]
[PubMed]
C. Y. Wu, C. T. Kuo, C. Y. Wang, C. L. He, M. H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett. 11, 4256–4260 (2011).
[Crossref]
[PubMed]
P. J. Cheng, C. Y. Weng, S. W. Chang, T. R. Lin, and C. H. Tien, “Cladding effect on hybrid plasmonic nanowire cavity at telecommunication wavelengths,” IEEE J. Sel. Top. Quantum Electron. 19, 4800306 (2013).
[Crossref]
T. R. Lin, S. W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97, 063106 (2010).
[Crossref]
S. W. Chang, T. R. Lin, and S. L. Chuang, “Theory of plasmonic Fabry-Perot nanolasers,” Opt. Express 18, 15039–15053 (2010).
[Crossref]
[PubMed]
Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]
[PubMed]
K. J. Russell, T. L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6, 459–462 (2012).
[Crossref]
M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003).
[Crossref]
R. A. Flynn, C. S. Kim, I. Vurgaftman, M. Kim, J. R. Meyer, A. J. Mak̈inen, K. Bussmann, L. Cheng, F. S. Choa, and J. P. Long, “A room-temperature semiconductor spaser operating near 1.5 μm,” Opt. Express 19, 8954–8961 (2011).
[Crossref]
[PubMed]
C. Y. Lu and S. L. Chuang, “A surface-emitting 3D metal-nanocavity laser: proposal and theory,” Opt. Express 19, 13225–13244 (2011).
[Crossref]
[PubMed]
C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, U. W. Pohl, and D. Bimberg, “Low thermal impedance of substrate-free metal cavity surface-emitting microlasers,” IEEE Photon. Technol. Lett. 23, 1031–1033 (2011).
[Crossref]
C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010).
[Crossref]
R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser & Photon. Rev. 7, 1–21 (2013).
R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nature Mater. 10, 110–113 (2011).
[Crossref]
R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]
[PubMed]
R. A. Flynn, C. S. Kim, I. Vurgaftman, M. Kim, J. R. Meyer, A. J. Mak̈inen, K. Bussmann, L. Cheng, F. S. Choa, and J. P. Long, “A room-temperature semiconductor spaser operating near 1.5 μm,” Opt. Express 19, 8954–8961 (2011).
[Crossref]
[PubMed]
C. Manolatou and F. Rana, “Subwavelength nanopatch cavities for semiconductor plasmon lasers,” IEEE J. Quantum Electron. 44, 435–447 (2008).
[Crossref]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]
[PubMed]
M. J. H. Marell, B. Smalbrugge, E. J. Geluk, P. J. van Veldhoven, B. Barcones, B. Koopmans, R. Nötzel, M. K. Smit, and M. T. Hill, “Plasmonic distributed feedback lasers at telecommunications wavelengths,” Opt. Express 19, 15109–15118 (2011).
[Crossref]
[PubMed]
J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[Crossref]
[PubMed]
A. V. Maslov and C. Z. Ning, “Modal gain in a semiconductor nanowire laser with anisotropic bandstructure,” IEEE. J. Quantum Electron. 40, 1389–1397 (2004).
[Crossref]
J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[Crossref]
[PubMed]
R. A. Flynn, C. S. Kim, I. Vurgaftman, M. Kim, J. R. Meyer, A. J. Mak̈inen, K. Bussmann, L. Cheng, F. S. Choa, and J. P. Long, “A room-temperature semiconductor spaser operating near 1.5 μm,” Opt. Express 19, 8954–8961 (2011).
[Crossref]
[PubMed]
Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]
[PubMed]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
[PubMed]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]
[PubMed]
A. V. Maslov and C. Z. Ning, “Modal gain in a semiconductor nanowire laser with anisotropic bandstructure,” IEEE. J. Quantum Electron. 40, 1389–1397 (2004).
[Crossref]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
[PubMed]
M. J. H. Marell, B. Smalbrugge, E. J. Geluk, P. J. van Veldhoven, B. Barcones, B. Koopmans, R. Nötzel, M. K. Smit, and M. T. Hill, “Plasmonic distributed feedback lasers at telecommunications wavelengths,” Opt. Express 19, 15109–15118 (2011).
[Crossref]
[PubMed]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]
[PubMed]
M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]
[PubMed]
M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]
[PubMed]
R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser & Photon. Rev. 7, 1–21 (2013).
R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nature Mater. 10, 110–113 (2011).
[Crossref]
R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]
[PubMed]
R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]
M. Ozeki, “Atomic layer epitaxy of III–V compounds using metalorganic and hydride sources,” Mater. Sci. Rep. 8, 97–146 (1992).
[Crossref]
S. H. Kwon, J. H. Kang, C. Seassal, S. K. Kim, P. Regreny, Y. H. Lee, C. M. Lieber, and H. G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10, 3679–3683 (2010).
[Crossref]
[PubMed]
Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]
[PubMed]
R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]
C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, U. W. Pohl, and D. Bimberg, “Low thermal impedance of substrate-free metal cavity surface-emitting microlasers,” IEEE Photon. Technol. Lett. 23, 1031–1033 (2011).
[Crossref]
M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003).
[Crossref]
Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]
[PubMed]
C. Manolatou and F. Rana, “Subwavelength nanopatch cavities for semiconductor plasmon lasers,” IEEE J. Quantum Electron. 44, 435–447 (2008).
