Abstract

We propose three theoretical models to evaluate the beam quality of the fiber supercontinuum source as a whole. New definitions of spectral centroid and three factors to evaluate the beam quality of supercontinuum source are introduced. Based on the three factors some supercontinuum sources with different output power and spectra obtained from the experiment are calculated numerically. All the results denote that the three models are feasible and useful for the beam quality evaluation and comparison of the fiber supercontinuum sources as a whole with considering the power spectral distribution and propagation modes.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25(1), 25–27 (2000).
    [CrossRef] [PubMed]
  2. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
    [CrossRef]
  3. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B24(8), 1771–1785 (2007).
    [CrossRef]
  4. C. Xia, X. Zhao, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron.15(2), 422–434 (2009).
    [CrossRef]
  5. R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, “High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier,” Opt. Lett.37(9), 1529–1531 (2012).
    [CrossRef] [PubMed]
  6. R. Song, J. Hou, S. P. Chen, W. Q. Yang, T. Liu, and Q. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett.10(1), 015401 (2013).
    [CrossRef]
  7. A. E. Siegman, “How to (maybe) measure laser beam quality,” OSA Trends in Optics and Photonics Series17, 184–199 (1998).
  8. R. A. Motes and R. W. Berdine, Introduction to High-Power Fiber Lasers, 2nd ed. (Directed Energy Professional Society, New Mexico, 2009).
  9. Y. Vidne and M. Rosenbluh, “Spatial modes in a PCF fiber generated continuum,” Opt. Express13(24), 9721–9728 (2005).
    [CrossRef] [PubMed]
  10. E. Esposito, J. Harris, D. Burns, and G. McConnell, “Measurement of white-light supercontinuum beam properties from a photonic crystal fibre using a laser scanning confocal microscope,” Meas. Sci. Technol.18(8), 2609–2615 (2007).
    [CrossRef]
  11. X. Hu, W. Zhang, Z. Yang, Y. Wang, W. Zhao, X. Li, H. Wang, C. Li, and D. Shen, “High average power, strictly all-fiber supercontinuum source with good beam quality,” Opt. Lett.36(14), 2659–2661 (2011).
    [CrossRef] [PubMed]
  12. H. W. Chen, S. P. Chen, J. H. Wang, Z. L. Chen, and J. Hou, “35 W high power all fiber supercontinuum generation in PCF with picosecond MOPA laser,” Opt. Commun.284(23), 5484–5487 (2011).
    [CrossRef]

2013 (1)

R. Song, J. Hou, S. P. Chen, W. Q. Yang, T. Liu, and Q. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett.10(1), 015401 (2013).
[CrossRef]

2012 (1)

2011 (2)

X. Hu, W. Zhang, Z. Yang, Y. Wang, W. Zhao, X. Li, H. Wang, C. Li, and D. Shen, “High average power, strictly all-fiber supercontinuum source with good beam quality,” Opt. Lett.36(14), 2659–2661 (2011).
[CrossRef] [PubMed]

H. W. Chen, S. P. Chen, J. H. Wang, Z. L. Chen, and J. Hou, “35 W high power all fiber supercontinuum generation in PCF with picosecond MOPA laser,” Opt. Commun.284(23), 5484–5487 (2011).
[CrossRef]

2009 (1)

C. Xia, X. Zhao, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron.15(2), 422–434 (2009).
[CrossRef]

2007 (2)

E. Esposito, J. Harris, D. Burns, and G. McConnell, “Measurement of white-light supercontinuum beam properties from a photonic crystal fibre using a laser scanning confocal microscope,” Meas. Sci. Technol.18(8), 2609–2615 (2007).
[CrossRef]

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B24(8), 1771–1785 (2007).
[CrossRef]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

2005 (1)

2000 (1)

1998 (1)

A. E. Siegman, “How to (maybe) measure laser beam quality,” OSA Trends in Optics and Photonics Series17, 184–199 (1998).

Burns, D.

E. Esposito, J. Harris, D. Burns, and G. McConnell, “Measurement of white-light supercontinuum beam properties from a photonic crystal fibre using a laser scanning confocal microscope,” Meas. Sci. Technol.18(8), 2609–2615 (2007).
[CrossRef]

Chen, H. W.

H. W. Chen, S. P. Chen, J. H. Wang, Z. L. Chen, and J. Hou, “35 W high power all fiber supercontinuum generation in PCF with picosecond MOPA laser,” Opt. Commun.284(23), 5484–5487 (2011).
[CrossRef]

Chen, S.

Chen, S. P.

R. Song, J. Hou, S. P. Chen, W. Q. Yang, T. Liu, and Q. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett.10(1), 015401 (2013).
[CrossRef]

H. W. Chen, S. P. Chen, J. H. Wang, Z. L. Chen, and J. Hou, “35 W high power all fiber supercontinuum generation in PCF with picosecond MOPA laser,” Opt. Commun.284(23), 5484–5487 (2011).
[CrossRef]

Chen, Z. L.

