Abstract

We propose phase switching for either main-carrier or subcarriers of two consecutive signal blocks to achieve fading-free double-sideband direct-detection (DD). The proposed approach has twice of the electrical spectral efficiency (SE) of offset OFDM, and the same electrical SE as single-side band (SSB) OFDM. With this scheme, 40-Gb/s DD-OOFDM is successfully received over 80-km SSMF with single polarization and single detector.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express15(5), 2120–2126 (2007).
    [CrossRef] [PubMed]
  2. C. R. S. Fludger, T. Duthel, D. V. den Borne, C. Schulien, E. D. Schmidt, T. Wuth, J. Geyer, E. D. Man, G.-D. Khoe, and H. D. Waardt, “Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission,” J. Lightwave Technol.26(1), 64–72 (2008).
  3. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett.42(10), 587–589 (2006).
    [CrossRef]
  4. X. Liu, F. Buchali, and R. W. Tkach, “Improving the nonlinear tolerance of polarization-division-multiplexed CO-OFDM in long-haul fiber transmission,” J. Lightwave Technol.27(16), 3632–3640 (2009).
    [CrossRef]
  5. S. C. J. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huiskens, H. P. A. van den Boom, A. M. J. Koonen, and N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of 850-nm VCSEL using discrete multi-tone modulation,” in Opt. Fiber Commun. Conf. (OFC), Anaheim, CA, 2007, PDP6.
  6. J. L. Wei, D. G. Cunningham, R. V. Penty, and I. H. White, “Feasibility of 100G ethernet enabled by carrierless amplitude/phase modulation and optical OFDM.” European Conference and Exhibition on Optical Communication (ECOC), 2012, P6.05.
    [CrossRef]
  7. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol.28(4), 484–493 (2010).
    [CrossRef]
  8. B. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightwave Technol.26(1), 196–203 (2008).
    [CrossRef]
  9. M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett.20(9), 670–672 (2008).
    [CrossRef]
  10. B. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “120 Gbit/s Over 500-km using single-band polarization-multiplexed self-coherent optical OFDM,” J. Lightwave Technol.28(4), 328–335 (2010).
    [CrossRef]
  11. W. R. Peng, X. X. Wu, K. M. Feng, V. R. Arbab, B. Shamee, J. Y. Yang, L. C. Christen, A. E. Willner, and S. E. Chi, “Spectrally efficient direct-detected OFDM transmission employing an iterative estimation and cancellation technique,” Opt. Express17(11), 9099–9111 (2009).
    [CrossRef] [PubMed]
  12. N. Cvijetic, M. Cvijetic, M. Huang, E. IP, Y. Huang, and T. Wang, “Terabit optical access networks based on WDM-OFDMA-PON,” J. Lightwave Technol.30, 493–503 (2012).
    [CrossRef]
  13. W. R. Peng, B. Zhang, K. M. Feng, X. X. Wu, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” J. Lightwave Technol.27(24), 5723–5735 (2009).
    [CrossRef]
  14. Q. Yang, Y. Tang, Y. R. Ma, and W. Shieh, “Experimental demonstration and numerical simulation of 107-Gb/s high spectral efficiency coherent optical OFDM,” J. Lightwave Technol.27(3), 168–176 (2009).
    [CrossRef]

2012

2010

2009

2008

2007

2006

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett.42(10), 587–589 (2006).
[CrossRef]

Arbab, V. R.

Armstrong, J.

Athaudage, C.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett.42(10), 587–589 (2006).
[CrossRef]

Bayvel, P.

Breyer, F.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett.20(9), 670–672 (2008).
[CrossRef]

S. C. J. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huiskens, H. P. A. van den Boom, A. M. J. Koonen, and N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of 850-nm VCSEL using discrete multi-tone modulation,” in Opt. Fiber Commun. Conf. (OFC), Anaheim, CA, 2007, PDP6.

Buchali, F.

Bunge, C. A.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett.20(9), 670–672 (2008).
[CrossRef]

Chi, S.

Chi, S. E.

Christen, L. C.

Cunningham, D. G.

J. L. Wei, D. G. Cunningham, R. V. Penty, and I. H. White, “Feasibility of 100G ethernet enabled by carrierless amplitude/phase modulation and optical OFDM.” European Conference and Exhibition on Optical Communication (ECOC), 2012, P6.05.
[CrossRef]

Cvijetic, M.

Cvijetic, N.

den Borne, D. V.