[Crossref]
S. H. Kwon, J. H. Kang, C. Seassal, S. K. Kim, P. Regreny, Y. H. Lee, C. M. Lieber, and H. G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10, 3679–3683 (2010).
[Crossref]
[PubMed]
K. J. Russell, T. L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6, 459–462 (2012).
[Crossref]
K. J. Russell and E. L. Hu, “Gap-mode plasmonic nanocavity,” Appl. Phys. Lett. 97, 163115 (2010).
[Crossref]
Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]
[PubMed]
M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003).
[Crossref]
T. R. Lin, S. W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97, 063106 (2010).
[Crossref]
J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[Crossref]
S. H. Kwon, J. H. Kang, C. Seassal, S. K. Kim, P. Regreny, Y. H. Lee, C. M. Lieber, and H. G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10, 3679–3683 (2010).
[Crossref]
[PubMed]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
[PubMed]
M. J. H. Marell, B. Smalbrugge, E. J. Geluk, P. J. van Veldhoven, B. Barcones, B. Koopmans, R. Nötzel, M. K. Smit, and M. T. Hill, “Plasmonic distributed feedback lasers at telecommunications wavelengths,” Opt. Express 19, 15109–15118 (2011).
[Crossref]
[PubMed]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]
[PubMed]
M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
M. J. H. Marell, B. Smalbrugge, E. J. Geluk, P. J. van Veldhoven, B. Barcones, B. Koopmans, R. Nötzel, M. K. Smit, and M. T. Hill, “Plasmonic distributed feedback lasers at telecommunications wavelengths,” Opt. Express 19, 15109–15118 (2011).
[Crossref]
[PubMed]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]
[PubMed]
M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[Crossref]
R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser & Photon. Rev. 7, 1–21 (2013).
R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nature Mater. 10, 110–113 (2011).
[Crossref]
R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]
[PubMed]
R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
[PubMed]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]
[PubMed]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
[PubMed]
P. J. Cheng, C. Y. Weng, S. W. Chang, T. R. Lin, and C. H. Tien, “Cladding effect on hybrid plasmonic nanowire cavity at telecommunication wavelengths,” IEEE J. Sel. Top. Quantum Electron. 19, 4800306 (2013).
[Crossref]
M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
M. J. H. Marell, B. Smalbrugge, E. J. Geluk, P. J. van Veldhoven, B. Barcones, B. Koopmans, R. Nötzel, M. K. Smit, and M. T. Hill, “Plasmonic distributed feedback lasers at telecommunications wavelengths,” Opt. Express 19, 15109–15118 (2011).
[Crossref]
[PubMed]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]
[PubMed]
M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]
D. P. Arnold, F. Cros, I. Zana, D. R. Veazie, and M. G. Allen, “Electroplated metal microstructures embedded in fusion-bonded silicon: conductors and magnetic materials,” J. Microelectromech. Syst. 13, 791–798 (2004).
[Crossref]
T. D. Visser, H. Blok, B. Demeulenaere, and D. Lenstra, “Confinement factors and gain in optical amplifiers,” IEEE J. Quantum Electron. 33, 1763–1766 (1997).
[Crossref]
R. A. Flynn, C. S. Kim, I. Vurgaftman, M. Kim, J. R. Meyer, A. J. Mak̈inen, K. Bussmann, L. Cheng, F. S. Choa, and J. P. Long, “A room-temperature semiconductor spaser operating near 1.5 μm,” Opt. Express 19, 8954–8961 (2011).
[Crossref]
[PubMed]
C. Y. Wu, C. T. Kuo, C. Y. Wang, C. L. He, M. H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett. 11, 4256–4260 (2011).
[Crossref]
[PubMed]
R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[Crossref]
J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[Crossref]
[PubMed]
P. J. Cheng, C. Y. Weng, S. W. Chang, T. R. Lin, and C. H. Tien, “Cladding effect on hybrid plasmonic nanowire cavity at telecommunication wavelengths,” IEEE J. Sel. Top. Quantum Electron. 19, 4800306 (2013).
[Crossref]
J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[Crossref]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
[PubMed]
R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96, 230–247 (2008).
[Crossref]
C. Y. Wu, C. T. Kuo, C. Y. Wang, C. L. He, M. H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide-semiconductor structure,” Nano Lett. 11, 4256–4260 (2011).
[Crossref]
[PubMed]
S. Zhang and H. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano 6, 8128–8135 (2012).
[Crossref]
[PubMed]
Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]
[PubMed]
A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley and Sons, Hoboken, NJ, 1997).
A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley and Sons, Hoboken, NJ, 1997).
D. P. Arnold, F. Cros, I. Zana, D. R. Veazie, and M. G. Allen, “Electroplated metal microstructures embedded in fusion-bonded silicon: conductors and magnetic materials,” J. Microelectromech. Syst. 13, 791–798 (2004).
[Crossref]
R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]
[PubMed]
S. Zhang and H. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano 6, 8128–8135 (2012).
[Crossref]
[PubMed]
R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser & Photon. Rev. 7, 1–21 (2013).
R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nature Mater. 10, 110–113 (2011).
[Crossref]
R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]
[PubMed]
R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]
T. R. Lin, S. W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97, 063106 (2010).
[Crossref]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
[PubMed]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]
[PubMed]
M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]