H. W. Chen, S. P. Chen, J. H. Wang, Z. L. Chen, and J. Hou, “35 W high power all fiber supercontinuum generation in PCF with picosecond MOPA laser,” Opt. Commun.284(23), 5484–5487 (2011).
[CrossRef]

Coen, S.

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B24(8), 1771–1785 (2007).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Dudley, J. M.

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B24(8), 1771–1785 (2007).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Esposito, E.

E. Esposito, J. Harris, D. Burns, and G. McConnell, “Measurement of white-light supercontinuum beam properties from a photonic crystal fibre using a laser scanning confocal microscope,” Meas. Sci. Technol.18(8), 2609–2615 (2007).
[CrossRef]

Freeman, M. J.

C. Xia, X. Zhao, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron.15(2), 422–434 (2009).
[CrossRef]

Genty, G.

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B24(8), 1771–1785 (2007).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Harris, J.

E. Esposito, J. Harris, D. Burns, and G. McConnell, “Measurement of white-light supercontinuum beam properties from a photonic crystal fibre using a laser scanning confocal microscope,” Meas. Sci. Technol.18(8), 2609–2615 (2007).
[CrossRef]

Hou, J.

R. Song, J. Hou, S. P. Chen, W. Q. Yang, T. Liu, and Q. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett.10(1), 015401 (2013).
[CrossRef]

R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, “High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier,” Opt. Lett.37(9), 1529–1531 (2012).
[CrossRef] [PubMed]

H. W. Chen, S. P. Chen, J. H. Wang, Z. L. Chen, and J. Hou, “35 W high power all fiber supercontinuum generation in PCF with picosecond MOPA laser,” Opt. Commun.284(23), 5484–5487 (2011).
[CrossRef]

Hu, X.

Islam, M. N.

C. Xia, X. Zhao, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron.15(2), 422–434 (2009).
[CrossRef]

Li, C.

Li, X.

Liu, T.

R. Song, J. Hou, S. P. Chen, W. Q. Yang, T. Liu, and Q. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett.10(1), 015401 (2013).
[CrossRef]

Lu, Q.

R. Song, J. Hou, S. P. Chen, W. Q. Yang, T. Liu, and Q. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett.10(1), 015401 (2013).
[CrossRef]

R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, “High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier,” Opt. Lett.37(9), 1529–1531 (2012).
[CrossRef] [PubMed]

Mauricio, J.

C. Xia, X. Zhao, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron.15(2), 422–434 (2009).
[CrossRef]

McConnell, G.

E. Esposito, J. Harris, D. Burns, and G. McConnell, “Measurement of white-light supercontinuum beam properties from a photonic crystal fibre using a laser scanning confocal microscope,” Meas. Sci. Technol.18(8), 2609–2615 (2007).
[CrossRef]

Ranka, J. K.

Rosenbluh, M.

Shen, D.

Siegman, A. E.

A. E. Siegman, “How to (maybe) measure laser beam quality,” OSA Trends in Optics and Photonics Series17, 184–199 (1998).

Song, R.

R. Song, J. Hou, S. P. Chen, W. Q. Yang, T. Liu, and Q. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett.10(1), 015401 (2013).
[CrossRef]

R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, “High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier,” Opt. Lett.37(9), 1529–1531 (2012).
[CrossRef] [PubMed]

Stentz, A. J.

Terry, F. L.

C. Xia, X. Zhao, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron.15(2), 422–434 (2009).
[CrossRef]

Vidne, Y.

Wang, H.

Wang, J. H.

H. W. Chen, S. P. Chen, J. H. Wang, Z. L. Chen, and J. Hou, “35 W high power all fiber supercontinuum generation in PCF with picosecond MOPA laser,” Opt. Commun.284(23), 5484–5487 (2011).
[CrossRef]

Wang, Y.

Windeler, R. S.

Xia, C.

C. Xia, X. Zhao, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron.15(2), 422–434 (2009).
[CrossRef]

Yang, W.

Yang, W. Q.

R. Song, J. Hou, S. P. Chen, W. Q. Yang, T. Liu, and Q. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett.10(1), 015401 (2013).
[CrossRef]

Yang, Z.

Zakel, A.

C. Xia, X. Zhao, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron.15(2), 422–434 (2009).
[CrossRef]

Zhang, W.

Zhao, W.

Zhao, X.