Du, L. B.

Duthel, T.

Feng, K. M.

Fludger, C. R. S.

Gavioli, G.

Geyer, J.

Hanik, N.

S. C. J. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huiskens, H. P. A. van den Boom, A. M. J. Koonen, and N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of 850-nm VCSEL using discrete multi-tone modulation,” in Opt. Fiber Commun. Conf. (OFC), Anaheim, CA, 2007, PDP6.

Hu, J.

Huang, M.

Huang, Y.

Huiskens, F.

S. C. J. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huiskens, H. P. A. van den Boom, A. M. J. Koonen, and N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of 850-nm VCSEL using discrete multi-tone modulation,” in Opt. Fiber Commun. Conf. (OFC), Anaheim, CA, 2007, PDP6.

IP, E.

Khoe, G.-D.

Killey, R. I.

Koonen, A. M. J.

S. C. J. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huiskens, H. P. A. van den Boom, A. M. J. Koonen, and N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of 850-nm VCSEL using discrete multi-tone modulation,” in Opt. Fiber Commun. Conf. (OFC), Anaheim, CA, 2007, PDP6.

Lee, S. C. J.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett.20(9), 670–672 (2008).
[CrossRef]

S. C. J. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huiskens, H. P. A. van den Boom, A. M. J. Koonen, and N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of 850-nm VCSEL using discrete multi-tone modulation,” in Opt. Fiber Commun. Conf. (OFC), Anaheim, CA, 2007, PDP6.

Liu, X.

Lowery, A. J.

Ma, Y. R.

Man, E. D.

Peng, W. R.

Penty, R. V.

J. L. Wei, D. G. Cunningham, R. V. Penty, and I. H. White, “Feasibility of 100G ethernet enabled by carrierless amplitude/phase modulation and optical OFDM.” European Conference and Exhibition on Optical Communication (ECOC), 2012, P6.05.
[CrossRef]

Petermann, K.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett.20(9), 670–672 (2008).
[CrossRef]

Qian, D.

Randel, S.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett.20(9), 670–672 (2008).
[CrossRef]

S. C. J. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huiskens, H. P. A. van den Boom, A. M. J. Koonen, and N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of 850-nm VCSEL using discrete multi-tone modulation,” in Opt. Fiber Commun. Conf. (OFC), Anaheim, CA, 2007, PDP6.

Savory, S. J.

Schmidt, B.

Schmidt, E. D.

Schulien, C.

Schuster, M.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett.20(9), 670–672 (2008).
[CrossRef]

S. C. J. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huiskens, H. P. A. van den Boom, A. M. J. Koonen, and N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of 850-nm VCSEL using discrete multi-tone modulation,” in Opt. Fiber Commun. Conf. (OFC), Anaheim, CA, 2007, PDP6.

Shamee, B.

Shieh, W.

Spinnler, B.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett.20(9), 670–672 (2008).
[CrossRef]

Tang, Y.

Tkach, R. W.

van den Boom, H. P. A.

S. C. J. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huiskens, H. P. A. van den Boom, A. M. J. Koonen, and N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of 850-nm VCSEL using discrete multi-tone modulation,” in Opt. Fiber Commun. Conf. (OFC), Anaheim, CA, 2007, PDP6.

Waardt, H. D.

Wang, T.

Wei, J. L.

J. L. Wei, D. G. Cunningham, R. V. Penty, and I. H. White, “Feasibility of 100G ethernet enabled by carrierless amplitude/phase modulation and optical OFDM.” European Conference and Exhibition on Optical Communication (ECOC), 2012, P6.05.
[CrossRef]

White, I. H.

J. L. Wei, D. G. Cunningham, R. V. Penty, and I. H. White, “Feasibility of 100G ethernet enabled by carrierless amplitude/phase modulation and optical OFDM.” European Conference and Exhibition on Optical Communication (ECOC), 2012, P6.05.
[CrossRef]

Willner, A. E.

Wu, X. X.

Wuth, T.

Yang, J. Y.

Yang, Q.

Zan, Z.

Zeng, J.

S. C. J. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huiskens, H. P. A. van den Boom, A. M. J. Koonen, and N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of 850-nm VCSEL using discrete multi-tone modulation,” in Opt. Fiber Commun. Conf. (OFC), Anaheim, CA, 2007, PDP6.

Zhang, B.