C. Xia, X. Zhao, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron.15(2), 422–434 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Xia, X. Zhao, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron.15(2), 422–434 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

R. Song, J. Hou, S. P. Chen, W. Q. Yang, T. Liu, and Q. Lu, “Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts,” Laser Phys. Lett.10(1), 015401 (2013).
[CrossRef]

Meas. Sci. Technol. (1)

E. Esposito, J. Harris, D. Burns, and G. McConnell, “Measurement of white-light supercontinuum beam properties from a photonic crystal fibre using a laser scanning confocal microscope,” Meas. Sci. Technol.18(8), 2609–2615 (2007).
[CrossRef]

Opt. Commun. (1)

H. W. Chen, S. P. Chen, J. H. Wang, Z. L. Chen, and J. Hou, “35 W high power all fiber supercontinuum generation in PCF with picosecond MOPA laser,” Opt. Commun.284(23), 5484–5487 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

OSA Trends in Optics and Photonics Series (1)

A. E. Siegman, “How to (maybe) measure laser beam quality,” OSA Trends in Optics and Photonics Series17, 184–199 (1998).

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Other (1)

R. A. Motes and R. W. Berdine, Introduction to High-Power Fiber Lasers, 2nd ed. (Directed Energy Professional Society, New Mexico, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Cross section of the PCF used in the experiments.

Fig. 2
Fig. 2

Spectra of SC sources with different output powers.

Tables (2)

Tables Icon

Table 1 Numerical results of three defined factors evaluating the beam quality of three SC sources with different spectra when all the spectral parts are fundamental modes

Tables Icon

Table 2 Numerical results of three defined factors evaluating the beam quality of the SC source with output power 6.8 W when the spectral parts below corresponding cut-off wavelength are higher-order modes

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

P(x,y)= 0 S(λ)P(x,y,λ)dλ .
0 S(λ)dλ =1.
P(x,y,λ)dxdy=1 .
P(x,y)dxdy = ( 0 S(λ)P(x,y,λ)dλ )dxdy = 0 S(λ)( P(x,y,λ)dxdy )dλ =1.
w x =2 σ x , θ x = w x z , w y =2 σ y , θ y = w y z ,
σ x 2 = (x x ¯ ) 2 P(x,y)dxdy P(x,y)dxdy ,
σ y 2 = (y y ¯ ) 2 P(x,y)dxdy P(x,y)dxdy .
x ¯ = xP(x,y)dxdy P(x,y)dxdy ,
y ¯ = yP(x,y)dxdy P(x,y)dxdy .
x ¯ = xP(x,y)dxdy P(x,y)dxdy = xP(x,y)dxdy = x( 0 S(λ)P(x,y,λ)dλ )dxdy = 0 S(λ)( xP(x,y,λ)dxdy )dλ = 0 S(λ) x ¯ (λ)dλ ,
x ¯ (λ)= xP(x,y,λ)dxdy P(x,y,λ)dxdy = xP(x,y,λ)dxdy .
σ x 2 = (x x ¯ ) 2 P(x,y)dxdy P(x,y)dxdy = (x x ¯ ) 2 P(x,y)dxdy = 0 S(λ) ( (x x ¯ ) 2 P(x,y,λ)dxdy )dλ = 0 S(λ) ( x 2 P(x,y,λ)dxdy )dλ x ¯ 2 .
σ x 2 (λ)= (x x ¯ (λ)) 2 P(x,y,λ)dxdy P(x,y,λ)dxdy = (x x ¯ (λ)) 2 P(x,y,λ)dxdy = x 2 P(x,y,λ)dxdy x ¯ (λ) 2 .
x 2 P(x,y,λ)dxdy = σ x 2 (λ)+ x ¯ (λ) 2 .
σ x 2 = 0 S(λ) ( σ x 2 (λ)+ x ¯ (λ) 2 )dλ x ¯ 2 = 0 S(λ) σ x 2 (λ)dλ+ 0 S(λ) x ¯ (λ) 2 dλ x ¯ 2 0 S(λ) σ x 2 (λ)dλ.
w x θ x = 2 σ x 2 σ xf z = 4 z σ x 2 σ x f 2 = 4 z ( 0 S(λ) σ x 2 (λ)dλ + 0 S(λ) x ¯ (λ) 2 dλ x ¯ 2 ) ×( 0 S(λ) σ x f 2 (λ)dλ + 0 S(λ) x ¯ f (λ) 2 dλ x ¯ f 2 ) 4 z 0 S(λ) σ x 2 (λ)dλ 0 S(λ) σ x f 2 (λ)dλ ,
w x θ x 4 z 0 S(λ) σ x (λ) σ x f (λ)dλ .
w x θ x > 4 z 0 S(λ) σ x (λ) σ x f (λ)dλ .
w x θ x > 0 S(λ) w x (λ) θ x (λ)dλ .
w(λ)θ(λ)= λ π .
w x θ x > 0 S(λ) λ π dλ= 1 π 0 S(λ)λdλ .
λ ¯ = 0 S(λ)λdλ 0 S(λ)dλ = 0 S(λ)λdλ .
w x θ x > λ ¯ π .
wθ> λ ¯ π .
M 2 (centroid) = π λ ¯ wθ,
RPIB= P/ P total 0.865 .
M 2 (Gauss) = wθ w 0 θ 0 .

Metrics