Electron. Lett.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett.42(10), 587–589 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett.20(9), 670–672 (2008).
[CrossRef]

J. Lightwave Technol.

B. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “120 Gbit/s Over 500-km using single-band polarization-multiplexed self-coherent optical OFDM,” J. Lightwave Technol.28(4), 328–335 (2010).
[CrossRef]

N. Cvijetic, M. Cvijetic, M. Huang, E. IP, Y. Huang, and T. Wang, “Terabit optical access networks based on WDM-OFDMA-PON,” J. Lightwave Technol.30, 493–503 (2012).
[CrossRef]

W. R. Peng, B. Zhang, K. M. Feng, X. X. Wu, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” J. Lightwave Technol.27(24), 5723–5735 (2009).
[CrossRef]

Q. Yang, Y. Tang, Y. R. Ma, and W. Shieh, “Experimental demonstration and numerical simulation of 107-Gb/s high spectral efficiency coherent optical OFDM,” J. Lightwave Technol.27(3), 168–176 (2009).
[CrossRef]

X. Liu, F. Buchali, and R. W. Tkach, “Improving the nonlinear tolerance of polarization-division-multiplexed CO-OFDM in long-haul fiber transmission,” J. Lightwave Technol.27(16), 3632–3640 (2009).
[CrossRef]

C. R. S. Fludger, T. Duthel, D. V. den Borne, C. Schulien, E. D. Schmidt, T. Wuth, J. Geyer, E. D. Man, G.-D. Khoe, and H. D. Waardt, “Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission,” J. Lightwave Technol.26(1), 64–72 (2008).

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol.28(4), 484–493 (2010).
[CrossRef]

B. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightwave Technol.26(1), 196–203 (2008).
[CrossRef]

Opt. Express

Other

S. C. J. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huiskens, H. P. A. van den Boom, A. M. J. Koonen, and N. Hanik, “24-Gb/s transmission over 730 m of multimode fiber by direct modulation of 850-nm VCSEL using discrete multi-tone modulation,” in Opt. Fiber Commun. Conf. (OFC), Anaheim, CA, 2007, PDP6.

J. L. Wei, D. G. Cunningham, R. V. Penty, and I. H. White, “Feasibility of 100G ethernet enabled by carrierless amplitude/phase modulation and optical OFDM.” European Conference and Exhibition on Optical Communication (ECOC), 2012, P6.05.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Conceptual diagram of three schemes of block-wise phase switching (BPS) for fading-free double-side band direct detection: (a) carrier phase switching (CPS) where carrier phase is switched by 90 degree between 1st and 2nd blocks, (b) signal phase switching (SPS) where signal phase is switched by 90 degree, and (c) (signal) set phase reversal (SPR) where the phase of lower sideband is changed by 180 degree while upper sideband is unchanged. C is signal, E0 is main carrier, C1 (C2) is lower (upper) sideband. blk: Block.

Fig. 2
Fig. 2

Experimental setup for DD-OOFDM transmission using block-wise phase switching. Insets: (i) modified optical IQ modulator, (ii) main carrier constellation versus time, and (iii) optical spectrum of the combined optical DD-OOFDM signal.

Fig. 3
Fig. 3

Detected photocurrents showing fading-free complex current when only real component is loaded at the transmit optical IQ modulator.

Fig. 4
Fig. 4

BER performance at 80-km for 3-band 4- and 8-QAM signals.

Tables (1)

Tables Icon

Table 1 Experimental Demonstrations of Direct-detected OFDM (SSB: Single-side Band, DSB: Double-side Band, BPS: Block-wise Phase Switched)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I 1 = | E 0 + E s | 2 = | E 0 | 2 +2Re{ E s E 0 * }+ | E s | 2
I 2 = | E 0 j+ E s | 2 = | E 0 | 2 +2Im{ E s E 0 * }+ | E s | 2
I ˜ = I 1 + I 2 j=( 1+j ) | E 0 | 2 +2 E s E 0 * +( 1+j ) | E s | 2
I 1 = | E 0 + E u + E l | 2 = | E 0 | 2 +2Re{ ( E u + E l ) E 0 * }+ | E u + E l | 2
I 2 = | E 0 + E u E l | 2 = | E 0 | 2 +2Re{ ( E u E l ) E 0 * }+ | E u E l | 2
I 3 = I 1 + I 2 =2 | E 0 | 2 +4Re{ E u E 0 * }+2 | E u | 2 +2 | E l | 2
I 4 = I 1 I 2 =4Re{ E l E 0 * }+4Re{ E u E l * }

Metrics